中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高一下冊數(shù)學(xué)教學(xué)工作計(jì)劃

時(shí)間:2023-02-09 19:30:58 工作計(jì)劃 我要投稿

高一下冊數(shù)學(xué)教學(xué)工作計(jì)劃

  時(shí)間就如同白駒過隙般的流逝,我們的工作又將在忙碌中充實(shí)著,在喜悅中收獲著,做好計(jì)劃,讓自己成為更有競爭力的人吧。我們該怎么擬定計(jì)劃呢?下面是小編為大家收集的高一下冊數(shù)學(xué)教學(xué)工作計(jì)劃,歡迎閱讀,希望大家能夠喜歡。

高一下冊數(shù)學(xué)教學(xué)工作計(jì)劃

高一下冊數(shù)學(xué)教學(xué)工作計(jì)劃1

  一、指導(dǎo)思想:

  (1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。

  (2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。

  (3)根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。

  (4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  (5)學(xué)會(huì)通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。

  (6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。

  二、學(xué)生狀況分析

  本學(xué)期擔(dān)任高一(1)班和(5)班的數(shù)學(xué)教學(xué)工作,學(xué)生共有111人,其中(1)班學(xué)生是名校直通班,學(xué)生思維活躍,(5)班是火箭班,學(xué)生基本素質(zhì)不錯(cuò),一些基本知識掌握不是很好,學(xué)習(xí)積極性需要教師提高,成績以中等為主,中上不多。兩個(gè)班中,從軍訓(xùn)一周來看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。

  二、教材簡析

  使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》,教材在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。

  必修1,主要涉及兩章內(nèi)容:

  第一章集合

  通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時(shí)的簡潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合語言表示數(shù)學(xué)對象,為以后的學(xué)習(xí)奠定基礎(chǔ)。

  1.了解集合的含義,體會(huì)元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;新-課-標(biāo)-第-一-網(wǎng)

  2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;

  3.理解補(bǔ)集的含義,會(huì)求在給定集合中某個(gè)集合的補(bǔ)集;

  4.理解兩個(gè)集合的并集和交集的含義,會(huì)求兩個(gè)簡單集合的并集和交集;

  5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;

  6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識的過程中,培養(yǎng)學(xué)生的思維能力。

  第二章函數(shù)的概念與基本初等函數(shù)Ⅰ

  教學(xué)本章時(shí)應(yīng)立足于現(xiàn)實(shí)生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動(dòng)—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會(huì)現(xiàn)象基本規(guī)律的工具和語言,學(xué)會(huì)用函數(shù)的思想、變化的觀點(diǎn)分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。

  1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律。

  2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運(yùn)算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時(shí)描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;

  3.了解函數(shù)與方程之間的關(guān)系;會(huì)用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;

  4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。

  必修4,主要涉及三章內(nèi)容:

  第一章三角函數(shù)

  通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價(jià)值,學(xué)會(huì)用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;

  3.了解三角函數(shù)的周期性;

  4.掌握三角函數(shù)的圖像與性質(zhì)。

  第二章平面向量

  在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算;

  3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算;

  4.理解平面向量數(shù)量積的含義,會(huì)用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。

  第三章三角恒等變換

  通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動(dòng)的基礎(chǔ)上,體會(huì)向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。

  1.掌握兩角和與差的余弦、正弦、正切公式;

  2.掌握二倍角的正弦、余弦、正切公式;

  3.能正確運(yùn)用三角公式進(jìn)行簡單的`三角函數(shù)式的化簡、求值和恒等式證明。

  三、教學(xué)任務(wù)

  本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。

  四、教學(xué)質(zhì)量目標(biāo)新

  1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。

  2.提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

  3.提高學(xué)生提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。

  4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

  5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施

  重點(diǎn)工作:

  認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅(jiān)持“抓兩頭、帶中間、整體推進(jìn)”,使每個(gè)學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。

