中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

初中數(shù)學教案

時間:2022-12-30 08:58:54 教案 我要投稿
  • 相關(guān)推薦

人教版初中數(shù)學教案

  作為一名老師,有必要進行細致的教案準備工作,借助教案可以讓教學工作更科學化。我們應該怎么寫教案呢?下面是小編精心整理的人教版初中數(shù)學教案,歡迎大家分享。

人教版初中數(shù)學教案

人教版初中數(shù)學教案1

  教師提問3:以上變形依據(jù)是什么?

  學生回答:等式的性質(zhì)1。

  歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。

  師生共同完成解答過程。

  設(shè)問4:以上解方程中“移項”起了什么作用?

  學生討論、回答,師生共同整理:

  通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。

  教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?

  學生思考回答。

  教師關(guān)注:

 。1)學生對列方程解決實際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?

  在參與觀察、比較、嘗試、交流等數(shù)學活動中,體驗探究發(fā)現(xiàn)成功的快樂。

  活動三解法運用

  例2解方程

  3x+7=32-2x

  教師:出示問題

  提問:解這個方程時,第一步我們先干什么?

  學生講解,獨立完成,板演。

  提問:“移項”是注意什么?

  學生:變號。

  教師關(guān)注:學生“移項”時是否能夠注意變號。

  通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。

  活動四鞏固提高

人教版初中數(shù)學教案2

  一、知識與技能

  1、能靈活列反比例函數(shù)表達式解決一些實際問題、

  2、能綜合利用物理杠桿知識、反比例函數(shù)的知識解決一些實際問題、

  二、過程與方法

  1、經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題、

  2、體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識,提高運用代數(shù)方法解決問題的能力、

  三、情感態(tài)度與價值觀

  1、積極參與交流,并積極發(fā)表意見、

  2、體驗反比例函數(shù)是有效地描述物理世界的重要手段,認識到數(shù)學是解決實際問題和進行交流的重要工具、

  教學重點

  掌握從物理問題中建構(gòu)反比例函數(shù)模型、

  教學難點

  從實際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運用所學知識分析物理問題,建立函數(shù)模型,教學時注意分析過程,滲透數(shù)形結(jié)合的思想、

  教具準備

  多媒體課件、

  教學過程

  一、創(chuàng)設(shè)問題情境,引入新課

  活動1

  問屬:在物理學中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學中的問題,這也稱為跨學科應用、下面的例子就是其中之一、

  在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培、

  (1)求I與R之間的函數(shù)關(guān)系式;

  (2)當電流I=0.5時,求電阻R的值、

  設(shè)計意圖:

  運用反比例函數(shù)解決物理學中的一些相關(guān)問題,提高各學科相互之間的綜合應用能力、

  師生行為:

  可由學生獨立思考,領(lǐng)會反比例函數(shù)在物理學中的綜合應用、

  教師應給“學困生”一點物理學知識的引導、

  師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達式,再由已知條件(I與R的一對對應值)得到字母系數(shù)k的值、

  生:(1)解:設(shè)I=kR ∵R=5,I=2,于是

  2=k5,所以k=10,∴I=10R、

  (2)當I=0.5時,R=10I=100.5=20(歐姆)、

  師:很好!“給我一個支點,我可以把地球撬動、”這是哪一位科學家的名言?這里蘊涵著什么樣的原理呢?

  生:這是古希臘科學家阿基米德的名言、

  師:是的、公元前3世紀,古希臘科學家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”:若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;

  阻力×阻力臂=動力×動力臂(如下圖)

  下面我們就來看一例子、

  二、講授新課

  活動2

  小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0、5米、

  (1)動力F與動力臂l有怎樣的函數(shù)關(guān)系?當動力臂為1.5米時,撬動石頭至少需要多大的力?

  (2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?

  設(shè)計意圖:

  物理學中的很多量之間的變化是反比例函數(shù)關(guān)系、因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學中的問題,即跨學科綜合應用、

  師生行為:

  先由學生根據(jù)“杠桿定律”解決上述問題、

  教師可引導學生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系、

  教師在此活動中應重點關(guān)注:

 、賹W生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數(shù)的關(guān)系;

 、趯W生能否面對困難,認真思考,尋找解題的途徑;

 、蹖W生能否積極主動地參與數(shù)學活動,對數(shù)學和物理有著濃厚的興趣、

  師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題、

  生:解:(1)根據(jù)“杠桿定律”有

  Fl=1200×0.5、得F=600l

  當l=1.5時,F(xiàn)=6001.5=400、

  因此,撬動石頭至少需要400牛頓的力、

  (2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有

  Fl=600,

  l=600F、

  當F=400×12=200時,

  l=600200=3、

  3-1.5=1.5(米)

  因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米、

  生:也可用不等式來解,如下:

  Fl=600,F(xiàn)=600l、

  而F≤400×12=200時、

  600l ≤200

  l≥3、

  所以l-1.5≥3-1.5=1.5、

  即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米、

  生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出、

  師:很棒!請同學們下去親自畫出圖象完成,現(xiàn)在請同學們思考下列問題:

  用反比例函數(shù)的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?

