數(shù)學(xué)八年級上冊教案
作為一名辛苦耕耘的教育工作者,編寫教案是必不可少的,借助教案可以讓教學(xué)工作更科學(xué)化。那么你有了解過教案嗎?以下是小編幫大家整理的數(shù)學(xué)八年級上冊教案,僅供參考,歡迎大家閱讀。
數(shù)學(xué)八年級上冊教案1
一、教學(xué)目標(biāo):
1、加深對加權(quán)平均數(shù)的理解
2、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問題
3、會用計(jì)算器求加權(quán)平均數(shù)的值
二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
3、難點(diǎn)的突破方法:
首先應(yīng)先復(fù)習(xí)組中值的定義,在七年級下教材P72中已經(jīng)介紹過組中值定義。因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。
應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個(gè)例子,在一組中如果數(shù)據(jù)分布較為均勻時(shí),比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個(gè)數(shù)據(jù),若分布較為平均,41、42、43、44…60個(gè)出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時(shí)組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡化了計(jì)算量。
為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會表格的實(shí)際意義。
三、例習(xí)題的意圖分析
1、教材P140探究欄目的`意圖。
(1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法。
(2)、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個(gè)探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
2、教材P140的思考的意圖。
(1)、使學(xué)生通過思考這兩個(gè)問題過程中體會利用統(tǒng)計(jì)知識可以解決生活中的許多實(shí)際問題
(2)、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。
3、P141利用計(jì)算器計(jì)算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對比。一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過程有差別亦不同,再者,各種計(jì)算器的使用說明書都有詳盡介紹,同時(shí)也說明在今后中考趨勢仍是不允許使用計(jì)算器。所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡單。統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了。
四、課堂引入
采用教材原有的引入問題,設(shè)計(jì)的幾個(gè)問題如下:
(1)、請同學(xué)讀P140探究問題,依據(jù)統(tǒng)計(jì)表可以讀出哪些信息
(2)、這里的組中值指什么,它是怎樣確定的?
(3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?
(4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。
五、隨堂練習(xí)
1、某校為了了解學(xué)生作課外作業(yè)所用時(shí)間的情況,對學(xué)生作課外作業(yè)所用時(shí)間進(jìn)行調(diào)查,下表是該校初二某班50名學(xué)生某一天做數(shù)學(xué)課外作業(yè)所用時(shí)間的情況統(tǒng)計(jì)表
所用時(shí)間t(分鐘)人數(shù)
0 0<≤ 6 20 30 40 50 (1)、第二組數(shù)據(jù)的組中值是多少? (2)、求該班學(xué)生平均每天做數(shù)學(xué)作業(yè)所用時(shí)間 2、某班40名學(xué)生身高情況如下圖, 請計(jì)算該班學(xué)生平均身高 答案1.(1).15. (2)28. 2. 165 六、課后練習(xí): 1、某公司有15名員工,他們所在的部門及相應(yīng)每人所創(chuàng)的年利潤如下表 部門A B C D E F G 人數(shù)1 1 2 4 2 2 5 每人創(chuàng)得利潤20 5 2.5 2 1.5 1.5 1.2 該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元? 2、下表是截至到20xx年費(fèi)爾茲獎得主獲獎時(shí)的年齡,根據(jù)表格中的信息計(jì)算獲費(fèi)爾茲獎得主獲獎時(shí)的平均年齡? 年齡頻數(shù) 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對所轄的50個(gè)居民區(qū)進(jìn)行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個(gè)小區(qū)噪音的平均分貝數(shù)。 答案:1.約2.95萬元2.約29歲3.60.54分貝 單元(章)主題第三章 直棱柱任課教師與班級 本課(節(jié))課題3.1 認(rèn)識直棱柱第 1 課時(shí) / 共 課時(shí) 教學(xué)目標(biāo)(含重點(diǎn)、難點(diǎn))及 設(shè)置依據(jù)教學(xué)目標(biāo) 1、了解多面體、直棱柱的有關(guān)概念. 2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面. 3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征. 教學(xué)重點(diǎn)與難點(diǎn) 教學(xué)重點(diǎn):直棱柱的有關(guān)概念. 教學(xué)難點(diǎn):本節(jié)的例題描述一個(gè)物體的形狀,把它看成怎樣的兩個(gè)幾何體的組合,都需要一定的空間想象能力和表達(dá)能力. 教學(xué)準(zhǔn)備每個(gè)學(xué)生準(zhǔn)備一個(gè)幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長方體、立方體模型 教 學(xué) 過 程 內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計(jì)意圖二度備課(即時(shí)反思與糾正) 一、創(chuàng)設(shè)情景,引入新課 師:在現(xiàn)實(shí)生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢? 析:學(xué)生很容易回答出更多的答案。 師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。 二、合作交流,探求新知 1.多面體、棱、頂點(diǎn)概念: 師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個(gè)平面圍成的?都有什么相同特點(diǎn)? 析:一個(gè)同學(xué)回答,然后小結(jié)概念:由若干個(gè)平面圍成的幾何體,叫做多面體。多面體上相鄰兩個(gè)面之間的交線叫做多面體的棱,幾個(gè)面的公共頂點(diǎn)叫做多面體的頂點(diǎn) 2.合作交流 師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。 學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描 述其特征。) 師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。 學(xué)生活動:分小組討論。 說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的'愉快。 師:請大家找出與長方體,立方體類似的物體或模型。 析:舉出實(shí)例。(找出區(qū)別) 師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征: 有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等; 側(cè)面都是長方形含正方形。 長方體和正方體都是直四棱柱。 3.反饋鞏固 完成“做一做” 析:由第(3)小題可以得到: 直棱柱的相鄰兩條側(cè)棱互相平行且相等。 4.學(xué)以至用 出示例題。(先請學(xué)生單獨(dú)考慮,再作講解) 析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣) 最后完成例題中的“想一想” 5.鞏固練習(xí)(學(xué)生練習(xí)) 完成“課內(nèi)練習(xí)” 三、小結(jié)回顧,反思提高 師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢? 合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。 直棱柱有以下特征: 有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等; 側(cè)面都是長方形含正方形。 例題中的把首飾盒看成是由兩個(gè)直三棱柱、直四棱柱的組合,或著是兩個(gè)直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。 板書設(shè)計(jì) 作業(yè)布置或設(shè)計(jì)作業(yè)本及課時(shí)特訓(xùn) 一、學(xué)生起點(diǎn)分析 通過前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性. 二、教學(xué)任務(wù)分析 《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(上)第二章《實(shí)數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個(gè)課時(shí)完成,第1課時(shí)讓學(xué)生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識,會根據(jù)要求畫線段;第2課時(shí)借助計(jì)算器感受無理數(shù)是無限不循環(huán)小數(shù),會判斷一個(gè)數(shù)是無理數(shù).本課是第1課時(shí),學(xué)生將在具體的實(shí)例中,通過操作、估算、分析等活動,感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個(gè)數(shù)是不是有理數(shù). 