  分層推進(jìn)措施

  1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

  2、合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3、培養(yǎng)能力是數(shù)學(xué)教學(xué)的落腳點(diǎn)。能力是在獲得和運(yùn)用知識的過程中逐步培養(yǎng)起來的。在銜接教學(xué)中,首先要加強(qiáng)基本概念和基本規(guī)律的教學(xué)。加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、講清講透數(shù)學(xué)概念和規(guī)律,使學(xué)生掌握完整的基礎(chǔ)知識,培養(yǎng)學(xué)生數(shù)學(xué)思維能力,抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

  5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)接受知識轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識。

  6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

高一下冊數(shù)學(xué)教學(xué)工作計(jì)劃2

  一、內(nèi)容及其解析

  1、內(nèi)容:這是一節(jié)建立直線的點(diǎn)斜式方程(斜截式方程)的概念課。學(xué)生在此之前已學(xué)習(xí)了在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素,已知直線上的一點(diǎn)和直線的傾斜角(斜率)可以確定一條直線,已知兩點(diǎn)也可以確定一條直線。本節(jié)要求利用確定一條直線的幾何要素直線上的一點(diǎn)和直線的傾斜角,建立直線方程,通過方程研究直線。

  2、解析:直線方程屬于解析幾何的基礎(chǔ)知識,是研究解析幾何的開始。從整體來看,直線方程初步體現(xiàn)了解析幾何的實(shí)質(zhì)用代數(shù)的知識研究幾何問題。從集合與對應(yīng)的角度構(gòu)建了平面上的直線與二元一次方程的一一對應(yīng)關(guān)系,是學(xué)習(xí)解析幾何的基礎(chǔ)。對后續(xù)圓、直線與圓的位置關(guān)系等內(nèi)容的學(xué)習(xí),無論是知識上還是方法上都有著積極的意義。從本節(jié)來看,學(xué)生對直線既是熟悉的,又是陌生的。熟悉是學(xué)生知道一次函數(shù)的圖像是直線,陌生是用解析幾何的方法求直線的方程。直線的點(diǎn)斜式方程是推導(dǎo)其它直線方程的基礎(chǔ),在直線方程中占有重要地位。

  二、目標(biāo)及其解析

  1、目標(biāo)

  掌握直線的點(diǎn)斜式和斜截式方程的推導(dǎo)過程,并能根據(jù)條件熟練求出直線的點(diǎn)斜式方程和斜截式方程。

  2、解析

 、僦乐本上的一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。知道建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。

 、诶斫饨⒅本點(diǎn)斜式方程就是用直線上任意一點(diǎn)與已知點(diǎn)這兩個(gè)點(diǎn)的坐標(biāo)表示斜率。

  ③經(jīng)歷直線的點(diǎn)斜式方程的推導(dǎo)過程,體會(huì)直線和直線方程之間的關(guān)系,滲透解析幾何的基本思想。

  ④在討論直線的點(diǎn)斜式方程的應(yīng)用條件與建立直線的斜截式方程中,體會(huì)分類討論的思想,體會(huì)特殊與一般思想。

 、菰诮⒅本方程的過程中,體會(huì)數(shù)形結(jié)合思想。在直線的斜截式方程與一次函數(shù)的比較中,體會(huì)兩者區(qū)別與聯(lián)系,特別是體會(huì)兩者數(shù)形結(jié)合的區(qū)別,進(jìn)一步體會(huì)解析幾何的基本思想。

  三、教學(xué)問題診斷分析

  1、學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù),知道一次函數(shù)的圖像是一條直線,因此學(xué)生對研究直線的方程可能心存疑慮,產(chǎn)生疑慮的原因是學(xué)生初次接觸到解析幾何,不明確解析幾何的實(shí)質(zhì),因此應(yīng)跟學(xué)生講請解析幾何與函數(shù)的區(qū)別。

