圓與方程數(shù)學教案
作為一位無私奉獻的人民教師,時常會需要準備好教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當?shù)慕虒W方法。教案應該怎么寫才好呢?下面是小編收集整理的圓與方程數(shù)學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
本章在“第三章 直線與方程”的基礎上,在直角坐標系中建立圓的方程,并通過圓的方程,研究直線與圓、圓與圓的位置關系。
在直角坐標系中,建立幾何對象的方程,并通過方程研究幾何對象,這是研究幾何問題的重要方法。通過坐標系,把點與坐標、曲線與方程聯(lián)系起來,實現(xiàn)空間形式與數(shù)量關系的結合。
一、內容與課程學習目標
本章主要內容是在直角坐標系中建立圓的方程,并通過圓的方程,研究直線與圓、圓與圓的位置關系。通過本章學習,要使學生達到如下學習目標:
1.回顧確定圓的幾何要素,在平面直角坐標系中,探索并掌握圓的標準方程與一般方程。
2.能根據(jù)給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。
3.能用直線和圓的方程解決一些簡單的問題。
4.進一步體會用代數(shù)方法處理幾何問題的思想。
5.通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。
6.通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索并得出空間兩點間的距離公式。
二、內容安排
本章內容共分三節(jié),約需9課時,具體課時分配如下(僅供參考):
4.1 圓的方程 約2課時
4.2 直線、圓的位置關系 約4課時
4.3 空間直角坐標系 約2課時
小 結 約1課時
本章知識結構如下:
1.“直線與方程”一章研究了直線方程的各種形式、直線之間的位置關系以及直線之間位置關系的簡單應用。本章在第三章的基礎上,學習圓的有關知識——圓的標準方程、圓的一般方程;繼續(xù)運用“坐標法”研究直線與圓、圓與圓的位置關系等幾何問題;學習空間直角坐標系的有關知識,用坐標表示簡單的空間的幾何對象。
2.“圓的方程”一節(jié)包括圓的標準方程、圓的一般方程兩部分。首先提出確定圓的幾何要素這個問題,指出圓心和半徑是確定一個圓最基本的要素,然后引導學生用代數(shù)的語言(方程)描述圓,進而得到圓心為C(a,b ),半徑為r的圓的標準方程(x-a)2+(y-b)2=r2。對圓的標準方程進行變形,可以得出圓的一般方程,它們是表示圓的方程的兩種形式。
3.“直線、圓的位置關系”中,先從幾何角度指出它們之間的直線與直線、直線與圓的位置關系,然后用方程去描述它們,通過方程研究直線、圓的位置關系。最后安排了直線與圓的方程在解決實際問題和平面幾何問題方面的應用。
通過方程,研究直線與圓、圓與圓的位置關系是本章的主要內容之一。判斷直線與圓、圓與圓的位置關系可以從兩個方面入手:
。1)曲線C1與C2有無公共點,等價于由它們的方程組成的方程組有無實數(shù)解.方程組有幾組實數(shù)解,曲線C1與C2就有幾個公共點;方程組沒有實數(shù)解,C1與C2就沒有公共點。
(2)運用平面幾何知識,把直線與圓、圓與圓的位置關系的結論轉化為相應的代數(shù)問題。
在本節(jié)的最后,進一步指出用坐標方法解決幾何問題的“三部曲”:
第一步:建立適當?shù)钠矫嬷苯亲鴺讼担米鴺撕头匠瘫硎締栴}中涉及的幾何元素,將平面幾何問題轉化為代數(shù)問題;
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:把代數(shù)運算結果“翻譯”成幾何結論。
4.“空間直角坐標系”包括空間直角坐標系的概念,用坐標表示空間中簡單的幾何對象,以及空間中兩點間的距離公式。
5.為了使學生更好地了解“坐標法”,認識信息技術在探求軌跡方面的作用,本章安排了“閱讀與思考 坐標法與機器證明”和“探究與發(fā)現(xiàn) 用《幾何畫板》探求點的軌跡(圓)”!伴喿x與思考 坐標法與機器證明”介紹了坐標法、笛卡兒、坐標法與機器證明之間的關系、機器證明的思想,以及在機器證明方面作出重大貢獻的的我國著名數(shù)學家吳文俊先生。目的是拓廣學生的知識面,了解我國數(shù)學家作出的重大貢獻,激發(fā)學生進一步深入學習數(shù)學的興趣!疤骄颗c發(fā)現(xiàn) 用《幾何畫板》探求點的軌跡(圓)”介紹了《幾何畫板》在探求點的軌跡,幫助學生猜想、發(fā)現(xiàn)方面的作用。
三、編寫中考慮的幾個問題
1.始終貫穿“坐標法”的思想
解析幾何的特點是用代數(shù)的方法研究幾何圖形。對于義務教育階段中判斷圓與直線、圓與圓之間的位置關系的方法,學生并不陌生。這里研究問題的方法與以前不同,這就是坐標法.
