圓的標(biāo)準(zhǔn)方程教案范本
圓的標(biāo)準(zhǔn)方程教案范本
一、教材分析
本章將在上章學(xué)習(xí)了直線與方程的基礎(chǔ)上,學(xué)習(xí)在平面直角坐標(biāo)系中建立圓的代數(shù)方程,運(yùn)用代數(shù)方法研究直線與圓,圓與圓的位置關(guān)系,了解空間直角坐標(biāo)系,在這個(gè)過(guò)程中進(jìn)一步體會(huì)數(shù)形結(jié)合的思想,形成用代數(shù)方法解決幾何問(wèn)題的能力。
二、教學(xué)目標(biāo)
1、 知識(shí)目標(biāo):使學(xué)生掌握?qǐng)A的標(biāo)準(zhǔn)方程并依據(jù)不同條件求得圓的方程。
2、 能力目標(biāo):
(1)使學(xué)生初步熟悉圓的標(biāo)準(zhǔn)方程的用途和用法。
(2)體會(huì)數(shù)形結(jié)合思想,形成代數(shù)方法處理幾何問(wèn)題能力(3)培養(yǎng)學(xué)生觀察、比較、分析、概括的思維能力。
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1、重點(diǎn):圓的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程和圓的標(biāo)準(zhǔn)方程特點(diǎn)的明確。
2、難點(diǎn):圓的方程的應(yīng)用。
3、解決辦法 充分利用課本提供的2個(gè)例題,通過(guò)例題的解決使學(xué)生初步熟悉圓的標(biāo)準(zhǔn)方程的用途和用法。
四、學(xué)法
在課前必須先做好充分的預(yù)習(xí),讓學(xué)生帶著疑問(wèn)聽(tīng)課,以提高聽(tīng)課效率。采取學(xué)生共同探究問(wèn)題的學(xué)習(xí)方法。
五、教法
先讓學(xué)生帶著問(wèn)題預(yù)習(xí)課文,對(duì)圓的方程有個(gè)初步的認(rèn)識(shí),在教學(xué)過(guò)程中,主要采用啟發(fā)性原則,發(fā)揮學(xué)生的思維能力、空間想象能力。在教學(xué)中,還不時(shí)補(bǔ)充練習(xí)題,以鞏固學(xué)生對(duì)新知識(shí)的理解,并緊緊與考試相結(jié)合。
六、教學(xué)步驟
(一)導(dǎo)入新課 首先讓學(xué)生回顧上一章的直線的方程是怎么樣求出的。
(二)講授新課
1、新知識(shí)學(xué)習(xí)在學(xué)生回顧確定直線的要素——兩點(diǎn)(或者一點(diǎn)和斜率)確定一條直線的基礎(chǔ)上,回顧確定圓的幾何要素——圓心位置與半徑大小,即圓是這樣的一個(gè)點(diǎn)的集合在平面直角坐標(biāo)系中,圓心 可以用坐標(biāo) 表示出來(lái),半徑長(zhǎng) 是圓上任意一點(diǎn)與圓心的距離,根據(jù)兩點(diǎn)間的距離公式,得到圓上任意一點(diǎn) 的坐標(biāo) 滿足的關(guān)系式。經(jīng)過(guò)化簡(jiǎn),得到圓的標(biāo)準(zhǔn)方程
2、知識(shí)鞏固
學(xué)生口答下面問(wèn)題
1、求下列各圓的標(biāo)準(zhǔn)方程。
① 圓心坐標(biāo)為(-4,-3)半徑長(zhǎng)度為6;
② 圓心坐標(biāo)為(2,5)半徑長(zhǎng)度為3;2、求下列各圓的圓心坐標(biāo)和半徑。
3、知識(shí)的延伸根據(jù)“曲線與方程”的意義可知,坐標(biāo)滿足方程的點(diǎn)在曲線上,坐標(biāo)不滿足方程的點(diǎn)不在曲線上,為了使學(xué)生體驗(yàn)曲線和方程的思想,加深對(duì)圓的標(biāo)準(zhǔn)方程的理解,教科書配置了例1。
例1要求首先根據(jù)坐標(biāo)與半徑大小寫出圓的標(biāo)準(zhǔn)方程,然后給一個(gè)點(diǎn),判斷該點(diǎn)與圓的關(guān)系,這里體現(xiàn)了坐標(biāo)法的思想,根據(jù)圓的坐標(biāo)及半徑寫方程——從幾何到代數(shù);根據(jù)坐標(biāo)滿足方程來(lái)看在不在圓上——從代數(shù)到幾何。
(三)知識(shí)的運(yùn)用
例2給出不在同一直線上的三點(diǎn),可以畫出一個(gè)三角形,三角形有唯一的外接圓,因此可以求出他的標(biāo)準(zhǔn)方程。由于圓的標(biāo)準(zhǔn)方程含有三個(gè)參數(shù) , ,因此必須具備三個(gè)獨(dú)立條件才能確定一個(gè)圓。引導(dǎo)學(xué)生找出求三個(gè)參數(shù)的方法,讓學(xué)生初步體驗(yàn)用“待定系數(shù)法”求曲線方程這一數(shù)學(xué)方法的使用過(guò)程
(四)小結(jié)一、知識(shí)概括
1、 圓心為 ,半徑長(zhǎng)度為 的圓的標(biāo)準(zhǔn)方程為
2、 判斷給出一個(gè)點(diǎn),這個(gè)點(diǎn)與圓什么關(guān)系。
3、 怎樣建立一個(gè)坐標(biāo)系,然后求出圓的標(biāo)準(zhǔn)方程。
4、思想方法
。1)建立平面直角坐標(biāo)系,將曲線用方程來(lái)表示,然后用方程來(lái)研究曲線的性質(zhì),這是解析幾何研究平面圖形的基本思路,本節(jié)課的學(xué)習(xí)對(duì)于研究其他圓錐曲線有示范作用。
。2)曲線與方程之間對(duì)立與統(tǒng)一的關(guān)系正是“對(duì)立統(tǒng)一”的哲學(xué)觀點(diǎn)在教學(xué)中的體現(xiàn)。
五、布置作業(yè)(第127頁(yè)2、3、4題)
【圓的標(biāo)準(zhǔn)方程教案】相關(guān)文章:
數(shù)學(xué) -橢圓及其標(biāo)準(zhǔn)方程教案03-20
《橢圓及其標(biāo)準(zhǔn)方程》的教學(xué)反思02-24
數(shù)學(xué)教案:圓的認(rèn)識(shí)02-12
夢(mèng)圓飛天教案例子07-13
六年級(jí)上冊(cè)《圓的面積》教案(精選10篇)12-07
數(shù)學(xué)教學(xué)之方程教學(xué)反思03-20
解一元一次方程的教案(精選11篇)12-05