中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

實用文檔>多邊形的內(nèi)角和與外角和教案

多邊形的內(nèi)角和與外角和教案

時間:2024-07-27 06:56:01

多邊形的內(nèi)角和與外角和教案

  作為一名默默奉獻的教育工作者,很有必要精心設(shè)計一份教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么應(yīng)當(dāng)如何寫教案呢?以下是小編幫大家整理的多邊形的內(nèi)角和與外角和教案,歡迎閱讀與收藏。

多邊形的內(nèi)角和與外角和教案

多邊形的內(nèi)角和與外角和教案1

  [教學(xué)目標(biāo)]

  知識與技能:

  1.會用多邊形公式進行計算。

  2.理解多邊形外角和公式。

  過程與方法:

  經(jīng)歷探究多邊形內(nèi)角和計算方法的過程,培養(yǎng)學(xué)生的合作交流意識力.

  情感態(tài)度與價值觀:

  讓學(xué)生在觀察、合作、討論、交流中感受數(shù)學(xué)轉(zhuǎn)化思想和實際應(yīng)用價值,同時培養(yǎng)學(xué)生善于發(fā)現(xiàn)、積極思考、合作學(xué)習(xí)、勇于創(chuàng)新的學(xué)習(xí)態(tài)度。

  [教學(xué)重點、難點與關(guān)鍵]

  教學(xué)重點:多邊形的內(nèi)角和.的應(yīng)用.

  教學(xué)難點:探索多邊形的內(nèi)角和與外角和公式過程.

  教學(xué)關(guān)鍵:應(yīng)用化歸的數(shù)學(xué)方法,把多邊形問題轉(zhuǎn)化為三角形問題來解決.

  [教學(xué)方法]

  本節(jié)課采用“探究與互動”的教學(xué)方式,并配以真的情境來引題。

  [教學(xué)過程:]

  (一)探索多邊形的內(nèi)角和

  活動1:判斷下列圖形,從多邊形上任取一點c,作對角線,判斷分成三角形的個數(shù)。

  活動2:①從多邊形的一個頂點出發(fā),可以引多少條對角線?他們將多邊形分成多少個三角形?②總結(jié)多邊形內(nèi)角和,你會得到什么樣的結(jié)論?

  多邊形邊數(shù)分成三角形的個數(shù)圖形

  內(nèi)角和計算規(guī)律

  三角形31180°(3-2)·180°

  四邊形4

  五邊形5

  六邊形6

  七邊形7

  。。。。。。

  n邊形n

  活動3:把一個五邊形分成幾個三角形,還有其他的分法嗎?

  總結(jié)多邊形的內(nèi)角和公式

  一般的,從n邊形的一個頂點出發(fā)可以引____條對角線,他們將n邊形分為____個三角形,n邊形的內(nèi)角和等于180×______。

  鞏固練習(xí):看誰求得又快又準!(搶答)

  例1:已知四邊形ABCD,∠A+∠C=180°,求∠B+∠D=?

  (點評:四邊形的`一組對角互補,另一組對角也互補。)

  (二)探索多邊形的外角和

  活動4:例2如圖,在五邊形的每個頂點處各取一個外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?

  分析:(1)任何一個外角同于他相鄰的內(nèi)角有什系?

  (2)五邊形的五個外角加上與他們相鄰的內(nèi)角所得總和是多少?

  (3)上述總和與五邊形的內(nèi)角和、外角和有什么關(guān)系?

  解:五邊形的外角和=______________-五邊形的內(nèi)角和

  活動5:探究如果將例2中五邊形換成n邊(n≥3),可以得到同樣的結(jié)果嗎?

  也可以理解為:從多邊形的一個頂點A點出發(fā),沿多邊形的各邊走過各點之后回到點A.最后再轉(zhuǎn)回出發(fā)時的方向。由于在這個運動過程中身體共轉(zhuǎn)動了一周,也就是說所轉(zhuǎn)的各個角的和等于一個______角。所以多邊形的外角和等于_________。

  結(jié)論:多邊形的外角和=___________。

  練習(xí)1:如果一個多邊形的每一個外角等于30°,則這個多邊形的邊數(shù)是_____。

  練習(xí)2:正五邊形的每一個外角等于________,每一個內(nèi)角等于_______。

  練習(xí)3.已知一個多邊形,它的內(nèi)角和等于外角和,它是幾邊形?

  (三)小結(jié):本節(jié)課你有哪些收獲?