在建立圓的標準方程時,首先幫助學生回顧確定圓的要素,然后利用坐標法來刻畫圓,建立了圓的標準方程;判斷圓與直線、圓與圓的位置關系時,首先回顧義務教育階段如何判斷圓與直線、圓與圓的位置關系,然后利用坐標法研究它們。從另一個角度看,既然圓、直線都可以用方程來刻畫,那么就可以通過對方程的研究來研究直線與圓、圓與圓的位置關系,這就是兩曲線是否有公共點的問題,即它們的方程組成的方程組有沒有實數(shù)解的問題。本章在進行圓與直線、圓與圓的位置關系判斷時,常常采用這兩種方法.
2.從一個或幾個數(shù)學問題展開知識內容
問題是數(shù)學的心臟。引入知識內容時,常設置一個或幾個問題,創(chuàng)設一種情境,一方面引起學生的興趣,另一方面引起學生解決問題的求知欲望。
比如“4. 1.2 圓的一般方程”,提出了兩個思考題
思考:方程x2+y2-2x+4y+1=0表示什么圖形?方程x2+y2-2x-4y+6=0表示什么圖形?
實際上,對方程x2+y2-2x-4y+6=0配方,得(x-1)2+(y-2)2=-1,這個方程不表示任何圖形。
緊接著,教科書又提出一個讓學生探究的問題。
探究:形如x2+y2+Dx+Ey+F=0的方程在什么條件下表示圓?
教科書環(huán)環(huán)相扣,把學生引入一個又一個“憤”與“悱”的境地,使得學生通過問題的解決學習新的知識。
3.關注結論形成的過程,通過思考、探究,得出結論
本章在編寫時注意呈現(xiàn)方式,不直接給出結論,讓學生證明。而是把結論放在學生經(jīng)過一系列數(shù)學活動之后,通過思考、探究,得出結論。比如,用“坐標法”解決問題的“三部曲”就是通過解決一系列問題后得出。在例題的呈現(xiàn)時,增加了分析的過程,重點分析解題的思路。在探求點的軌跡時,提倡先用信息技術工具探究軌跡的形狀,對問題有一個直觀的了解,然后再分析軌跡形成的原因,找出解決問題的方法,使得學生抓住問題的本質,理清思路,制訂合理的解題策略。
4.充分利用教科書邊空,提出具有一定思考價值的問題,強調重要的數(shù)學思想方法
利用教科書邊空不失時機地提出一些具有一定思考價值的問題,例如:
。1)當一個問題解決之后,詢問“還有其他不同的解法嗎?”或者是“有更好的解法嗎?”
。2)當同一個問題有兩種解法時,要求比較它們的優(yōu)劣。如“請同學們比較這兩種證明方法,并指出各自的特點?”在比較中加深理解,促使學生養(yǎng)成解題后反思的良好習慣.
。3)當同一個問題有多種解法時,要求學生在教科書已經(jīng)給出一種或兩種解法的基礎上再給出一種。
歸納、抽象是重要的數(shù)學思想方法。在問題解決之后,要求學生進行一些簡單的歸納。例如,“4. 1.1 圓的標準方程”,在學習了例2與例3之后,提出“比較例2和例3,你能歸納出求任意三角形外接圓的標準方程的兩種方法嗎?”
通過問題的開放性,觸類旁通地提出問題。比如,研究圓C1:x2+2+2x+8y-8=0與圓C2:x2+y2-4x-4y-2=0的關系時,把它們的方程相減,得到 x+2y-1=0。在邊空處要求“畫出圓C1與2以及方程x+2y-1=0表示的直線,你發(fā)現(xiàn)了什么?你能說明為什么嗎?”更進一步,能否說,要研究圓C1與圓C2的關系只要研究直線x+2y-1=0與C1(或C2)的關系就可以了呢?這一問題,不僅體現(xiàn)了“化歸”的思想,而且是頗具思考價值的.
