小學六年級數(shù)學《比的基本性質》教案范文
作為一名老師,總歸要編寫教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質量。那么你有了解過教案嗎?以下是小編精心整理的小學六年級數(shù)學《比的基本性質》教案范文,歡迎閱讀,希望大家能夠喜歡。
小學六年級數(shù)學《比的基本性質》教案范文1
教學內(nèi)容:
本次教學將著重講解教科書第50、51頁的內(nèi)容,同時練習十一中的第4-6題。
教學目標:
1、掌握比的基本性質,能夠根據(jù)比的基本性質簡化比的表達式。
2、將商不變性質和分數(shù)的基本性質應用到比的基本性質中。
教學重點:
理解比的基本性質。
教學難點:
應用比的基本性質簡化比的表達式。
教學過程:
一、引入
1、求解20÷5,可以得到20÷5 = (20×10) ÷ (5×10) = 4,請問大家如何求解這個題目。
2、商不變性質和分數(shù)的基本性質,大家是否都掌握了?
3、在比中有哪些規(guī)律呢?本節(jié)課程將為大家介紹比的基本性質。
二、自學互動
[活動一]比的基本性質
學習方式:小組合作、展示匯報
學習任務:
1、完成以下問題:6:8和12:16這兩個比雖然不同,但是它們的比值卻相同,其中存在什么樣的規(guī)律?
6:8=6÷8=6/8=3/4,12:16=12÷16=12/16=3/4
2、觀察比較并發(fā)現(xiàn)規(guī)律。
(1)利用比和除法的關系來研究比中的規(guī)律。(商不變的規(guī)律)
(2)利用比和分數(shù)的關系來研究比中的規(guī)律。
3、歸納總結,概括規(guī)律。
(1) 總結:
比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質。
(2)追問:這里“相同的數(shù)”為什么要強調0除外呢?
[活動二]化簡比
學習方式:嘗試訓練、匯報交流
學習任務:
1、互動交流:最簡整數(shù)比的定義是什么?
2、在編輯中使用比的基本性質,將已知比化簡為最簡整數(shù)比。
3、將化簡的結果進行總結,概括規(guī)律。
1.最簡單的整數(shù)比
最簡單的整數(shù)比要滿足兩個條件:一是比的前項和后項都是整數(shù),二是比的前項和后項的公因數(shù)只有1。
下面列出幾個最簡單的整數(shù)比:
1:1 2:1 3:1 1:2 1:3 2:3
2.化簡比的方法
(1)分別寫出這兩面聯(lián)合國國旗長和寬的比。
(2)這兩個比并不是最簡單的整數(shù)比,因為它們的前項和后項除了公因數(shù)1之外還有其他的公因數(shù)。
(3)可以嘗試將這兩個比化簡,即把比的前、后項除以它們的`公因數(shù)。
(4)化簡后的結果相同,說明這兩面旗的形狀相同,大小不同。
(5)運用以下方法化簡比:
如果一個比的前、后項是分數(shù)的,就把前后項同時乘分母的最小公倍數(shù);如果一個比的前、后項是小數(shù)的,先把它們都化成整數(shù),再化簡。
(6)示例題:
1/6:2/9 = (1/6×18):(2/9×18) = 3:4 0.75:2 = (0.75×100):(2×100) = 75:200 = 3:8 1/6÷2/9 = 1/6×2/9 = 3/4
3.達標測評
1.完成課本第51頁的“做一做”,集體訂正。
2.完成課本第52頁練習十一的第2、4、5、6題。
4.課堂小結
今天我們學習了最簡單的整數(shù)比和化簡比的方法,通過示例題的實際操作,加深了對化簡比的理解和掌握。希望大家能夠在以后的學習和生活中靈活應用這些知識,解決各種比的問題。
小學六年級數(shù)學《比的基本性質》教案范文2
教學內(nèi)容:
本節(jié)課將教授人教版小學六年級上冊第50至51頁的內(nèi)容和相關練習。
教學目標:
1.掌握比的基本性質,并能運用這些性質來化簡比,初步掌握化簡比的方法。
2.培養(yǎng)學生的數(shù)學能力,促進觀察、比較、推理、概括、合作和交流等方面的發(fā)展,促進比、除法和分數(shù)之間聯(lián)系的探究。
3.培養(yǎng)學生滲透轉化的數(shù)學思維,并加深對知識內(nèi)在聯(lián)系的認識。
教學重點:
理解比的基本性質。
教學難點:
正確運用比的基本性質來化簡表達式。
教學準備:
課件,答題紙,實物投影。
教學過程:
一、復習引入
1.老師:讓我們一起回憶一下關于比的知識,我們已經(jīng)學過哪些內(nèi)容?