  2、學(xué)生能聽懂建立直線的點(diǎn)斜式的過程,但可能會(huì)不知道為什么要這么做。因此還是要跟學(xué)生講清坐標(biāo)法的實(shí)質(zhì)把幾何問題轉(zhuǎn)化成代數(shù)問題,用代數(shù)運(yùn)算研究幾何圖形性質(zhì)。

  3、由于學(xué)生沒有學(xué)習(xí)曲線與方程,因此學(xué)生難以理解直線與直線的方程,甚至認(rèn)為驗(yàn)證直線是方程的直線是多余的。這里讓學(xué)生初步理解就行,隨著后面教學(xué)的深入和反復(fù)滲透,學(xué)生會(huì)逐步理解的。

  四、教法與學(xué)法分析

  1、教法分析

  新課標(biāo)指出,學(xué)生是教學(xué)的主體。教師要以學(xué)生活動(dòng)為主線。在原有知識的基礎(chǔ)上,構(gòu)建新的知識體系。本節(jié)課可采用啟發(fā)式問題教學(xué)法教學(xué)。通過問題串,啟發(fā)學(xué)生自主探究來達(dá)到對知識的發(fā)現(xiàn)和接受。通過縱向挖掘知識的深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新精神。并且使學(xué)生的有效思維量加大,隨著對新知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行,使學(xué)生在解決問題的同時(shí),形成方法。

  2、學(xué)法分析

  改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅僅限于對概念結(jié)論和技能的記憶、模仿和積累。獨(dú)立思考,自主探索,動(dòng)手實(shí)踐,合作交流,閱讀自學(xué)等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動(dòng)性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的再創(chuàng)造的過程。為學(xué)生形成積極主動(dòng)的、多樣的學(xué)習(xí)方式創(chuàng)造有利的條件。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨(dú)立思考,積極探索的習(xí)慣。

  通過直線的點(diǎn)斜式方程的推導(dǎo),加深對用坐標(biāo)求方程的理解;通過求直線的點(diǎn)斜式方程,理解一個(gè)點(diǎn)和方向可以確定一條直線;通過求直線的斜截式方程,熟悉用待定系數(shù)法求的過程,讓學(xué)生利用圖形直觀啟迪思維,實(shí)現(xiàn)從感性認(rèn)識到理性思維質(zhì)的飛躍。讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

  五、教學(xué)過程設(shè)計(jì)

  問題1:在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素是什么?如何將這些幾何要素代數(shù)化?

  [設(shè)計(jì)意圖]讓學(xué)生理解直線上的一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。

  問題2:建立直線方程的實(shí)質(zhì)是什么?

  [設(shè)計(jì)意圖]建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。也就是將直線上點(diǎn)的坐標(biāo)滿足的條件用方程表示出來。

  引例:若直線經(jīng)過點(diǎn),斜率為,點(diǎn)在直線上運(yùn)動(dòng),那么點(diǎn)的坐標(biāo)滿足什么條件?

  [設(shè)計(jì)意圖]讓學(xué)生通過具體例子經(jīng)歷求直線的點(diǎn)斜式方程的過程,初步了解求直線方程的步驟。

  問題2。1要得到坐標(biāo)滿足什么條件,就是找出與、斜率為之間的關(guān)系,它們之間有何種關(guān)系?

  (過與兩點(diǎn)的直線的斜率為)

  [設(shè)計(jì)意圖]讓學(xué)生尋找確定直線的條件,體會(huì)動(dòng)中找靜。

  問題2。2如何將上述條件用代數(shù)形式表示出來?

  [設(shè)計(jì)意圖]讓學(xué)生理解和體會(huì)用坐標(biāo)表示確定直線的條件。

  用代數(shù)式表示出來就是,即。

  問題2。3為什么說是滿足條件的直線方程?