5.注意加強與實際問題、其他學科的聯(lián)系
本章內容的選擇盡可能加強與學生的生活、生產(chǎn)實際的聯(lián)系。比如,為說明研究直線與圓的位置關系的必要性,設置了一個漁船能否避開臺風的問題:
一艘輪船在沿直線返回港口的途中,接到氣象臺的臺風預報:臺風中心位于輪船正西70 km處,受影響的范圍是半徑長為30 km的圓形區(qū)域. 已知港口位于臺風中心正北40 km處,如果這艘輪船不改變航線,那么它是否會受到臺風的影響?
在直線與圓的方程的應用部分,設置了與圓拱橋有關的計算題。學習空間直角坐標系時,要求寫出食鹽晶胞中鈉原子在空間直角坐標系中的位置(坐標)等等。
6.介紹科技成果,滲透數(shù)學文化
本章通過設置“閱讀與思考 坐標法與機器證明”欄目,介紹科學家、數(shù)學史、數(shù)學在現(xiàn)代生活中的應用等,機器證明幾何定理是坐標法的精彩應用,我國數(shù)學家吳文俊先生在這方面有著重要的貢獻,較為詳細地介紹了機器證明幾何定理研究的歷史。
四、對教學的幾個建議
1.認真把握教學要求
教學中,注意控制教學的難度,避免進行綜合性強、難度較大的數(shù)學題的訓練,避免在解題技巧上做文章。比如,義務教育階段“空間與圖形”部分涉及的許多結論都可以用坐標法來加以證明,而義務教育階段的教學要求已經(jīng)有所改變。因此,用坐標法證明平面幾何題要求不宜過高,適可而止。再如,教科書不介紹圓的切線方程x0x+y0y=r2,這并不是說不涉及圓與直線相切這一位置關系。與直線相切這一位置關系的判斷可以有兩種方法,一種是利用圓心到直線的距離等于半徑長;另一種是利用它們的方程組成的方程組只有一組實數(shù)解。
2.關注重要數(shù)學思想方法的教學
重要的數(shù)學思想方法不怕重復。《普通高中數(shù)學課程標準(實驗)》要求“坐標法”應貫穿平面解析幾何教學的始終,幫助學生不斷地體會“數(shù)形結合”的思想方法。在教學中應自始至終強化這一思想方法,這是解析幾何的特點。教學中注意“數(shù)”與“形”的結合,在通過代數(shù)方法研究幾何對象的位置關系以后,還可以畫出其圖形,驗證代數(shù)結果;同時,通過觀察幾何圖形得到的數(shù)學結論,對結論進行代數(shù)證明,不應割斷它們之間的聯(lián)系,只強調其一方面。
3.關注學生的動手操作和主動參與
學習方式的轉變是課程改革的重要目標之一。教學中,注意提供充分的數(shù)學活動和交流的機會,引導他們在自主探索的過程中獲得知識、增強技能、掌握基本的數(shù)學思想方法。例如,判斷直線與圓、圓與圓的位置關系以及它們的簡單應用,探究點的軌跡等內容,可以先讓學生畫一畫、想一想,然后進行代數(shù)論證!坝^察”“思考”“探究”等欄目設置目的之一就是想讓學生參與到數(shù)學活動中來。
4.關注信息技術的應用
平面解析幾何是一門典型的數(shù)與形結合的學科,信息技術在加強幾何直觀,促使數(shù)與形結合方面有著特殊的作用。借助信息技術,可以形象、直觀地幫助學生認識所研究的曲線。在動態(tài)演示中,觀察曲線的性質,在直觀了解的基礎上,尋求形成這些性質的原因以及代數(shù)表示。通過對方程的研究,了解曲線與曲線的關系時,運用信息技術,可以進一步驗證得到的結果,為抽象的認識增添了形象的支持。在探究點的軌跡時,可以借助信息技術,探究軌跡的形狀等等。
【圓與方程數(shù)學教案】相關文章:
關于圓的標準方程教學反思06-25
《圓的認識》的數(shù)學教案06-06
人教版數(shù)學教案:圓導學案06-01
圓明圓的毀滅的教學反思06-13
《方程》教學反思07-07
《方程》的教學反思07-10
圓的教案04-14
圓的教案04-14
圓的教案04-14
圓的教案04-14