包括但不限于比的意義、比的各部分名稱、比與分數(shù)、除法之間的關系等。
2.請問700÷25的商是多少?
通過思考、分析和計算,學生回答出正確答案。在此過程中,老師引導學生思考,加深對商不變性質的理解。
3.請問學生,你還記得分數(shù)的基本性質嗎?請舉例說明。
學生回憶并舉例說明,讓他們理解分數(shù)的基本性質。本環(huán)節(jié)旨在讓學生回顧比、除法和分數(shù)之間的聯(lián)系,重申商不變性質和分數(shù)的基本性質,為理解比的基本性質做鋪墊。同時,滲透了轉化的數(shù)學思想,提醒學生認識知識之間的內(nèi)在聯(lián)系。
二、新知探究
。ㄒ唬┎孪氡鹊幕拘再|
1.老師:我們都知道,比與除法、分數(shù)之間存在著密切的關系。我們知道,除法具有商不變性質,而分數(shù)有分數(shù)的基本性質。那么,請思考,比中是否還存在某些規(guī)律或性質呢?
老師預設:比的基本性質。
2.學生開始猜測比的基本性質。
老師預設:如果兩個比的前項和后項同時乘或除以相同的數(shù)(但不是0),那么它們的比值不變。
3.根據(jù)學生的猜想,老師在黑板上寫下以下內(nèi)容:“當比的前項和后項同時乘或除以相同的數(shù)(0除外)時,比值不會改變!
【設計目的】比的基本性質非常適合培養(yǎng)學生的“類比推理能力”,學生在熟練掌握商不變性質和分數(shù)的基本性質后,可以自然而然地將其應用到比的基本性質上,這不僅可以激發(fā)學生的學習興趣,還可以加強學生的語言表達能力。
(二)驗證比的基本性質
老師:正如大家所想,比與除法和分數(shù)一樣,也具有自己的規(guī)律性質,F(xiàn)在,我們需要通過研究驗證之前的.猜想是否正確。接下來,我請大家分成四人小組,共同合作研究并驗證之前的猜想。
1.老師說明合作要求:
(1)獨立完成:每位同學需要獨立完成一個比例,并運用自己喜歡的方法驗證其是否符合比的基本性質。
(2)小組討論學習:
、倜棵瑢W向小組內(nèi)的其他成員展示自己的研究成果,并相互交流學習(他人需要表達自己是否贊同此同學的結論)。
②若小組內(nèi)存在不同的觀點,需通過具體舉例進行討論研究。
、坌〗M選派一名同學代表小組進行發(fā)言。
2.集體交流(需要由小組發(fā)言代表結合具體例子在展臺上做出講解):
預設:根據(jù)比與除法、分數(shù)的關系進行驗證;根據(jù)比值驗證。
3.全班驗證:
16:20=(16●△):(20●△)。
4.完善歸納,總結出比的基本性質:
在上面這道題中,△應該填什么?●內(nèi)可以隨意填數(shù)字嗎?為什么?