  生:因為阻力和阻力臂不變,設(shè)動力臂為l,動力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)

  根據(jù)反比例函數(shù)的性質(zhì),當k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力、

  師:其實反比例函數(shù)在實際運用中非常廣泛、例如在解決經(jīng)濟預算問題中的應用、

  活動3

  問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調(diào)至0.55~0.75元之間,經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0、4)元成反比例、又當x=0、65元時,y=0.8、(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價0.3元,電價調(diào)至0.6元,請你預算一下本年度電力部門的純收人多少?

  設(shè)計意圖:

  在生活中各部門,經(jīng)常遇到經(jīng)濟預算等問題,有時關(guān)系到因素之間是反比例函數(shù)關(guān)系,對于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進而用函數(shù)關(guān)系式解決一個具體問題、

  師生行為:

  由學生先獨立思考,然后小組內(nèi)討論完成、

  教師應給予“學困生”以一定的幫助、

  生:解:(1)∵y與x-0、4成反比例,

  ∴設(shè)y=kx-0.4 (k≠0)、

  把x=0.65,y=0.8代入y=kx-0.4,得

  k0.65-0.4=0.8、

  解得k=0.2,

  ∴y=0.2x-0.4=15x-2

  ∴y與x之間的函數(shù)關(guān)系為y=15x-2

  (2)根據(jù)題意,本年度電力部門的純收入為

  (0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)

  答:本年度的純收人為0.6億元,

  師生共析:

  (1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個變量,于是可設(shè)出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數(shù)的值;

  (2)純收入=總收入-總成本、

  三、鞏固提高

  活動4

  一定質(zhì)量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請根據(jù)下圖中的已知條件求出當密度ρ=1.1 kg/m3時二氧化碳氣體的體積V的值、

  設(shè)計意圖:

  進一步體現(xiàn)物理和反比例函數(shù)的關(guān)系、

  師生行為

  由學生獨立完成,教師講評、

  師:若要求出ρ=1.1 kg/m3時,V的值,首先V和ρ的函數(shù)關(guān)系、

  生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ、

  生:當ρ=1.1kg/m3根據(jù)V=990ρ,得

  V=990ρ=9901.1=900(m3)、

  所以當密度ρ=1. 1 kg/m3時二氧化碳氣體的氣體為900m3、

  四、課時小結(jié)

  活動5

  你對本節(jié)內(nèi)容有哪些認識?重點掌握利用函數(shù)關(guān)系解實際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解析式,再根據(jù)解析式解得、

  設(shè)計意圖:

  這種形式的小結(jié),激發(fā)了學生的主動參與意識,調(diào)動了學生的學習興趣,為每一位學生都創(chuàng)造了在數(shù)學學習活動中獲得成功的體驗機會,并為程度不同的學生提供了充分展示自己的機會,尊重學生的個體差異,滿足多樣化的學習需要,從而使小結(jié)不流于形式而具有實效性、

  師生行為:

  學生可分小組活動,在小組內(nèi)交流收獲,然后由小組代表在全班交流、

  教師組織學生小結(jié)、

  反比例函數(shù)與現(xiàn)實生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ)、用數(shù)學模型的解釋物理量之間的關(guān)系淺顯易懂,同時不僅要注意跨學科間的綜合,而本學科知識間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系、

  板書設(shè)計

  略

人教版初中數(shù)學教案3

  總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?

  教師提問1:這個方程與我們前面解過的方程有什么不同?

  學生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25)、

  教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?

  學生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.

人教版初中數(shù)學教案4

  一、教材分析:

  本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章第3節(jié)平行線的性質(zhì),它是平行線及直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是“空間與圖形”的重要組成部分.

  二、教學目標:

  知識與技能:掌握平行線的性質(zhì),能應用性質(zhì)解決相關(guān)問題.

  數(shù)學思考:在平行線的性質(zhì)的探究過程中,讓學生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程.

  解決問題:通過探究平行線的性質(zhì),使學生形成數(shù)形結(jié)合的數(shù)學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神.