  (四)作業(yè):

  課本P84:習(xí)題7.3的2、6題

  附知識拓展—平面鑲嵌

  (五)隨堂練習(xí)(練一練)

  1、n邊形的內(nèi)角和等于__________,九邊形的內(nèi)角和等于___________。

  2、一個多邊形當(dāng)邊數(shù)增加1時,它的內(nèi)角和增加()。

  3、已知多邊形的每個內(nèi)角都等于150°,求這個多邊形的邊數(shù)?

  4、一個多邊形從一個頂點可引對角線3條,這個多邊形內(nèi)角和等于()

  A:360°B:540°C:720°D:900°

  5.已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個多邊形的邊數(shù)?

多邊形的內(nèi)角和與外角和教案2

  教學(xué)目標(biāo)

  知識與技能:經(jīng)歷探索多邊形的外角和公式的過程;會應(yīng)用公式解決問題;

  過程與方法:培養(yǎng)學(xué)生把未知轉(zhuǎn)化為已知進行探究的能力,在探究活動中,進一步發(fā)展學(xué)生的說理能力與簡單的推理能力.

  情感態(tài)度與價值觀:讓學(xué)生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗數(shù)學(xué)充滿著探索和創(chuàng)造.

  教學(xué)重點:多邊形外角和定理的探索和應(yīng)用.

  教學(xué)難點:靈活運用公式解決簡單的實際問題;轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透.

  教學(xué)準備:多媒體課件

  教學(xué)過程

  第一環(huán)節(jié) 創(chuàng)設(shè)情境,引入新課(5分鐘,學(xué)生理解情境,思考問題)

  問題:(多媒體演示)清晨,小明沿一個五邊形廣場周圍的小路,按逆時針方向跑步。

  (1)小明每從一條街道轉(zhuǎn)到下一條街道時,身體轉(zhuǎn)過的角是哪個角?

  (2)他每跑完一圈,身體轉(zhuǎn)過的角度之和是多少?

  (3)在上圖中,你能求出∠1+∠2+∠3+∠4+∠5的結(jié)果嗎?你是怎樣得到的?

  第二環(huán)節(jié) 問題解決(10分鐘,小組討論,合作探究)

  對于上述的問題,如果學(xué)生能給出一些合理的解釋和解答(例如利用內(nèi)角和),可以按照學(xué)生的思路走下去。然后再給出“小亮的做法”或以“小亮做法”為提示,鼓勵學(xué)生思考。如果學(xué)生對于這個問題無法突破,教師可以給出“小亮的做法”,或引導(dǎo)學(xué)生按“小亮的做法”這樣的思路去思考,以便解決這個問題。

  小亮是這樣思考的:如圖所示,過平面內(nèi)一點O分別作與五邊形ABCDE各邊平行的射線OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.

  這樣,∠1+∠2+∠3+∠4+∠5=360°

  問題引申:

  1.如果廣場的形狀是六邊形那么還有類似的結(jié)論嗎?

  2.如果廣場的形狀是八邊形呢?

  第三環(huán)節(jié) 探索多邊形的外角與外角和(10分鐘,全班交流,學(xué)生理解識記)

  1.多邊形內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的'外角。

  2.在每個頂點處取這個多邊形的一個外角,它們的和叫做這個多邊形的外角和。

  探究多邊形的外角和,提出一般性的問題:一個任意的凸n邊形,它的外角和是多少?

  鼓勵學(xué)生用多種方法解決這個問題,可以參考第二環(huán)節(jié)解決特殊問題的方法去解決這個一般性的問題。

  方法Ⅰ:類似探究多邊形的內(nèi)角和的方法,由三角形、四邊形、五邊形…的外角和開始探究;

  方法Ⅱ:由n邊形的內(nèi)角和等于(n-2)180°出發(fā),探究問題。

  結(jié)論:多邊形的外角和等于360°

  (1)還有什么方法可以推導(dǎo)出多邊形外角和公式?

  (2)利用多邊形外角和的結(jié)論,能否推導(dǎo)出多邊形內(nèi)角和的結(jié)論?

  第四環(huán)節(jié) 鞏固練習(xí)(10分鐘,學(xué)生利用知識獨立解決問題)

  例1一個多邊形的內(nèi)角和等于它的外角和的3倍,它是幾邊形?

  隨堂練習(xí)

  1.一個多邊形的外角都等于60°,這個多邊形是幾邊形?