(1)學生需要發(fā)表自己的看法并說明理由,老師隨后完善板書內(nèi)容。
(2)學生翻開教材閱讀比的基本性質,老師在黑板上書寫課題內(nèi)容(比的基本性質)。
5.質疑辨析,深化認識。
【設計目的】基于猜想的學習必須要有學生的自主探究,而合作探究則是一種非常有效的學習方式。但是需要注意,合作學習不僅僅是形式上的合作,還需要讓每個學生進行獨立思考,產(chǎn)生自己的想法,進而進行交流,在這個過程中,學生可以增強推理和概括能力,同時真正理解“比的基本性質”,這將有效提高合作學習的實效性。
三、比的基本性質的應用
導師:同學們,你們還記得學習分數(shù)的基本性質有什么用嗎?什么是最簡分數(shù)?
今天我們要介紹比的基本性質,并且它有一個非常重要的用處——可以化簡比,得到最簡整數(shù)比。
一、理解最簡整數(shù)比的含義
1.輔助學生自學有關最簡整數(shù)比的知識。
假設:前項和后項互質的整數(shù)比被稱為最簡整數(shù)比。
2.從以下比例中找出最簡整數(shù)比,并簡要說明原因。
3:4; 18:12; 19:10; 0.75:2。
二、初步應用
1.化簡前項和后項都為整數(shù)的比例。(介紹教材第50頁例1)
學生獨立試著操作,化簡后進行交流。
(1) 15:10 = (15÷5):(10÷5) = 3:2;
(2) 180:120 = (180÷ 60):(120÷ 60)= 3:2。
假設:有兩種方法,即使用公因數(shù)分解以及進一步分解公因數(shù),但側重于使用公因數(shù)分解方法。
2.化簡前項和后項包含分數(shù)和小數(shù)的比例。(介紹)
導師:當前項和后項是整數(shù)時,我們只要除以它們的公因數(shù),但是對于比例的要求和0.75:2,這兩個比例不是最簡整數(shù)比,你們能找到化簡的方法嗎?四人小組討論研究,并找到化簡的方法。
學生研究、寫下具體步驟,總結方法,選擇代表展示報告。導師比較不同方法,引導學生掌握常規(guī)方法。
假設:將含有分數(shù)和小數(shù)的比例化為最簡整數(shù)比前,需先將它們轉化為整數(shù)比例,然后進行化簡。有分數(shù)的要先乘上最小公倍數(shù)的分母;有小數(shù)的要先轉化為整數(shù),然后再進行化簡。
3. 小結探討:同學們通過自我探索取得了各種比例的最簡整數(shù)比之法。化簡時,若比例的前項和后項都是整數(shù),則可以同時除以它們的公因數(shù);遇小數(shù)時先轉化為整數(shù),然后進行化簡;在遇到分數(shù)時可以同時乘以分母的最小公倍數(shù)。
4.補充方法,區(qū)分化簡比例和求比例的值。
還可以用什么方式來化簡比例?(求比數(shù))
化簡比例和求比值有什么不同嗎?