  情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數(shù)學的熱情和勇于探索、鍥而不舍的精神.

  三、教學重、難點:

  重點:平行線的性質(zhì)

  難點:“性質(zhì)1”的探究過程

  四、教學方法:

  “引導發(fā)現(xiàn)法”與“動像探索法”

  五、教具、學具:

  教具:多媒體課件

  學具:三角板、量角器.

  六、教學媒體:

  大屏幕、實物投影

  七、教學過程:

 。ㄒ唬﹦(chuàng)設(shè)情境,設(shè)疑激思:

  1、播放一組幻燈片.內(nèi)容:①火車行駛在鐵軌上;②游泳池;③橫格紙.

  2、聲音:日常生活中我們經(jīng)常會遇到平行線,你能說出直線平行的條件嗎?

  學生活動:

  思考回答.①同位角相等兩直線平行;②內(nèi)錯角相等兩直線平行;③同旁內(nèi)角互補兩直線平行;

  教師:首先肯定學生的回答,然后提出問題.

  問題:若兩直線平行,那么同位角、內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系呢?

  引出課題——平行線的性質(zhì).

 。ǘ⿺(shù)形結(jié)合,探究性質(zhì)

  1、畫圖探究,歸納猜想

  任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).

  問題一:指出圖中的同位角,并度量這些角,把結(jié)果填入下表:

  第一組

  第二組

  第三組

  第四組

  同位角

  ∠1

  ∠5

  角的度數(shù)

  數(shù)量關(guān)系

  學生活動:畫圖——度量——填表——猜想

  結(jié)論:兩直線平行,同位角相等.

  問題二:再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?

  學生:探究、討論,最后得出結(jié)論:仍然成立.

  2、教師用《幾何畫板》課件驗證猜想

  3、性質(zhì)1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)

 。ㄈ┮晁伎,培養(yǎng)創(chuàng)新

  問題三:請判斷內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系?

  學生活動:獨立探究——小組討論——成果展示.

  教師活動:引導學生說理.

  因為a‖b因為a‖b

  所以∠1=∠2所以∠1=∠2

  又∠1=∠3又∠1+∠4=180°

  所以∠2=∠3所以∠2+∠4=180°

  語言敘述:

  性質(zhì)2兩條直線被第三條直線所截,內(nèi)錯角相等.

  (兩直線平行,內(nèi)錯角相等)

  性質(zhì)3兩條直線被第三條直線所截,同旁內(nèi)角互補.

 。▋芍本平行,同旁內(nèi)角互補)

 。ㄋ模⿲嶋H應用,優(yōu)勢互補

  1.(搶答)

 。1)如圖,平行線AB、CD被直線AE所截

 、偃簟1 = 110°,則∠2 = °.理由:.

 、谌簟1 = 110°,則∠3 = °.理由:.

 、廴簟1 = 110°,則∠4 = °.理由:.

  (2)如圖,由AB‖CD,可得()

 。ˋ)∠1=∠2(B)∠2=∠3

  (C)∠1=∠4(D)∠3=∠4

 。3)如圖,AB‖CD‖EF,

  那么∠BAC+∠ACE+∠CEF=()

  (A)180°(B)270°(C)360°(D)540°

 。4)誰問誰答:如圖,直線a‖b,

  如:∠1=54°時,∠2=.

  學生提問,并找出回答問題的同學.

  2.(討論解答)

  如圖是一塊梯形鐵片的.殘余部分,量得∠A=100°,

  ∠B=115°,求梯形另外兩角分別是多少度?

  (五)概括存儲(小結(jié))

  1、平行線的性質(zhì)1、2、3;

  2、用“運動”的觀點觀察數(shù)學問題;

  3、用數(shù)形結(jié)合的方法來解決問題.

 。┳鳂I(yè)第69頁2、4、7.

  八、教學反思:

 、俳痰霓D(zhuǎn)變:本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關(guān)系,激發(fā)學生自覺地探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣.

 、趯W的轉(zhuǎn)變:學生的角色從學會轉(zhuǎn)變?yōu)闀䦟W.本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.

 、壅n堂氛圍的轉(zhuǎn)變:整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值.

人教版初中數(shù)學教案5

  知識技能

  會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。

  數(shù)學思考

  1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學模型。進一步發(fā)展符號意識。

  2.通過一元一次方程的學習,體會方程模型思想和化歸思想。

  解決問題

  能在具體情境中從數(shù)學角度和方法解決問題,發(fā)展應用意識。

  經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。

  情感態(tài)度

  經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。

  教學重點

  建立方程解決實際問題,會通過移項解“ax+b=cx+d”類型的一元一次方程。

  教學難點

  分析實際問題中的相等關(guān)系,列出方程。

  教學過程

  活動一知識回顧

  解下列方程:

  1. 3x+1=4

  2. x-2=3

  3. 2x+0.5x=-10

  4. 3x-7x=2

  提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?