  2.右圖是三個不完全相同的正多邊形拼成的無縫隙、不重疊的圖形的一部分,這種多邊形是幾邊形?為什么?

  挑戰(zhàn)自我:

  1.在四邊形的四個內(nèi)角中,最多能有幾個鈍角?最多能有幾個銳角?

  2.在n邊形的n個內(nèi)角中,最多能有幾個鈍角?最多能有幾個銳角?

  挑戰(zhàn)自我的2個問題,對于新授課上的學(xué)生而言,難度是比較大的。因為之前不管是多邊形的內(nèi)角和還是外角和,基本上都是利用等式,從“正向”解決的。而這里要解決的問題,在解決的過程中,需要用到簡單的不等式知識和“反證”的思想,對于初次接觸這些的學(xué)生而言,難度是比較大的。教師要注意講解的方式方法。

  第五環(huán)節(jié) 課時小結(jié)(3分鐘,學(xué)生加深記憶)

  多邊形的外角及外角和的定義;

  多邊形的外角和等于360°;

  在探求過程中我們使用了觀察、歸納的數(shù)學(xué)方法,并且運用了類比、轉(zhuǎn)化等數(shù)學(xué)思想.

  第六環(huán)節(jié) 布置作業(yè):

  習(xí)題4.11

  A組(優(yōu)等生)第1,2,3題

  B組(中等生)1、2

  C組(后三分之一生)1

多邊形的內(nèi)角和與外角和教案3

  教學(xué)目的

  使學(xué)生能熟練靈活地利用三角形內(nèi)角和,外角和以及外角的兩條性質(zhì)進行有關(guān)計算。

  重點:利用三角形的內(nèi)角和與外角的兩條性質(zhì)來求三角形的內(nèi)角或外角。

  難點:比較復(fù)雜圖形,靈活應(yīng)用三角形外角的性質(zhì)。

  教學(xué)過程

  一、復(fù)習(xí)提問

  1.三角形的內(nèi)角和與外角和各是多少?

  2.三角形的外角有哪些性質(zhì)?

  二、新授

  例1.在△ABC中,∠A=12∠B=13∠C,求△ABC各內(nèi)角的度數(shù)。

  分析:由已知條件可得∠B=2∠A,∠C=3∠A所以可以根據(jù)三角形的內(nèi)角和等于180°來解決。

  做一做:如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=46°

  A

  BDEA

  (1)你會求∠DAE的度數(shù)嗎?與你的同伴交流。

  (2)你能發(fā)現(xiàn)∠DAE與∠B、∠C之間的關(guān)系嗎?

  (2)若只知道∠B-∠C=20°,你能求出∠DAE的度數(shù)嗎?

  分析:(1)∠DAE是哪個三角形的內(nèi)角或外角?

  (2)在△ADE中,已知什么?要求∠DAE,必需先求什么?

  (3)∠AED是哪個三角形的.外角?

  (4)在△AEC中已知什么?要求∠AEB,只需求什么?

  (5)怎樣求∠EAC的度數(shù)?

  三、鞏固練習(xí)

  1.如圖,△ABC中,∠BAC=50°,∠B=60°,AD是△ABC的角平分線,求∠ADC,∠ADB的度數(shù)。

  2.已知在△ABC中,∠A=2∠B-10°,∠B=∠C+20°。求三角形的各內(nèi)角的度數(shù)。

  四、小結(jié)

  三角形的內(nèi)角和,外角的性質(zhì)反映了三角形的三個內(nèi)角外角是互相聯(lián)系與制約的,我們可以用它來求三角形的內(nèi)角或外角,解題時,有時還需添加輔助線,有時結(jié)合代數(shù),用方程來解比較方便。

多邊形的內(nèi)角和與外角和教案4

  1

  目標(biāo)

  知識與技能:掌握多邊形內(nèi)角和定理,進一步了解轉(zhuǎn)化的數(shù)學(xué)思想

  過程與方法:經(jīng)歷質(zhì)疑、猜想、歸納等活動,發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動的經(jīng)驗,在探索中學(xué)會與人合作,學(xué)會交流自己的思想和方法.

  情感態(tài)度與價值觀:讓學(xué)生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗數(shù)學(xué)充滿著探索和創(chuàng)造.

  重點:多邊形內(nèi)角和定理的探索和應(yīng)用

  教學(xué)難點:邊形定義的理解;多邊形內(nèi) 角和公式的推導(dǎo);轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透.