  [設(shè)計(jì)意圖]讓學(xué)生初步感受直線與直線方程的關(guān)系。

  此時(shí)的坐標(biāo)也滿足此方程。所以當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),其坐標(biāo)滿足。

  另外以方程的解為坐標(biāo)的點(diǎn)也在直線上。

  所以我們得到經(jīng)過點(diǎn),斜率為的直線方程是。

  問題2。4:能否說方程是經(jīng)過,斜率為的直線方程?

  [設(shè)計(jì)意圖]讓學(xué)生初步感受直線(曲線)方程的完備性。盡管學(xué)生不可能深刻理解直線(曲線)方程的完備性,但在這里仍要滲透,為后因理解曲線方程的埋下伏筆。

  問題3:推廣:已知一直線過一定點(diǎn),且斜率為k,怎樣求直線的方程?

  [設(shè)計(jì)意圖]由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的是歸納概括能力。

  問題4:直線上有無數(shù)個(gè)點(diǎn),如何才能選取所有的點(diǎn)?以前學(xué)習(xí)中有沒有類似的處理問題的方法?

  [設(shè)計(jì)意圖]引導(dǎo)學(xué)生掌握解析幾何取點(diǎn)的方法。

  引導(dǎo)學(xué)生求出直線的點(diǎn)斜式方程

  注:在求直線方程的過程中要說明直線上的點(diǎn)的坐標(biāo)滿足方程,也要說明以方程的解為坐標(biāo)的點(diǎn)在直線上,即方程的解與直線上的點(diǎn)的坐標(biāo)是一一對應(yīng)的。為以后學(xué)習(xí)曲線與方程打好基礎(chǔ)。教學(xué)中讓學(xué)生感覺到這一點(diǎn)就可以。不必做過多解釋。

  問題5:從求直線方程的過程中,你知道了求幾何圖形的方程的步驟有哪些嗎?

  [設(shè)計(jì)意圖]讓學(xué)生初步感受解析幾何求曲線方程的步驟。

  ①設(shè)點(diǎn)———用表示曲線上任一點(diǎn)的`坐標(biāo);

  ②尋找條件————寫出適合條件;

  ③列出方程————用坐標(biāo)表示條件,列出方程

 、芑啞匠虨樽詈喰问;

  ⑤證明————證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

  例1分別求經(jīng)過點(diǎn),且滿足下列條件的直線的方程,并畫出直線。

 、艃A斜角

 、菩甭

 、桥c軸平行;

 、扰c軸平行。

  [設(shè)計(jì)意圖]讓學(xué)生掌握直線的點(diǎn)斜式的使用條件,把直線的點(diǎn)斜式方程作公式用,讓學(xué)生熟練掌握直線的點(diǎn)斜式方程,并理解直線的點(diǎn)斜式方程使用條件。

  注:⑴應(yīng)用直線的點(diǎn)斜式方程的條件是:①定點(diǎn),②斜率存在,即直線的傾斜角。

 、婆c的區(qū)別。后者表示過,且斜率為k的直線方程,而前者不包括。

 、钱(dāng)直線的傾斜角時(shí),直線的斜率,直線方程是。

  ⑷當(dāng)直線的傾斜角時(shí),此時(shí)不能直線的點(diǎn)斜式方程表示直線,直線方程是。

  練習(xí):1。。

  2。已知直線的方程是,則直線的斜率為,傾斜角為,這條直線經(jīng)過的一個(gè)已知點(diǎn)為。

  [設(shè)計(jì)意圖]在直線的點(diǎn)斜式方程的逆用過程中,進(jìn)一步體會(huì)和理解直線的點(diǎn)斜式方程。

  問題6:特別地,如果直線的斜率為,且與軸的交點(diǎn)坐標(biāo)為(0,b),求直線的方程。

  [設(shè)計(jì)意圖]由一般到特殊,培養(yǎng)學(xué)生的推理能力,同時(shí)引出截距的概念和直線斜截式方程。

  將斜率與定點(diǎn)代入點(diǎn)斜式直線方程可得:

  說明:我們把直線與y軸交點(diǎn)(0,b)的縱坐標(biāo)b叫做直線在y軸上的截距。這個(gè)方程是由直線的斜率與它在y軸上的截距b確定,所以叫做直線的斜截式方程。

  注(1)截距可取任意實(shí)數(shù),它不同于距離。直線在軸上截距的是。

 。2)斜截式方程中的k和b有明顯的幾何意義。

 。3)斜截式方程的使用范圍和斜截式一樣。

  問題7:直線的斜截式方程與我們學(xué)過的一次函數(shù)的類似。我們知道,一次函數(shù)的圖像是一條直線。你如何從直線方程的角度認(rèn)識一次函數(shù)?一次函數(shù)中k和b的幾何意義是什么?

  [設(shè)計(jì)意圖]讓學(xué)生理解直線方程與一次函數(shù)的區(qū)別與聯(lián)系,進(jìn)一步理解解析幾何的實(shí)質(zhì)。函數(shù)圖像是以形助數(shù),而解析幾何是以數(shù)論形。

  練習(xí):1。。

  2。直線的斜率為2,在軸上的截距為,求直線的方程。

  [設(shè)計(jì)意圖]讓學(xué)生明確截距的含義。

  3。直線過點(diǎn),它的斜率與直線的斜率相等,求直線的方程。

  [設(shè)計(jì)意圖]讓學(xué)生進(jìn)一步理解直線斜截式方程的結(jié)構(gòu)特征。

  4。已知直線過兩點(diǎn)和,求直線的方程。

  [設(shè)計(jì)意圖]讓學(xué)生能合理選擇直線方程的不同形式求直線方程,同時(shí)為下節(jié)學(xué)習(xí)直線的兩點(diǎn)式方程埋下伏筆。

  例2:已知直線,試討論

  (1)與平行的條件是什么?

  (2)與重合的條件是什么?

 。3)與垂直的條件是什么?

  說明:①平行、重合、垂直都是幾何上位置關(guān)系,如何用代數(shù)的數(shù)量關(guān)系來刻畫。

 、诮虒W(xué)中從兩個(gè)方面來說明,若兩直線平行,則且反過來,若且,則兩直線平行。

 、廴糁本的斜率不存在,與之平行、垂直的條件分別是什么?

  練習(xí):

  問題8:本節(jié)課你有哪些收獲?

  要點(diǎn):

 。1)直線方程的點(diǎn)斜式、斜截式的命名都是顧名思義的,要會(huì)加以區(qū)別。

  (2)兩種形式的方程要在熟記的基礎(chǔ)上靈活運(yùn)用。

  總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。

高一下冊數(shù)學(xué)教學(xué)工作計(jì)劃3

  教材教法分析

  本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課.該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化.教材通過一個(gè)實(shí)際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中.同時(shí),通過對《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點(diǎn)間的距離》和選修2-1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系.

  學(xué)情分析

  一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的學(xué)習(xí),處理了空間中點(diǎn)、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識,因此也建立了一定的'轉(zhuǎn)化和數(shù)形結(jié)合的思想.這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ).

  教學(xué)目標(biāo)

  1.知識與技能

 、偻ㄟ^具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性

 、诹私饪臻g直角坐標(biāo)系,掌握空間點(diǎn)的坐標(biāo)的確定方法和過程

 、鄹惺茴惐人枷朐谔骄啃轮R過程中的作用

  2.過程與方法

  ①結(jié)合具體問題引入,誘導(dǎo)學(xué)生探究

 、陬惐葘W(xué)習(xí),循序漸進(jìn)

  3.情感態(tài)度與價(jià)值觀

  通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法.通過實(shí)際問題的引入和解決,讓學(xué)生體會(huì)數(shù)學(xué)的實(shí)踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間.

  教學(xué)重點(diǎn)

  本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點(diǎn)確立為空間直角坐標(biāo)系的理解.