本節(jié)課的教學(xué)目標(biāo)是: 、偻ㄟ^拼圖活動,讓學(xué)生感受客觀世界中無理數(shù)的存在; 、谀芘袛嗳切蔚哪尺呴L是否為無理數(shù); ③學(xué)生親自動手做拼圖活動,培養(yǎng)學(xué)生的動手能力和探索精神; 、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對有理數(shù)和無理數(shù)的理解; 三、教學(xué)過程設(shè)計(jì) 本節(jié)課設(shè)計(jì)了6個(gè)教學(xué)環(huán)節(jié): 第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置. 第一環(huán)節(jié):質(zhì)疑 內(nèi)容:【想一想】 ⑴一個(gè)整數(shù)的平方一定是整數(shù)嗎? 、埔粋(gè)分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎? 目的:作必要的'知識回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理. 效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用 第二環(huán)節(jié):課題引入 內(nèi)容:1.【算一算】 已知一個(gè)直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分?jǐn)?shù))嗎? 2.【剪剪拼拼】 把邊長為1的兩個(gè)小正方形通過剪、拼,設(shè)法拼成一個(gè)大正方形,你會嗎? 目的:選取客觀存在的“無理數(shù)“實(shí)例,讓學(xué)生深刻感受“數(shù)不夠用了”. 效果:巧設(shè)問題背景,順利引入本節(jié)課題. 第三環(huán)節(jié):獲取新知 內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】 【議一議】: 已知 ,請問:① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎? 【釋一釋】:釋1.滿足 的 為什么不是整數(shù)? 釋2.滿足 的 為什么不是分?jǐn)?shù)? 【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學(xué)習(xí)奠定了基礎(chǔ) 【找一找】:在下列正方形網(wǎng)格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段 目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過程,讓學(xué)生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣 效果:學(xué)生感受到無理數(shù)產(chǎn)生的過程,確定存在一種數(shù)與以往學(xué)過的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性. 第四環(huán)節(jié):應(yīng)用與鞏固 內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】 【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段: 1.長度是有理數(shù)的線段 2.長度不是有理數(shù)的線段 【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個(gè)三角形 (右1) 2.三邊長都是有理數(shù) 2.只有兩邊長是有理數(shù) 3.只有一邊長是有理數(shù) 4.三邊長都不是有理數(shù) 【仿一仿】:例:在數(shù)軸上表示滿足 的 解: (右2) 仿:在數(shù)軸上表示滿足 的 【賽一賽】:右3是由五個(gè)單位正方形組成的紙片,請你把 它剪成三塊,然后拼成一個(gè)正方形,你會嗎?試試看! (右3) 目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上 效果:加深了對“新知”的理解,鞏固了本課所學(xué)知識. 第五環(huán)節(jié):課堂小結(jié) 內(nèi)容: 1.通過本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請問你有什么收獲與體會? 2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個(gè)嗎? 3.除了本課所認(rèn)識的非有理數(shù)的數(shù)以外,你還能找到嗎? 目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點(diǎn)及數(shù)學(xué)方法,使知識系統(tǒng)化. 效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會進(jìn)行概括總結(jié). 第六環(huán)節(jié):布置作業(yè) 習(xí)題2.1 六、教學(xué)設(shè)計(jì)反思 。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動力 大量事實(shí)都證明一點(diǎn),與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作. 。ǘ┗橄鬄榫唧w 常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動開啟學(xué)生的思維,因此對新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識,還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進(jìn)行解釋.正是基于這個(gè)原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象. 。ㄈ⿵(qiáng)化知識間聯(lián)系,注意糾錯 既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基. 一、教學(xué)目標(biāo) 1、理解分式的基本性質(zhì)。 2、會用分式的基本性質(zhì)將分式變形。 二、重點(diǎn)、難點(diǎn) 1、重點(diǎn):理解分式的基本性質(zhì)。 2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。 3、認(rèn)知難點(diǎn)與突破方法 教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。 三、練習(xí)題的意圖分析 1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號里作為答案,使分式的值不變。 2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的'結(jié)果要是最簡分式;通分是要正確地確定各個(gè)分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。 教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。 3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個(gè),分式的值不變。 “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。 四、課堂引入 1、請同學(xué)們考慮:與相等嗎?與相等嗎?為什么? 2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)? 3、提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。 五、例題講解 p7例2.填空: [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。 p11例3.約分: [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式。 p11例4.通分: [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。 《正方形》教學(xué)設(shè)計(jì) 教學(xué)內(nèi)容分析: ⑴學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。 ⑵前面學(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。 、菍Ρ竟(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進(jìn)行歸納,梳理知識,進(jìn)一步發(fā)展學(xué)生的推理能力。 學(xué)生分析: ⑴學(xué)生在小學(xué)初步認(rèn)識了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗(yàn)與知識基礎(chǔ)。 、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學(xué)生的思維能力還不成熟,有待于提高。 教學(xué)目標(biāo): 、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進(jìn)行簡單的說理。 、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運(yùn)用提高學(xué)生的推理能力。 、乔楦袘B(tài)度與價(jià)值觀:在學(xué)習(xí)中體會正方形的完美性,通過活動獲得成功的喜悅與自信。 重點(diǎn):掌握正方形的性質(zhì)與判定,并進(jìn)行簡單的推理。 難點(diǎn):探索正方形的判定,發(fā)展學(xué)生的推理能 教學(xué)方法:類比與探究 教具準(zhǔn)備:可以活動的四邊形模型。 一、教學(xué)分析 (一)教學(xué)內(nèi)容分析 1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》九年級上冊(人民教育出版社) 2.本課教學(xué)內(nèi)容的地位、作用,知識的前后聯(lián)系 《中心對稱圖形》是新人教版九年級數(shù)學(xué)上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學(xué)生探索精神和創(chuàng)新意識等方面都有重要意義。 3.本課教學(xué)內(nèi)容的特點(diǎn),重點(diǎn)分析體現(xiàn)新課程理念的特點(diǎn) 本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學(xué)生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實(shí)驗(yàn)、歸納、類比等方法探究中心對稱圖形的性質(zhì),(3)通過多媒體演示使學(xué)生對中心對稱圖形的性質(zhì)有直觀的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進(jìn)的活動過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。 (二)教學(xué)對象分析 1.學(xué)生所在地區(qū)、學(xué)校及班級的特色 我授課的班級是西安市閻良區(qū)振興中學(xué)九年級一班,作為九年級的學(xué)生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗(yàn),已經(jīng)具有一定的觀察、猜想、實(shí)驗(yàn)、歸納、類比等研究圖形對稱變換的能力;班級學(xué)生具有個(gè)性活潑,思維活躍,對各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動,學(xué)習(xí)積極性高的特點(diǎn),但學(xué)生的抽象思維能力個(gè)體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。 2.學(xué)生的年齡特點(diǎn)和認(rèn)知特點(diǎn) 班級學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨(dú)立分析、解決問題的能力,表現(xiàn)欲望較為強(qiáng)烈,喜好發(fā)表個(gè)人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗(yàn),因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強(qiáng)學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗(yàn),感受學(xué)習(xí)思考的樂趣。 教學(xué)過程: 一:復(fù)習(xí)鞏固,建立聯(lián)系。 【教師活動】 問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)? 、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。 【學(xué)生活動】 學(xué)生回憶,并舉手回答,對于填空題,讓更多的學(xué)生參與,說出更多的答案。 【教師活動】 評析學(xué)生的結(jié)果,給予表揚(yáng)。 總結(jié)性質(zhì)從邊角對角線考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。 演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。 二:動手操作,探索發(fā)現(xiàn)。 活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形? 【學(xué)生活動】 學(xué)生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。 設(shè)置問題:①什么是正方形? 觀察發(fā)現(xiàn),從活動中體會。 【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。 【學(xué)生活動】認(rèn)真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。 設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么? 【學(xué)生活動】 小組討論,分組回答。 【教師活動】 總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個(gè)角是直角)的菱形是正方形。 設(shè)置問題③正方形有那些性質(zhì)? 【學(xué)生活動】 小組討論,舉手搶答。 【教師活動】 表揚(yáng)學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角 活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸? 學(xué)生活動 折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。 教師活動 演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空? ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。 學(xué)生活動 小組充分交流,表達(dá)不同的意見。 教師活動 評析活動,總結(jié)發(fā)現(xiàn): 一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形; 有一個(gè)角是直角的'菱形是正方形,對角線相等的菱形是正方形,; 有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形; 四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。 以上是正方形的判定方法。 正方形是一個(gè)多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子? 學(xué)生交流,感受正方形 三,應(yīng)用體驗(yàn),推理證明。 出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。 方法一解:∵四邊形ABCD是正方形 ∴∠ABC=90°(正方形的四個(gè)角是直角) BC=AB=4cm(正方形的四條邊相等) ∴=45°(等腰直角三角形的底角是45°) ∴利用勾股定理可知,AC===4cm ∵AO=AC(正方形的對角線互相平分) ∴AO=×4=2cm 方法二:證明△AOB是等腰直角三角形,即可得證。 學(xué)生活動 獨(dú)立思考,寫出推理過程,再進(jìn)行小組討論,并且各小組指派代表寫在黑板上,共同交流。 教師活動 總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評析解題步驟,表揚(yáng)突出學(xué)生。 出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的? 學(xué)生活動 小組交流,分析題意,整理思路,指名口答。 教師活動 說明思路,從已知出發(fā)或者從已有的判定加以選擇。 四,歸納新知,梳理知識。 這一節(jié)課你有什么收獲? 學(xué)生舉手談?wù)撟约旱氖斋@。 請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。 發(fā)表評論 教學(xué)目標(biāo): 情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂趣。 能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。 認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。 教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn):等腰梯形性質(zhì)的探索; 難點(diǎn):梯形中輔助線的添加。 教學(xué)課件:PowerPoint演示文稿 教學(xué)方法:啟發(fā)法、 學(xué)習(xí)方法:討論法、合作法、練習(xí)法 教學(xué)過程: 。ㄒ唬⿲(dǎo)入 1、出示圖片,說出每輛汽車車窗形狀(投影) 2、板書課題:5梯形 3、練習(xí):下列圖形中哪些圖形是梯形?(投影) 結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。 5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影) 6、特殊梯形的分類:(投影) 。ǘ┑妊菪涡再|(zhì)的探究 【探究性質(zhì)一】 思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影) 猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答) 如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C 想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么? 等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。 【操練】 (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影) 。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影) 【探究性質(zhì)二】 如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答) 如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影) 等腰梯形性質(zhì):等腰梯形的兩條對角線相等。 【探究性質(zhì)三】 問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答) 問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點(diǎn)討論) 等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對角線相等 。ㄈ┵|(zhì)疑反思、小結(jié) 讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題; 學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。 一、創(chuàng)設(shè)情景,明確目標(biāo) 投影:金字塔,斜拉大橋,塔吊,自行車等,讓學(xué)生感受生活中處處有三角形的身影,我們研究的“三角形”這個(gè)課題來源于實(shí)際生活之中。 請說一說你已經(jīng)學(xué)習(xí)了三角形的哪些知識? 二、自主學(xué)習(xí),指向目標(biāo) 1、自學(xué)教材第1至3頁。 2、學(xué)習(xí)至此:請完成《學(xué)生用書》相應(yīng)部分。 三、合作探究,達(dá)成目標(biāo) 三角形的概念表示方法及分類 活動一:閱讀教材第1至2頁內(nèi)容,并思考以下問題: 。1)具有什么特征的圖形叫三角形?(不在同一直線上的三條線段,首尾順次相接所組成的圖形) 。2)三角形有幾條邊?有幾個(gè)內(nèi)角?有幾個(gè)頂點(diǎn)?(3,3,3) 。3)三角形ABC用符號如何表示?三角形ABC的邊AB、AC和BC怎樣用小寫字母分別表示?(a,b,c) (4)三角形按邊分可以分成幾類?按角分呢? 展示點(diǎn)評:學(xué)生結(jié)合圖形分別回答,師生共同點(diǎn)評。 小組討論:三角形的概念,如何用符號表示及分類? 反思小結(jié):三角形的圖形特征,有三條邊,三個(gè)內(nèi)角,三個(gè)頂點(diǎn),邊可以用兩個(gè)大寫字母表示,也可以用一個(gè)小寫字母表示。 