  教學(xué)過程

  第一環(huán)節(jié) 創(chuàng)設(shè)現(xiàn)實情境,提出問題,引 入新(3分鐘,學(xué)生思考問題,入)

  1.多媒 體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無處不在的多 邊形.

  2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?

  第二環(huán)節(jié) 概念形成(5分鐘,學(xué)生理解定義)

  1.借助多媒體顯示一多邊形,學(xué)生類比三角形的有關(guān)知識對多邊形定義、并表示出相應(yīng)的元素.

  2.教師再給出嚴格規(guī)范的定義,特別借助學(xué)具說明“在平面內(nèi)” 的必要性.此外,說明正多邊形的定義以及多邊形可分為凸多邊形和凹多邊形.

  第三環(huán)節(jié) 實驗探究(12分鐘,學(xué)生動手操作,探究內(nèi)角和)

 。ㄒ运娜诵〗M為單位展開探究活動)

  提出問題:三角形的內(nèi)角和為180°,那么多邊形的內(nèi)角和是多少度呢?從四邊形開始研究. 1 . c o m

  活動一:利用四邊形探索四邊形內(nèi)角和

  要求:先獨立思考再小組合作交流完成.)

 。◣熝惨暎私鈱W(xué)生探索進程并適當(dāng)點撥.)

 。ㄉ伎己蠼涣,把不同 的方案在紙上完成.)

  ……(組 間交流,教師展示幾種方法)

  教師幫助學(xué)生反思:在剛才的探索活動中,大家有不同的方法求四邊形的內(nèi)角和,這些看似不同的'方法有沒有相似之處?

  進而引導(dǎo) 學(xué)生得出:我們是把四邊形的問題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為 1 80°,求出四邊形內(nèi)角和為360°,從而使問題得到解決!進一步提出新的探索活動。

  活動二:探索五邊形內(nèi)角和

 。ㄒ螅邯毩⑺伎,自主完成.)

  第四環(huán)節(jié) 思維升華(5分鐘,教師引導(dǎo)學(xué)生進行推算)

  教學(xué)過程:

  探索n邊形內(nèi)角和,并試著說明理由

 。ńY(jié)合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)

  n邊形的內(nèi)角和=(n—2)180°

  正n邊形的一個內(nèi)角= =

  第五環(huán)節(jié) 能力 拓展(12分鐘,學(xué)生搶答)

  搶答題:

  1.正八邊形的內(nèi)角和為_______ .

  2.已知多邊形的內(nèi)角和為900°,則這個多邊形的邊數(shù)為_______.

  3.一個多邊形每個內(nèi)角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.

  應(yīng)用發(fā)散:

  4.如圖所示的模板,按規(guī)定,AB,CD的延長線相交成80°的角,因交點不在板上,不便測量,質(zhì)檢員測得∠BAE=122°,∠DCF=155°.如果你是質(zhì)檢員,如何知道模板是否合格?為什么?

  5.小明有一個設(shè)想:2008年奧運會在北京召開,要是能設(shè)計一個內(nèi)角和是2008°的多邊形花壇該多有意義!小明的這個想法能實現(xiàn)嗎?

  第六環(huán)節(jié) 時小結(jié):(3分鐘,學(xué)生填表)

  教師和學(xué)生一起對本節(jié)內(nèi)容和同學(xué)們的表現(xiàn)做一小結(jié),然后每位學(xué)生利用活動評價表進行自我量化考核,并于下反饋給老師

  第七環(huán)節(jié) 布置作業(yè): 習(xí)題4、10

  A組(優(yōu)等生)1;思考題:一個多邊形去掉一個內(nèi)角后形成的多邊形內(nèi)角和為 1800°,你能求出原多邊形的邊數(shù)嗎?

  B 組(中等生)1

  C組(后三分之一生)1

  教學(xué)反思:

【多邊形的內(nèi)角和與外角和教案】相關(guān)文章:

教案:多邊形內(nèi)角和與外角和05-25

多邊形內(nèi)角和定理證明05-17

《多邊形的內(nèi)角和》的教學(xué)設(shè)計(精選11篇)04-13

《電和磁》的教案03-04

《三角形內(nèi)角和》教學(xué)反思(精選14篇)03-21

《開花和結(jié)果》教案02-02

關(guān)于《點和線》的教案03-20

小螞蟻和蒲公英教案04-19

《伯牙絕弦》教案和反思03-19

精彩極了和糟糕透了的教案03-20

用戶協(xié)議