  教學(xué)難點(diǎn)

  通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點(diǎn)的坐標(biāo)。

  先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會(huì)用坐標(biāo)刻畫平面內(nèi)任意點(diǎn)的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出第三根軸的建立,進(jìn)而感受逐步發(fā)展得到空間直角坐標(biāo)系的建立,再逐步掌握利用坐標(biāo)表示空間任意點(diǎn)的位置.總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論.

高一下冊數(shù)學(xué)教學(xué)工作計(jì)劃4

  一、教材依據(jù)

  本節(jié)課是北師大版數(shù)學(xué)(必修2)第二章《解析幾何初步》第一節(jié)《1.2直線的方程》第一部分《直線方程的點(diǎn)斜式》內(nèi)容。

  二、教材分析

  直線方程的點(diǎn)斜式給出了根據(jù)已知一個(gè)點(diǎn)和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點(diǎn)斜式是基本的,直線方程的斜截式

  、兩點(diǎn)式都是由點(diǎn)斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題求直線方程問題。在引入,過程中要讓學(xué)生弄清

  直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。

  在推導(dǎo)直線方程的點(diǎn)斜式時(shí),根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。

  三、教學(xué)目標(biāo)

  知識與技能:

  (1)理解直線方程的點(diǎn)斜式、斜截式的形式特點(diǎn)和適用范圍;

 。2)能正確利用直線的`點(diǎn)斜式、斜截式公式求直線方程。

  (3)體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系。

  過程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素直線上的一點(diǎn)和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點(diǎn)斜式方程;學(xué)生

  通過對比理解截距與距離的區(qū)別。

  情態(tài)與價(jià)值觀:通過讓學(xué)生體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化

  等觀點(diǎn),使學(xué)生能用聯(lián)系的觀點(diǎn)看問題。

  四、教學(xué)重點(diǎn)

  重點(diǎn):直線的點(diǎn)斜式方程和斜截式方程。

  五、教學(xué)難點(diǎn)

  難點(diǎn):直線的點(diǎn)斜式方程和斜截式方程的應(yīng)用。

  要點(diǎn):運(yùn)用數(shù)形結(jié)合的思想方法,幫助學(xué)生分析描述幾何圖形。

  六、教學(xué)準(zhǔn)備

  1.教學(xué)方法的選擇:啟發(fā)、引導(dǎo)、討論.

  創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動(dòng)參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的探究性

  學(xué)習(xí)活動(dòng)。

  2.通過讓學(xué)生觀察、討論、辨析、畫圖,親身實(shí)踐,調(diào)動(dòng)多感官去體驗(yàn)數(shù)學(xué)建模的思想;學(xué)生要學(xué)會(huì)用數(shù)形結(jié)合的方法建立起代數(shù)問題與幾何問題

  間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:

 、.讓學(xué)生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評析解題對錯(cuò),從而提高學(xué)生的參與意識和數(shù)學(xué)表達(dá)能力。

  ②.分組討論。

【高一下冊數(shù)學(xué)教學(xué)工作計(jì)劃】相關(guān)文章:

高一數(shù)學(xué)下冊教學(xué)工作計(jì)劃04-02

高一數(shù)學(xué)下冊教學(xué)工作計(jì)劃12-01

高一數(shù)學(xué)下冊的教學(xué)計(jì)劃06-13

高一數(shù)學(xué)下冊教學(xué)工作計(jì)劃模板01-22

高一數(shù)學(xué)下冊教學(xué)工作計(jì)劃模板10-15

高一數(shù)學(xué)下冊教學(xué)計(jì)劃安排06-14

關(guān)于高一數(shù)學(xué)下冊的教學(xué)計(jì)劃06-14

高一數(shù)學(xué)下冊教學(xué)工作計(jì)劃分享11-24

高一數(shù)學(xué)下冊教案02-04

高一數(shù)學(xué)下冊教案02-04