針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分。 三角形的三邊關(guān)系 活動二:畫出一個(gè)△ABC,假設(shè)有一只小蟲要從B出發(fā),沿三角形的邊爬到C,它有幾種路線可以選擇?各條路線的長有什么數(shù)量關(guān)系?請說明你結(jié)論的正確性。 展示點(diǎn)評:(1)小蟲從B出發(fā)沿三角形的邊爬到C如下幾條線段。 a、從xxBxx鯻xCxx b、從xxBxx鯻xAxx鯻xCxx 從B沿邊BC到C的路線長為xxBCxx。 從B沿邊BA到A,從A沿C到C的路線長為xxAB+ACxx。 經(jīng)過測量可以說xxAB+ACxx>xxBCxx,可以說這兩條路線的長是xx不相等xx的` 小組討論:在同一個(gè)三角形中,任意兩邊之和與第三邊有什么關(guān)系?任意兩邊之差與第三邊有什么關(guān)系?三角形的三邊有怎么樣的不等關(guān)系? 反思小結(jié):三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊。 針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分 三角形有關(guān)知識的運(yùn)用 活動三:見教材P3例題 小組討論:等腰三角形中有幾個(gè)不同的邊長?第(2)問中的長4 cm沒有明確是腰還是底時(shí)應(yīng)怎么處理? 展示點(diǎn)評:等腰三角形的底和腰的長度,不確定時(shí),應(yīng)分情況予以討論。 反思小結(jié):當(dāng)題目中的條件不明確時(shí)要分類討論。所有的三角形必須要滿足三邊關(guān)系定理。 針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分 四、總結(jié)梳理,內(nèi)化目標(biāo) 1、概念:三角形,內(nèi)角,邊,頂點(diǎn) 2、符號語言。 3、三邊關(guān)系。 4、角形的分類。 五、達(dá)標(biāo)檢測,反思目標(biāo) 1、現(xiàn)有兩根木棒,它們的長度分別為20 cm和30 cm,若不改變木棒的長度,要釘成一個(gè)三角形木架,應(yīng)在下列四根木棒中選取(B) A、 cm的木棒B。20 cm的木棒C。50 cm的木棒D。60 cm的木棒 2、已知等腰三角形的兩邊長分別為3和6,則它的周長為(C) A、9 B、12 C、15 D、12或15 3、已知三角形的三邊長為連續(xù)整數(shù),且周長為12 cm,則它的最短邊長為(B) A、2 cm B、3 cm C、4 cm D、5 cm 4、若五條線段的長分別是1 cm,2 cm,3 cm,4 cm,5 cm,則以其中三條線段為邊可構(gòu)成xx3xx個(gè)三角形。若等腰三角形的兩邊長分別為3和7,則它的周長為xx17xx;若等腰三角形的兩邊長分別是3和4,則它的周長為xx10或11xx。 5、如果以5 cm為等腰三角形的一邊,另一邊為10 cm,則它的周長為xx25xcmxx。 6、工人師傅用35 cm長的鐵絲圍成一個(gè)等腰三角形鐵架。 。1)若腰長是底邊長的3倍,那么各邊的長分別是多少? 。2)能圍成有一邊長為7 cm的等腰三角形嗎?為什么? 《11。1。1三角形的邊》同步練習(xí)題(含答案) 2、四條線段的長度分別為4,6,8,10,則可以組成三角形的個(gè)數(shù)為() A、4 B、3 C、2 D、1 答案B選出三條線段的所有組合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能組成三角形。故選B。 3、已知等腰三角形的一邊長為3 cm,且它的周長為12 cm,則它的底邊長為() A、3 cm B6 、cm C、9 cm D、3 cm或6 cm 答案A當(dāng)3 cm是等腰三角形的腰長時(shí),底邊長=12—3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能構(gòu)成三角形,∴此種情況不存在;當(dāng)3 cm是等腰三角形的底邊長時(shí),腰長= =4。5(cm),此時(shí)能組成三角形!嗟走呴L為3 cm,故選A。 《11.1與三角形有關(guān)的線段》同步測試(含答案解析) 2、一個(gè)三角形3條邊長分別為x cm、(x+1)cm、(x+2)cm,它的周長不超過39 cm,則x的取值范圍是xx。 3、一個(gè)等腰三角形的周長為9,三條邊長都為整數(shù),則等腰三角形的腰長為xxx。 4、已知a,b,c是三角形的三邊長。 。1)化簡:|b+c—a|+|b—c—a|—|c—a—b|—|a—b+c|; 。2)在(1)的條件下,若a,b,c滿足a+b=11,b+c=9,a+c=10,求這個(gè)式子的值。 【教學(xué)目標(biāo)】 知識與技能 會推導(dǎo)平方差公式,并且懂得運(yùn)用平方差公式進(jìn)行簡單計(jì)算。 過程與方法 經(jīng)歷探索特殊形式的多項(xiàng)式乘法的過程,發(fā)展學(xué)生的符號感和推理能力,使學(xué)生逐漸掌握平方差公式。 情感、態(tài)度與價(jià)值觀 通過合作學(xué)習(xí),體會在解決具體問題過程中與他人合作的重要性,體驗(yàn)數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。 【教學(xué)重難點(diǎn)】 重點(diǎn):平方差公式的推導(dǎo)和運(yùn)用,以及對平方差公式的幾何背景的了解。 難點(diǎn):平方差公式的應(yīng)用。 關(guān)鍵:對于平方差公式的推導(dǎo),我們可以通過教師引導(dǎo),學(xué)生觀察、總結(jié)、猜想,然后得出結(jié)論來突破;抓住平方差公式的本質(zhì)特征,是正確應(yīng)用公式來計(jì)算的關(guān)鍵。 【教學(xué)過程】 一、創(chuàng)設(shè)情境,故事引入 【情境設(shè)置】教師請一位學(xué)生講一講《狗熊掰棒子》的故事 【學(xué)生活動】1位學(xué)生有聲有色地講述著《狗熊掰棒子》的故事,其他學(xué)生認(rèn)真聽著,不時(shí)補(bǔ)充。 【教師歸納】聽了這則故事之后,同學(xué)們應(yīng)該懂得這么一個(gè)道理,學(xué)習(xí)千萬不能像狗熊掰棒子一樣,前面學(xué),后面忘,那么,上節(jié)課我們學(xué)習(xí)了什么呢?還記得嗎? 【學(xué)生回答】多項(xiàng)式乘以多項(xiàng)式。 【教師激發(fā)】大家是不是已經(jīng)掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯誤呢?下面我們就來做這幾道題,看看你是否掌握了以前的知識。 【問題牽引】計(jì)算: (1)(x+2)(x—2);(2)(1+3a)(1—3a); 。3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。 做完之后,觀察以上算式及運(yùn)算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?再舉兩個(gè)例子驗(yàn)證你的發(fā)現(xiàn)。 【學(xué)生活動】分四人小組,合作學(xué)習(xí),獲得以下結(jié)果: 。1)(x+2)(x—2)=x2—4; 。2)(1+3a)(1—3a)=1—9a2; 。3)(x+5y)(x—5y)=x2—25y2; 。4)(y+3z)(y—3z)=y2—9z2。 【教師活動】請一位學(xué)生上臺演示,然后引導(dǎo)學(xué)生仔細(xì)觀察以上算式及其運(yùn)算結(jié)果,尋找規(guī)律。 【學(xué)生活動】討論 【教師引導(dǎo)】剛才同學(xué)們從上述算式中找到了這一組整式乘法的結(jié)果的規(guī)律,這些是一類特殊的多項(xiàng)式相乘,那么如何用字母來表示剛才同學(xué)們所歸納出來的特殊多項(xiàng)式相乘的.規(guī)律呢? 【學(xué)生回答】可以用(a+b)(a—b)表示左邊,那么右邊就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。 用語言描述就是:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差。 【教師活動】表揚(yáng)學(xué)生的探索精神,引出課題──平方差,并說明這是一個(gè)平方差公式和公式中的字母含義。 二、范例學(xué)習(xí),應(yīng)用所學(xué) 【教師講述】 平方差公式的運(yùn)用,關(guān)鍵是正確尋找公式中的a和b,只有正確找到a和b,一切就變得容易了,F(xiàn)在大家來看看下面幾個(gè)例子,從中得到啟發(fā)。 例1:運(yùn)用平方差公式計(jì)算: 。1)(2x+3)(2x—3); 。2)(b+3a)(3a—b); 。3)(—m+n)(—m—n)。 《乘法公式》同步練習(xí) 二、填空題 5、冪的乘方,底數(shù)______,指數(shù)______,用字母表示這個(gè)性質(zhì)是______。 6、若32×83=2n,則n=______。 《乘法公式》同步測試題 25、利用正方形的面積公式和梯形的面積公式即可求解; 根據(jù)所得的兩個(gè)式子相等即可得到。 此題考查了平方差公式的幾何背景,根據(jù)正方形的面積公式和梯形的面積公式得出它們之間的關(guān)系是解題的關(guān)鍵,是一道基礎(chǔ)題。 26、由等式左邊兩數(shù)的底數(shù)可知,兩底數(shù)是相鄰的兩個(gè)自然數(shù),右邊為兩底數(shù)的和,由此得出規(guī)律; 等式左邊減數(shù)的底數(shù)與序號相同,由此得出第n個(gè)式子; 八年級數(shù)學(xué)上冊第三章平移與旋轉(zhuǎn)復(fù)習(xí)教案 一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動一定的距離,這樣的圖形運(yùn)動稱為平移。 1.平移 2.平移的性質(zhì):⑴經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行且相等;⑵對應(yīng)線段平行且相等,對應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。 3.簡單的平移作圖 、俅_定個(gè)圖形平移后的位置的條件: ⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對應(yīng)點(diǎn)的位置。 、谧髌揭坪蟮膱D形的方法: 、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對應(yīng)點(diǎn);⑶將所作的對應(yīng)點(diǎn)按原來方式順次連接,所得的; 二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動一個(gè)角度,這樣的圖形運(yùn)動稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。 1.旋轉(zhuǎn) 2.旋轉(zhuǎn)的性質(zhì) 、判D(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。 