- 相關(guān)推薦
高一年級數(shù)學必修一知識歸納筆記
高一年級數(shù)學必修一知識歸納筆記1
復(fù)數(shù)中的難點
(1)復(fù)數(shù)的向量表示法的運算.對于復(fù)數(shù)的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應(yīng)認真體會復(fù)數(shù)向量運算的幾何意義,對其靈活地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開方,有部分學生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應(yīng)對此認真地加以訓練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的`幾何意義靈活地解決問題.復(fù)數(shù)可以用向量表示,同時復(fù)數(shù)的模和輻角都具有幾何意義,對他們的理解和應(yīng)用有一定難度,應(yīng)認真加以體會.
復(fù)數(shù)中的重點
(1)理解好復(fù)數(shù)的概念,弄清實數(shù)、虛數(shù)、純虛數(shù)的不同點.
(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時經(jīng)常用到,是一個重點內(nèi)容.
(3)復(fù)數(shù)的三種表示法的各種運算,在運算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運算,特別是復(fù)數(shù)運算的幾何意義更是重點內(nèi)容.
(4)復(fù)數(shù)集中一元二次方程和二項方程的解法.
高一年級數(shù)學必修一知識歸納筆記2
指數(shù)函數(shù)
(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個顯然的'規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。
(7)函數(shù)總是通過(0,1)這點。
(8)顯然指數(shù)函數(shù)無XX。
高一年級數(shù)學必修一知識歸納筆記3
函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A---B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.
(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;
(2)與x的'值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
函數(shù)的三要素:定義域、值域、對應(yīng)法則
函數(shù)的表示方法:
(1)解析法:明確函數(shù)的定義域
(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。
(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。
高一年級數(shù)學必修一知識歸納筆記4
兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的`關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理
判別式
b2-4ac=0注:方程有兩個相等的實根
b2-4ac>0注:方程有兩個不等的實根
b2-4ac<0注:方程沒有實根,有共軛復(fù)數(shù)根
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
高一年級數(shù)學必修一知識歸納筆記5
集合與元素
一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。
例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對于這個班級集合來說,是它的一個元素;
而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。
班級相對于你是集合,相對于學校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。
解集合問題的關(guān)鍵
弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的.集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標系中的圖形表示相關(guān)的集合等。
【高一年級數(shù)學必修一知識歸納筆記】相關(guān)文章:
高一數(shù)學必修一知識點歸納筆記04-26
化學高一必修一知識點歸納筆記02-27
高一化學必修一知識點歸納筆記09-26
高一物理必修二復(fù)習知識點歸納筆記09-06
高一地理必修一知識點筆記歸納09-26
高一地理必修二知識點歸納筆記09-25
高一化學必修一知識點歸納12-18
高一政治必修一知識點總結(jié)歸納08-15