  教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。

  出示問題(幻燈片)。

  學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。

  教師提問:(略)

  教師追問:變形的依據(jù)是什么?

  學生獨立思考、回答交流。

  本次活動中教師關(guān)注:

 。1)學生能否準確理解運用等式性質(zhì)和合并同列項求解方程。

 。2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。

  通過這個環(huán)節(jié),引導學生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學習做好鋪墊。

  活動二問題探究

  問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本、這個班有多少學生?

  教師:出示問題(投影片)

  提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗你打算怎么做?

 。▽W生嘗試提問)

  學生:讀題,審題,獨立思考,討論交流。

  1、找出問題中的已知數(shù)和已知條件。(獨立回答)

  2.設(shè)未知數(shù):設(shè)這個班有x名學生。

  3、列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)

  4、找相等關(guān)系:

  這批書的總數(shù)是一個定值,表示它的兩個等式相等、(學生回答,教師追問)

人教版初中數(shù)學教案6

  教學目標:

  (1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

  (2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣

  重點難點:

  能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

  教學過程:

  一、試一試

  1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結(jié)果填寫在下表的空格中,

  2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個函數(shù)的關(guān)系式,

  對于1.,可讓學生根據(jù)表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發(fā)表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.

  二、提出問題

  某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大? 在這個問題中,可提出如下問題供學生思考并回答:

  1.商品的利潤與售價、進價以及銷售量之間有什么關(guān)系?

  [利潤=(售價-進價)×銷售量]

  2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷

  售約多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

  [x的值不能任意取,其范圍是0≤x≤2]

  5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:

  y=-2x2+20x(0<x<10)……………………………(1) 將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、觀察;概括

  1.教師引導學生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學生思考回答;

  (1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個?

  (各有1個)

  (2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式? (分別是二次多項式)

  (3)函數(shù)關(guān)系式(1)和(2)有什么共同特點?

  (都是用自變量的二次多項式來表示的)

  (4)本章導圖中的問題以及P1頁的問題2有什么共同特點? 讓學生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。

  2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

  四、課堂練習

  1.(口答)下列函數(shù)中,哪些是二次函數(shù)?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3練習第1,2題。

  五、小結(jié)

  1.請敘述二次函數(shù)的定義.

  2,許多實際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應用題,并寫出函數(shù)關(guān)系式。

  六、作業(yè):略

人教版初中數(shù)學教案7

  2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?

  3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。

  教師按順序出示問題。

  學生獨立完成,用實物投影展示部分學而生練習。

  教師關(guān)注:

  1.學生在計算中可能出現(xiàn)的錯誤。

  2.x系數(shù)為分數(shù)時,可用乘的辦法,化系數(shù)為1。

  3.用實物投影展示學困生的完成情況,進行評價、鼓勵。

  鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。

  2、3題的重點是在新情境中引導學生利用已有經(jīng)驗解決實際問題,達到鞏固提高的目的。

  活動五

  提問1:今天我們學習了解方程的那種變形?它有什么作用、應注意什么?

  提問2:本節(jié)課重點利用了什么相等關(guān)系,來列的方程?

  教師組織學生就本節(jié)課所學知識進行小結(jié)。

  學生進行總結(jié)歸納、回答交流,相互完善補充。

  教師關(guān)注:學生能否提煉出本節(jié)課的重點內(nèi)容,如果不能,教師則提出具體問題,引導學生思考、交流。

  引導學生對本節(jié)所學知識進行歸納、總結(jié)和梳理,以便于學生掌握和運用。

  布置作業(yè):

  第93頁第3題

人教版初中數(shù)學教案8

  教學目標:

  1.在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角.

  2.理解對頂角相等,并能運用它解決一些問題.

  重點:

  鄰補角、對頂角的概念,對頂角的性質(zhì)與應用.

  難點:

  理解對頂角相等的性質(zhì)的探索.

  教學過程:

  一、創(chuàng)設(shè)情境,引入新課

  引導語:

  我們生活的世界中,蘊涵著大量的相交線和平行線.

  本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質(zhì),研究平行線的性質(zhì)和平行線的判定以及圖形的平移問題.

  二、嘗試活動,探索新知

  教師出示一塊布片和一把剪刀,表演剪刀剪布的過程.