、菩D(zhuǎn)過程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。 ⑶任意一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所 成的角都是旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。 、刃D(zhuǎn)前后的兩個(gè)圖形全等。 3.簡單的旋轉(zhuǎn)作圖 、乓阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。 、埔阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。 ⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。 三、分析組合圖案的形成 、俅_定組合圖案中的基本圖案 、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系 、厶剿髟搱D案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合; ⑸旋轉(zhuǎn)變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。 一.選擇題: 1.下列圖形中,是由(1)僅通過平移得到的是( ) 2.在以下現(xiàn)象中, 、 溫度計(jì)中,液柱的上升或下降; ② 打氣筒打氣時(shí),活塞的運(yùn)動; 、 鐘擺的擺動; ④ 傳送帶上,瓶裝飲料的移動 屬于平移的是( ) (A)① ,② (B)①, ③ (C)②, ③ (D)② ,④ 3. 將長度為5cm 的線段向上平移10cm所得線段長度是( ) (A)10cm (B)5c m (C)0cm (D)無法確定 4. 如圖可以看作正△OAB繞點(diǎn)O通過( )旋轉(zhuǎn) 所得到的 A.3次 B.4次 C.5次 D.6次 5.下列運(yùn)動是屬于旋轉(zhuǎn)的是( ) A.滾動過程中的籃球的滾動 B.鐘表的鐘擺的擺動 C.氣球升空的運(yùn)動 D.一個(gè)圖形沿某直線 對折過程 6.ABC是直角三角形,如圖(a),先將它以AB為對稱軸作出它的軸對稱圖形,然后再平移 得 到的圖形應(yīng)該是( ); (a) A B C D 7.下列說法正確的是( ) A.平移不改變圖形的形狀和大小,而旋轉(zhuǎn)則改 變圖形的形狀和大小 B.平移和旋轉(zhuǎn)的共同點(diǎn)是改變圖形的位置 C.圖形可以向某方向平移一定距離,也可以向某方向旋轉(zhuǎn)一定 距離 D.由平移得到的圖形也一定可由旋轉(zhuǎn)得到 8.將圖形按順時(shí)針方向旋轉(zhuǎn)900后的 圖形是( ) A B C D 9. 下列圖形中只能用其中一部分平移可以得到的是 ( ). (A) (B) (C) (D) 10. 下列標(biāo)志既是軸對稱圖形又是中心對稱圖形的是 ( ). (A) (B) (C) (D) 11. 如圖1,四邊形EFGH是由四邊形ABCD平移得到的, 已知,AD=5,B=70,則下列說法中正確的是 ( ). (A)FG=5, G=70 (B)EH=5, F=70 (C)EF=5,F(xiàn)=70 (D) EF=5,E=70 12. 如圖3,△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90到△OCD的位置, 已知AOB=45,則AOD的度數(shù)為( ). (A)55(B)45(C)40(D)35 13. 同學(xué)們曾玩過萬花筒,它是由三塊等寬等長的.玻璃 片圍成的.如圖是看到的萬花筒的一個(gè)圖案,如圖3中 所有小三角形均是全等的等邊三角形,其中的菱形 AEFG可以看成是把菱形ABCD以A為中心( ). (A)順時(shí)針旋轉(zhuǎn)60得到 (B)逆時(shí)針旋轉(zhuǎn)60得到 (C)順時(shí)針旋轉(zhuǎn)120得到 (D)逆時(shí)針旋轉(zhuǎn)120得到 14. 如圖,甲圖案變成乙圖案,既能用平移,又能用旋轉(zhuǎn)的是( ). 15. 下列圖形中,繞某個(gè)點(diǎn)旋轉(zhuǎn)180能與自身重合的圖形有 ( ). (1)正方形;(2)等邊三角形;(3)長方形;(4)角;(5)平行四邊形;(6)圓 . (A)2個(gè) (B)3個(gè) (C)4個(gè) (D)5個(gè) 16. 如圖4, △ABC沿直角邊BC所在直線向右平移到 △DEF,則下列結(jié)論中,錯誤的是 ( ). (A)BE=EC (B)BC=EF (C)AC=DF(D)△ABC≌△DEF 二、填空題. 1.平移是由_________________________________________所決定。 2. 平移不改變圖形的 和 ,只改變圖形的 。 3.鐘表的分針勻速旋轉(zhuǎn)一周需要60分,它的旋轉(zhuǎn)中心是_______,經(jīng)過20分,分針旋轉(zhuǎn)________度。 4.如圖四邊形ABCD是旋轉(zhuǎn)對稱圖形,點(diǎn)__________是旋轉(zhuǎn)中心,旋轉(zhuǎn)了_________度后能與自身重合,則AD=____ ______,AO=__________,BO =_____________。 5.△ 是△ 平移后得到的三角形,則△ ≌△ ,理由是 6.△ABC和△DCE是等邊三角形,則在此圖中,△ACE繞著c點(diǎn) 旋轉(zhuǎn) 度可得到△BCD. 7. 如圖,四邊形AOBC,它繞 著O點(diǎn) 旋轉(zhuǎn)到四邊形DOEF位置,在這個(gè)旋轉(zhuǎn)過程中:旋轉(zhuǎn)中心是_________,旋轉(zhuǎn)角是_________經(jīng)過旋轉(zhuǎn)點(diǎn) A轉(zhuǎn)到__________,點(diǎn)C轉(zhuǎn)到__________,點(diǎn)B轉(zhuǎn)到__________線段OA與線段________ ,線段OB與線段_ _______,線段BC與線段________是對應(yīng)線段。四邊形OACB與四邊形ODFE的形狀、大小______________。 8.如圖,圖案繞中心旋轉(zhuǎn)_______度(填最小度數(shù)) 次和原來圖案互相重合. 9. 如圖7,已知面積為1的正方形 的對角線相交于點(diǎn) ,過點(diǎn) 任作 一條直線分別交 于 ,則陰影部分的面積是 . 10. 如圖9,P是正方形ABCD內(nèi)一點(diǎn),將△ABP繞點(diǎn)B順時(shí)針方向旋 轉(zhuǎn)一定的角度后能與△CB 重合.若PB=3,則P = . 三、解答題 1.如圖,經(jīng)過平移,△ABC的頂點(diǎn)A移 到了點(diǎn)D,請作出平移后的三角形。 2.如圖,把 繞B點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30后, 畫出旋轉(zhuǎn)后的三角形。 3.在下圖中,將大寫字母E繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn) 90后,再向左平移4個(gè)格,請作出最后得到的圖案. 4.如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG。 (1)觀察猜想BE與DG之間的大小關(guān)系,并證明; (2)圖中是否存在通過旋轉(zhuǎn)能夠互相重合的兩個(gè)三角形?若存在, 請說出旋轉(zhuǎn)過程,若不存在,請說明理由。 5.如圖, ABC中, BAC= ,以BC為邊向外作等邊 BCD,把 ABD繞著點(diǎn)D按 順時(shí)針方向向旋轉(zhuǎn) 得到 ECD的位置。若AB=3,AC=2,求 BAD的度數(shù)和線段AD 的長度。(A、C、E在同一直線上) 6如圖,四邊形ABCD的BAD=C=90,AB=AD,AEBC于E, 旋轉(zhuǎn)后能與 重合。 (1)旋轉(zhuǎn)中心是哪一點(diǎn)? (2)旋轉(zhuǎn)了多少度? (3)若AE =5㎝,求四邊形AECF的面積。 7.如圖,梯形ABCD的周長為30cm,AD∥BC ,現(xiàn)將DC平移到AE處,AD=5cm ,求 ABE有周長。 一、內(nèi)容和內(nèi)容解析 1、內(nèi)容 正比例函數(shù)的概念。 2、內(nèi)容解析 一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn)。 對正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對函數(shù)概念的理解,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對正比例函數(shù)基本特征的認(rèn)識,即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。 本節(jié)課主要是通過對生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的`基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進(jìn)行辨析,對實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。 基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。 二、目標(biāo)和目標(biāo)解析 1、目標(biāo) 。1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念; 。2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想。 2、目標(biāo)解析 達(dá)成目標(biāo)(1)的標(biāo)志是:通過對實(shí)際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。 達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會函數(shù)建模思想。 三、教學(xué)問題診斷分析 正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對函數(shù)基本概念理解未必深刻,在對實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認(rèn)識,要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。 因此本節(jié)課的教學(xué)難點(diǎn)是:對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程。 【學(xué)習(xí)目標(biāo)】 1.掌握等腰三角形的有關(guān)概念和性質(zhì),運(yùn)用等腰三角形的性質(zhì)解決問題。 2. 通過學(xué)生之間的交流活動,培養(yǎng)學(xué)生主動與他人合作 交流的意識和良好的學(xué)習(xí)習(xí)慣。 【學(xué)習(xí)重點(diǎn)】 探索和掌握等腰三角形的性質(zhì)及其應(yīng)用。 【學(xué)習(xí)難點(diǎn)】 等腰三角形的性質(zhì)的應(yīng)用。 【學(xué)習(xí) 過程】 一、你知道嗎? 等腰三角形的'有關(guān)概念 《等腰三角形應(yīng)用》講義 課前預(yù)習(xí) 1.SAS,SSS,ASA,AAS,HL 2.這條線段的兩個(gè)端點(diǎn)的距離相等 3.這個(gè)角的兩邊的距離相等 4.這樣的點(diǎn)有4個(gè) ?知識點(diǎn)睛 1.線段垂直平分線上的點(diǎn)到這條線段的兩個(gè)端點(diǎn)的距離相等 2.角平分線上的點(diǎn)到這個(gè)角的兩邊距離相等 3.頂角的平分線 底邊上的中線 底邊上的高 三線合一 《13.3等腰三角形》專項(xiàng)練習(xí) 1、填空題 2、如圖,以等腰直角三角形AOB的斜邊為直角邊向外作第2個(gè)等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜邊為直角邊向外作第3個(gè)等腰直角三角形A1BB1,如此作下去。若OA=OB=1,則第 個(gè)等腰直角三角形的面積 。 一、教材分析教材的地位和作用: 本節(jié)內(nèi)容是第一課時(shí)《軸對稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認(rèn)識軸對稱的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),使學(xué)生從對圖形的感性認(rèn)識上升到對軸對稱的理性認(rèn)識,為進(jìn)一步學(xué)習(xí)軸對稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。 二、學(xué)情分析 八年級學(xué)生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實(shí)例和動手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。 三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定 根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下: (一)教學(xué)目標(biāo): 1、知識技能 (1)理解并掌握軸對稱圖形的概念,對稱軸;能準(zhǔn)確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸. (2)理解并掌握軸對稱的概念,對稱軸;了解對稱點(diǎn). (3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別. 2、過程與方法目標(biāo) 經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動手實(shí)踐能力、抽象思維和語言表達(dá)能力. 3、情感、態(tài)度與價(jià)值觀 通過對生活中數(shù)學(xué)問題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的'意識,在自主探究、合作交流的過程中,體會數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的情感和欣賞圖形的對稱美。 (二)教學(xué)重點(diǎn):軸對稱圖形和軸對稱的有關(guān)概念. (三)教學(xué)難點(diǎn):軸對稱圖形與軸對稱的聯(lián)系、區(qū)別 .四、教法和學(xué)法設(shè)計(jì) 本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級學(xué)生的知識結(jié)構(gòu)和心理特征。我選擇的: 【教法策略】采用以直觀演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動,激發(fā)學(xué)生探求知識的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動探索問題的積極狀態(tài),使不同層次學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。 【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。 【輔助策略】我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強(qiáng)直觀效果,提高課堂效率 五、說程序設(shè)計(jì): 新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀察、試驗(yàn)、猜測、驗(yàn)證、推理與交流等數(shù)學(xué)活動。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個(gè)教學(xué)過程進(jìn)行了設(shè)計(jì)。 (一)、觀圖激趣、設(shè)疑導(dǎo)入。 出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時(shí)蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。 [設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣, (二)、實(shí)踐探索、感悟特征. 《活動一(課件演示)觀察這些圖形有什么特點(diǎn)?》在這個(gè)環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個(gè)圖形的某一部分沿著一條直線翻折180度后能與這個(gè)圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。 為了進(jìn)一步認(rèn)識軸對稱圖形的特點(diǎn)又出示了一組練習(xí) (練習(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸 [設(shè)計(jì)意圖]通過這個(gè)練習(xí)題不僅讓學(xué)生鞏固了軸對稱圖形的概念,而且讓學(xué)生認(rèn)識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學(xué)生認(rèn)識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。 (練習(xí)2)國家的一個(gè)象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進(jìn)一步鞏固了軸對稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時(shí)通過展示各國的國旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識面。 (三)、動手操作、再度探索新知。 將一張紙對折,用筆尖扎出一個(gè)圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學(xué)中注重學(xué)生活動,鼓勵學(xué)生親自實(shí)踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動手能力,從而引出軸對稱概念。 再次引導(dǎo)學(xué)生討論、歸納得出軸對稱的概念……。之后再結(jié)合動畫演示加深對軸對稱概念的理解,進(jìn)而引出對稱軸、對稱點(diǎn)的概念.并結(jié)合圖形加以認(rèn)識。 (四)、鞏固練習(xí)、升華新知。 出示幾幅圖形,請同學(xué)們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱, 在這組練習(xí)中讓學(xué)生動手、動口、動眼、動腦,充分調(diào)動了學(xué)生的各種感官參與學(xué)習(xí),既加深了對兩個(gè)概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。 (課件演示)軸對稱圖形及兩個(gè)圖形成軸對稱區(qū)別與聯(lián)系 (五)、綜合練習(xí)、發(fā)展思維。 1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。 2、判斷: 生活中不僅有些物體的形狀是軸對稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。 (1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸? 0123456789ABCDEFGH 3、像這樣寫法的漢字哪些是軸對稱圖形? 口工用中由日直水清甲 (這幾道題的練習(xí)做到了知識性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊) (六)歸納小結(jié)、布置作業(yè) [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評價(jià)。作業(yè)布置要有層次,照顧學(xué)生個(gè)體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展! 六、設(shè)計(jì)說明 這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過六個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對稱圖形與關(guān)于直線成軸對稱兩個(gè)概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動口、動手、動眼、動腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對本節(jié)課的理解和說明。 教學(xué)目標(biāo): 知識與技能目標(biāo): 1.掌握矩形的概念、性質(zhì)和判別條件。 2.提高對矩形的性質(zhì)和判別在實(shí)際生活中的應(yīng)用能力。 過程與方法目標(biāo): 1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學(xué)生的合情推理能力,主觀探索習(xí)慣,逐步掌握說理的基本方法。 2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想。 情感與態(tài)度目標(biāo): 1.在操作活動過程中,加深對矩形的的認(rèn)識,并以此激發(fā)學(xué)生的探索精神。 2.通過對矩形的探索學(xué)習(xí),體會它的內(nèi)在美和應(yīng)用美。 教學(xué)重點(diǎn): 矩形的性質(zhì)和常用判別方法的理解和掌握。 教學(xué)難點(diǎn): 矩形的性質(zhì)和常用判別方法的綜合應(yīng)用。 教學(xué)方法: 分析啟發(fā)法 教具準(zhǔn)備: 像框,平行四邊形框架教具,多媒體課件。 教學(xué)過程設(shè)計(jì): 一、情境導(dǎo)入: 演示平行四邊形活動框架,引入課題。 二、講授新課: 1.歸納矩形的定義: 問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?