  教師提出問題:剪布時,用力握緊把手,發(fā)生了什么變化?進而使什么也發(fā)生了變化?

  學生觀察、思考、回答,得出:

  握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刀刃之間的角相應變小.如果改變用力方向,隨著兩個把手之間的角逐漸變大,剪刀刀刃之間的角也相應變大.

  教師提問:我們可以把剪刀抽象成什么簡單的圖形?

  學生回答:畫成兩條相交的直線,學生畫直線AB、CD相交于點O,并說出圖中4個角.

  教師提問:兩兩相配共能組成幾對角?各對角的位置關(guān)系如何?根據(jù)不同的位置怎么將它們分類?

  學生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各對角的度數(shù)有什么關(guān)系?(學生得出結(jié)論:相鄰的兩個角互補,對頂?shù)膬蓚角相等)

  學生根據(jù)觀察和度量完成下表:

  兩條直線相交、所形成的角、分類、位置關(guān)系、數(shù)量關(guān)系

  教師提問:

  如果改變∠AOC的大小,會改變它與其他角的位置關(guān)系和數(shù)量關(guān)系嗎?

  學生思考回答:

  只會改變數(shù)量關(guān)系而不會改變位置關(guān)系.

  師生共同定義鄰補角、對頂角:

  有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.

  如果兩個角有一個公共頂點,而且一個角的兩邊分別是另一個角的兩邊的反向延長線,那么這兩個角叫做對頂角.

  教師提問:

  你同意下列說法嗎?如果錯誤,如何訂正?

  1.鄰補角的“鄰”就是“相鄰”,就是它們有一條“公共邊”,“補”就是“互補”,就是這兩個角的另一條邊在同一條直線上.

  2.鄰補角可看成是平角被過它的頂點的一條射線分成的兩個角.

  3.鄰補角是互補的兩個角,互補的兩個角也是鄰補角.

  學生思考回答:1、2是對的,3是錯的.

  第3個應改成:鄰補角是互補的兩個角,互補的兩個角不一定是鄰補角.

  教師讓學生說一說在學習對頂角的概念后,通過實際操作獲得的直觀體驗.

  教師把說理過程規(guī)范地板書:

  在右圖中,∠AOC的鄰補角是∠BOC和∠AOD,所以∠AOC與∠BOC互補,∠AOC與∠AOD互補,根據(jù)“同角的補角相等”,可以得出∠AOD=∠BOC,類似地有∠AOC=∠BOD.

  教師板書對頂角的性質(zhì):

  對頂角相等.

  強調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:

  對頂角的概念是確定兩角的位置關(guān)系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關(guān)系.

  三、例題講解

  【例】 如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數(shù).

  【答案】 由鄰補角的定義,得∠2=180°-∠1=180°-40°=140°;由對頂角相等,得∠3=∠1=40°,∠4=∠2=140°.

  四、鞏固練習

  1.判斷下列圖中是否存在對頂角.

  2.按要求完成下列各題.

  (1)兩條直線相交,構(gòu)成哪兩種特殊位置關(guān)系的角?指出下圖中具有這兩種位置關(guān)系的角.

  eq o(sup7(,圖(1)) ,圖(2))

  (2)如圖,若∠AOD= 90°,那么直線AB與CD的位置關(guān)系如何?

  【答案】

  1.都不存在對頂角.

  2.(1)對頂角,鄰補角.

  對頂角:∠AOC和∠BOD,∠AOD和∠BOC.

  鄰補角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.

  (2)垂直.

  五、課堂小結(jié)

  教師引導學生進行本節(jié)課的小結(jié)并強調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:對頂角的概念是確定兩角的位置關(guān)系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關(guān)系.

  教學反思

  通過本節(jié)課的學習,大部分學生能積極主動地參與到學習活動中來,并能積極主動地提出各類問題并解決問題,達到了基本的教學效果.但是由于對新概念的理解不是很深刻,所以在應用方面存在不足,針對這一情況,教師應選擇典型的例題,詳細講解,指導學生探求解題的思路和方法,加深對概念的理解,做到熟練的應用。

【初中數(shù)學教案】相關(guān)文章:

初中數(shù)學教案12-22

初中數(shù)學教案06-29

初中數(shù)學教案12-13

初中趣味數(shù)學教案07-01

初中數(shù)學教案模板08-10

初中數(shù)學教案最新08-23

關(guān)于初中數(shù)學教案10-11

【熱門】初中數(shù)學教案12-21

初中數(shù)學教案【推薦】12-21

初中數(shù)學教案【熱】12-21