(學(xué)生思考、回答。) 結(jié)論:有一個(gè)內(nèi)角是直角的平行四邊形是矩形。 2.探究矩形的性質(zhì): 。1)問題:像框除了“有一個(gè)內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學(xué)生思考、回答.) 結(jié)論:矩形的四個(gè)角都是直角。 。2)探索矩形對角線的性質(zhì): 讓學(xué)生進(jìn)行如下操作后,思考以下問題:(幻燈片展示) 在一個(gè)平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個(gè)頂點(diǎn)上,拉動一對不相鄰的頂點(diǎn),改變平行四邊形的形狀. 、匐S著∠α的變化,兩條對角線的長度分別是怎樣變化的? 、诋(dāng)∠α是銳角時(shí),兩條對角線的長度有什么關(guān)系?當(dāng)∠α是鈍角時(shí)呢? ③當(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)兩條對角線的長度有什么關(guān)系? 。▽W(xué)生操作,思考、交流、歸納。) 結(jié)論:矩形的兩條對角線相等. 。3)議一議:(展示問題,引導(dǎo)學(xué)生討論解決) 、倬匦问禽S對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由. ②直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的.有關(guān)性質(zhì)解釋這結(jié)論嗎? 。4)歸納矩形的性質(zhì):(引導(dǎo)學(xué)生歸納,并體會矩形的“對稱美”) 矩形的對邊平行且相等;矩形的四個(gè)角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形. 例解:(性質(zhì)的運(yùn)用,滲透矩形對角線的“化歸”功能) 如圖,在矩形abcd中,兩條對角線ac,bd相交于點(diǎn)o,ab=oa=4 厘米,求bd與ad的長。 。ㄒ龑(dǎo)學(xué)生分析、解答) 探索矩形的判別條件:(由修理桌子引出) 。5)想一想:(學(xué)生討論、交流、共同學(xué)習(xí)) 對角線相等的平行四邊形是怎樣的四邊形?為什么? 結(jié)論:對角線相等的平行四邊形是矩形. 。ɡ碛煽捎蓭熒餐治,然后用幻燈片展示完整過程.) 。6)歸納矩形的判別方法:(引導(dǎo)學(xué)生歸納) 有一個(gè)內(nèi)角是直角的平行四邊形是矩形. 對角線相等的平行四邊形是矩形. 三、課堂練習(xí)(出示p98隨堂練習(xí)題,學(xué)生思考、解答。) 四、新課小結(jié): 通過本節(jié)課的學(xué)習(xí),你有什么收獲? 。◣熒餐瑥闹R與思想方法兩方面小結(jié)。) 五、作業(yè)設(shè)計(jì):p99習(xí)題4.6第1、2、3題。 板書設(shè)計(jì): 1.矩形 矩形的定義: 矩形的性質(zhì): 前面知識的小系統(tǒng)圖示: 2.矩形的判別條件: 例1 課后反思:在平行四邊形及菱形的教學(xué)后。學(xué)生已經(jīng)學(xué)會自主探索的方法,自己動手猜想驗(yàn)證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計(jì)算也學(xué)會應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決?偟目磥磉@節(jié)課學(xué)生掌握的還不錯。當(dāng)然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。 學(xué)習(xí)目標(biāo) 1、通過運(yùn)算多項(xiàng)式乘法,來推導(dǎo)平方差公式,學(xué)生的認(rèn)識由一般法則到特殊法則的能力。 2、通過親自動手、觀察并發(fā)現(xiàn)平方差公式的結(jié)構(gòu)特征,并能從廣義上理解公式中字母的含義。 3、初步學(xué)會運(yùn)用平方差公式進(jìn)行計(jì)算。 學(xué)習(xí)重難點(diǎn)重點(diǎn): 平方差公式的`推導(dǎo)及應(yīng)用。 難點(diǎn)是對公式中a,b的廣泛含義的理解及正確運(yùn)用。 自學(xué)過程設(shè)計(jì)教學(xué)過程設(shè)計(jì) 看一看 認(rèn)真閱讀教材,記住以下知識: 文字?jǐn)⑹銎椒讲罟剑篲________________ 用字母表示:________________ 做一做: 1、完成下列練習(xí): 、(m+n)(p+q) 、(a+b)(x-y) 、(2x+3y)(a-b) 、(a+2)(a-2) 、(3-x)(3+x) 、(2m+n)(2m-n) 想一想 你還有哪些地方不是很懂?請寫出來。 _______________________________ _______________________________ ________________________________、 1、下列計(jì)算對不對?若不對,請?jiān)跈M線上寫出正確結(jié)果、 (1)(x-3)(x+3)=x2-3( ),__________; (2)(2x-3)(2x+3)=2x2-9( ),_________; (3)(-x-3)(x-3)=x2-9( ),_________; (4)(2xy-1)(2xy+1)=2xy2-1( ),________、 2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2; (3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、 3、計(jì)算:50×49=_________、 應(yīng)用探究 1、幾何解釋平方差公式 展示:邊長a的大正方形中有一個(gè)邊長為b的小正方形。 (1)請計(jì)算圖的陰影部分的面積(讓學(xué)生用正方形的面積公式計(jì)算)。 (2)小明將陰影部分拼成一個(gè)長方形,這個(gè)長方形長與寬是多少?你能表示出它的面積嗎? 2、用平方差公式計(jì)算 (1)103×93 (2)59、8×60、2 拓展提高 1、閱讀題: 我們在計(jì)算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時(shí),發(fā)現(xiàn)直接運(yùn)算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個(gè)算式能用乘法公式計(jì)算、解答過程如下: 原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1) =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1) =(24-1)(24+1)(28+1)(216+1)(232+1) =……=264-1 你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請?jiān)囋嚳? 2、仔細(xì)觀察,探索規(guī)律: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 (x-1)(x4+x3+x2+x+1)=x5-1 …… (1)試求25+24+23+22+2+1的值; (2)寫出22006+22005+22004+…+2+1的個(gè)位數(shù)、 堂堂清 一、選擇題 1、下列各式中,能用平方差公式計(jì)算的是( ) (1)(a-2b)(-a+2b); (2)(a-2b)(-a-2b); (3)(a-2b)(a+2b); (4)(a-2b)(2a+b)、 一、教學(xué)目標(biāo) 1、認(rèn)識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。 2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實(shí)際問題中分析并做出決策。 3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。 二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法: 1、重點(diǎn):認(rèn)識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表 2、難點(diǎn):利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。 3、難點(diǎn)的突破方法: 首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用: 中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動較大時(shí),可用中位數(shù)描述其趨勢。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時(shí),人們往往關(guān)心的一個(gè)量,眾數(shù)不受極端值的影響,這是它的一個(gè)優(yōu)勢,中位數(shù)的計(jì)算很少不受極端值的影響。 教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到。┡帕,⑵數(shù)清數(shù)據(jù)個(gè)數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個(gè)數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個(gè)數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個(gè)數(shù)據(jù),若幾個(gè)數(shù)據(jù)頻數(shù)都是最多且相同,此時(shí)眾數(shù)就是這多個(gè)數(shù)據(jù)。 在利用中位數(shù)、眾數(shù)分析實(shí)際問題時(shí),應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實(shí)例,使同學(xué)在分析不同實(shí)例中有所體會。 三、例習(xí)題的意圖分析 1、教材p143的例4的意圖 (1)、這個(gè)問題的研究對象是一個(gè)樣本,主要是反映了統(tǒng)計(jì)學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個(gè)樣本,然后由樣本的研究結(jié)論去估計(jì)總體的情況。 。2)、這個(gè)例題另一個(gè)意圖是交待了當(dāng)數(shù)據(jù)個(gè)數(shù)為偶數(shù)時(shí),中位數(shù)的求法和解題步驟。(因?yàn)樵谇懊嬗薪榻B中位數(shù)求法,這里不再重述) (3)、問題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計(jì)一個(gè)數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計(jì)學(xué)中的一個(gè)重要的數(shù)據(jù)代表。 。4)、這個(gè)例題再一次體現(xiàn)了統(tǒng)計(jì)學(xué)知識與實(shí)際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。 2、教材p145例5的意圖 (1)、通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。 。2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述) 。3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。 四、課堂引入 嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的.,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個(gè)數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。 五、例習(xí)題的分析 教材p144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個(gè)數(shù)據(jù),偶數(shù)個(gè)可以取中間的兩個(gè)數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。 教材p145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。 六、隨堂練習(xí) 1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計(jì)了這15個(gè)人的銷售量如下(單位:件) 1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求這15個(gè)銷售員該月銷量的中位數(shù)和眾數(shù)。 假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售定額定為320件,你認(rèn)為合理嗎?如果不合理,請你制定一個(gè)合理的銷售定額并說明理由。 2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示: 1匹1.2匹1.5匹2匹 3月12臺20臺8臺4臺 4月16臺30臺14臺8臺 根據(jù)表格回答問題: 商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少? 假如你是經(jīng)理,現(xiàn)要進(jìn)貨,6月份在有限的資金下進(jìn)貨單位將如何決定? 答案:1、(1)210件、210件(2)不合理。因?yàn)?5人中有13人的銷售額達(dá)不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因?yàn)樗仁侵形粩?shù)又是眾數(shù),是大部分人能達(dá)到的額定。 2、 (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進(jìn)1.2匹,由于資金有限就要少進(jìn)2匹空調(diào)。 七、課后練習(xí) 1、數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是 2、一組數(shù)據(jù)23、27、20、18、x、12,它的中位數(shù)是21,則x的值是。 3、數(shù)據(jù)92、96、98、100、x的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( ) a.97、96 b.96、96.4 c.96、97 d.98、97 4、如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( ) a.24、25 b.23、24 c.25、25 d.23、25 5、隨機(jī)抽取我市一年(按365天計(jì))中的30天平均氣溫狀況如下表: 溫度(℃) -8 -1 7 15 21 24 30 天數(shù)3 5 5 7 6 2 2 請你根據(jù)上述數(shù)據(jù)回答問題: 。1)。該組數(shù)據(jù)的中位數(shù)是什么? 。2)。若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達(dá)到市民“滿意溫度”的大約有多少天? 答案:1. 9;2. 22; 3.b;4.c; 5.(1)15. (2)約97天 教學(xué)目標(biāo) 。保J(rèn)識變量、常量. 。玻畬W(xué)會用含一個(gè)變量的代數(shù)式表示另一個(gè)變量. 教學(xué)重點(diǎn) 。保J(rèn)識變量、常量. 2.用式子表示變量間關(guān)系. 教學(xué)難點(diǎn) 用含有一個(gè)變量的式子表示另一個(gè)變量. 教學(xué)過程 Ⅰ.提出問題,創(chuàng)設(shè)情境 情景問題:一輛汽車以60千米/小時(shí)的速度勻速行駛,行駛里程為s千米.行駛時(shí)間為t小時(shí). 1.請同學(xué)們根據(jù)題意填寫下表: t/時(shí) 1 2 3 4 5 s/千米 。玻谝陨线@個(gè)過程中,變化的量是________.變變化的量是__________. 3.試用含t的式子表示s. Ⅱ.導(dǎo)入新課 首先讓學(xué)生思考上面的幾個(gè)問題,可以互相討論一下,然后回答. 從題意中可以知道汽車是勻速行駛,那么它1小時(shí)行駛60千米,2小時(shí)行駛2×60千米,即120千米,3小時(shí)行駛3×60千米,即180千米,4小時(shí)行駛4×60千米,即240千米,5小時(shí)行駛5×60千米,即300千米……因此行駛里程s千米與時(shí)間t小時(shí)之間有關(guān)系:s=60t.其中里程s與時(shí)間t是變化的量,速度60千米/小時(shí)是不變的量. 這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時(shí)間的變化過程.其實(shí)現(xiàn)實(shí)生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時(shí)間t、里程s,有些量的數(shù)值是始終不變的,如上例中的速度60千米/小時(shí). [活動一] 。保繌堧娪捌笔蹆r(jià)為10元,如果早場售出票150張,日場售出205張,晚場售出310張.三場電影的票房收入各多少元.設(shè)一場電影售票x張,票房收入y元.怎樣用含x的式子表示y? 。玻谝桓鶑椈傻南露藨覓熘匚,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長度? 引導(dǎo)學(xué)生通過合理、正確的思維方法探索出變化規(guī)律. 結(jié)論: 。保鐖鲭娪捌狈渴杖耄150×10=1500(元) 日場電影票房收入:205×10=20xx(元) 晚場電影票房收入:310×10=3100(元) 關(guān)系式:y=10x 2.掛1kg重物時(shí)彈簧長度: 1×0.5+10=10.5(cm) 掛2kg重物時(shí)彈簧長度:2×0.5+10=11(cm) 掛3kg重物時(shí)彈簧長度:3×0.5+10=11.5(cm) 關(guān)系式:L=0.5m+10 通過上述活動,我們清楚地認(rèn)識到,要想尋求事物變化過程的規(guī)律,首先需確定在這個(gè)過程中哪些量是變化的,而哪些量又是不變的.在一個(gè)變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable),那么數(shù)值始終不變的量稱之為常量(constant).如上述兩個(gè)過程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長度L都是變量.而票價(jià)10元,彈簧原長10cm……都是常量. [活動二] 1.要畫一個(gè)面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r? 2.用10m長的'繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計(jì)算相應(yīng)的矩形面積的值,探索它們的變化規(guī)律:設(shè)矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S? 結(jié)論: 。保笠阎娣e的圓的半徑,可利用圓的面積公式經(jīng)過變形求出S= r2r= 面積為10cm2的圓半徑r= ≈1.78(cm) 面積為20cm2的圓半徑r= ≈2.52(cm) 關(guān)系式:r= 。玻蚓匦蝺山M對邊相等,所以它一條長與一條寬的和應(yīng)是周長10cm的一半,即5cm. 若長為1cm,則寬為5-1=4(cm) 據(jù)矩形面積公式:S=1×4=4(cm2) 若長為2cm,則寬為5-2=3(cm) 面積S=2×(5-2)=6(cm2) … … 若長為xcm,則寬為5-x(cm) 面積S=x?(5-x)=5x-x2(cm2) 從以上兩個(gè)題中可以看出,在探索變量間變化規(guī)律時(shí),可利用以前學(xué)過的一些有關(guān)知識公式進(jìn)行分析尋找,以便盡快找出之間關(guān)系,確定關(guān)系式. Ⅲ.隨堂練習(xí) 。保徺I一些鉛筆,單價(jià)0.2元/支,總價(jià)y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫出關(guān)系式. 。玻粋(gè)三角形的底邊長5cm,高h(yuǎn)可以任意伸縮.寫出面積S隨h變化關(guān)系式,并指出其中常量與變量. 解:1.買1支鉛筆價(jià)值1×0.2=0.2(元) 買2支鉛筆價(jià)值2×0.2=0.4(元) …… 買x支鉛筆價(jià)值x×0.2=0.2x(元) 所以y=0.2x 其中單價(jià)0.2元/支是常量,總價(jià)y元與支數(shù)x是變量. 。玻鶕(jù)三角形面積公式可知: 當(dāng)高h(yuǎn)為1cm時(shí),面積S= ×5×1=2.5cm2 當(dāng)高h(yuǎn)為2cm時(shí),面積S= ×5×2=5cm2 … … 當(dāng)高為hcm,面積S= ×5×h=2.5hcm2 【數(shù)學(xué)八年級上冊教案】相關(guān)文章: 八年級上冊數(shù)學(xué)教案07-26 八年級數(shù)學(xué)上冊教案07-20 八年級上冊數(shù)學(xué)教案12-23 八年級上冊數(shù)學(xué)教案12-23 數(shù)學(xué)上冊教案12-25 數(shù)學(xué)上冊教案12-25數(shù)學(xué)八年級上冊教案2
數(shù)學(xué)八年級上冊教案3
數(shù)學(xué)八年級上冊教案4
數(shù)學(xué)八年級上冊教案5
數(shù)學(xué)八年級上冊教案6
數(shù)學(xué)八年級上冊教案7
數(shù)學(xué)八年級上冊教案8
數(shù)學(xué)八年級上冊教案9
數(shù)學(xué)八年級上冊教案10
數(shù)學(xué)八年級上冊教案11
數(shù)學(xué)八年級上冊教案12
數(shù)學(xué)八年級上冊教案13
數(shù)學(xué)八年級上冊教案14
數(shù)學(xué)八年級上冊教案15