假設:化簡比例得到的最終結果為所得到的比例,而求比值得到的最終結果為數(shù)。
5.嘗試練習。
將下列比例轉化為最簡整數(shù)比例(請參考教材第51頁“做一做”):
32:16; 48:40; 0.15:0.3;
【設計理念】新課程標準提出,教學應充分體現(xiàn)“以學生為本”的教學思想,發(fā)揮學生的主體作用,讓學生成為學習的主導者。因此,在本課的比的基本性質化簡比例的教學過程中,通過自學、獨立探究、小組合作等方法,為學生創(chuàng)造積極的數(shù)學活動機會,鼓勵學生自主發(fā)現(xiàn)比例化簡的方法。
四、鞏固練習
(1)基礎練習
1.請完成教材第53頁第4題。
將下列比例化為后項為100的比例。
(1)樹苗種植的成活數(shù)和總數(shù)比為49:50;
(2)藥品的質量與藥水總質量的比為0.12:1;
(3)某企業(yè)去年實際產(chǎn)值與計劃產(chǎn)值的比為275萬:250萬。
2.請完成教材第53頁第6題。
(2)拓展練習(采用PPT呈現(xiàn))
學生口算回答。
(1)若將2:3的比例的前項增加12,則后項應增加( )。
(2)六(1)班男生人數(shù)為女生人數(shù)的1.2倍,則男生和女生人數(shù)的比例為( ),男生和全班人數(shù)的比例為( ),女生和全班人數(shù)的比例為( )。
【設計理念】練習的設計應緊緊圍繞教學的重點和難點,編排應該體現(xiàn)由簡到難的層次性。第1題基于比例的基本性質,是基礎練習,同時也為百分之的學習埋下了伏筆。第2題旨在訓練學生怎樣化簡不同單位的量和比例,培養(yǎng)學生審題能力。拓展練習不僅發(fā)展了學生的思維靈活性、培養(yǎng)了學生的創(chuàng)造能力,還很好地鞏固了本課的知識點,同時這類問題也為將來分數(shù)應用題和比例應用題的學習奠定了堅實的基礎。
五、課堂總結
你在這節(jié)課中有什么收獲?還有什么疑問嗎?
小學六年級數(shù)學《比的基本性質》教案范文3
一、引入
1.提問:除法、分數(shù)和比之間有什么聯(lián)系?
2.復習題:做第一題的時候,你是根據(jù)什么(商不變的性質)來做的?第二題呢?
3.導入課題:在商不變的性質和分數(shù)基本性質的基礎上學習比的基本性質。今天我們一起來探究一下比的基本性質。
二、學習新課
1.教學例3:比的基本性質
(1)學生填表
(2)提問:“聯(lián)系商不變的性質和分數(shù)的基本性質,你能想出比中的什么規(guī)律嗎?”
(3)師生共同總結比的基本性質,演示課件“比的基本性質”:比的前項和后項同時乘上或除以相同的數(shù)(0除外),比值不變。
(4)師問:“你認為哪些詞語比較重要?你如何理解0除外?”
2.教學例4:應用比的基本性質化簡比。
我們曾學過最簡分數(shù),那么什么是最簡分數(shù)呢?最簡單的整數(shù)比就是比的前項和后項是互質數(shù),比如9∶8。
出示化簡比的練習題:
(1) 12:18 (2) 0.75:0.5 (3) 1.8:0.09
(1)讓學生試做第一題,問:“你是怎么做的?6和12、18有著怎樣的關系?”
引導學生總結出整數(shù)比化簡的`方法:用比的前后項分別除以它們的公因數(shù),使比的前后項是互質數(shù)。
(2)化簡(2),問:“這個比的前、后項是什么數(shù)?(分數(shù))如果我們已經(jīng)會化簡整數(shù)比了,你能不能利用比的基本性質把分數(shù)比先化成整數(shù)比?”
(3)引導學生總結分數(shù)比化簡的方法(演示課件出示):比的前、后項同時乘以它們的分母的最小公倍數(shù),就可以把分數(shù)比轉化成整數(shù)比,進而化簡成最簡單的整數(shù)比。
(4)化簡(3) 1.8:0.09。問:“小數(shù)比怎么化簡呢?”讓學生自己在書上化簡,然后指名板子演示。
最后師問:“整數(shù)比、小數(shù)比、分數(shù)比化成最簡單的整數(shù)比的方法是什么?”
三、鞏固練習
1.進行訓練,填寫完整
2.解決第13份練習的第5-8個問題。
3.進行補充練習
選擇
1. 1千米∶20千米= ( )
(1)1∶20 (2)1000∶20 (3)5∶1
2.對于同一件零件,甲2小時可完成7個,而乙需要3小時完成10個。甲、乙的工效比是( )
(1)20∶21 (2)21∶20 (3)7∶10
四、課堂總結
教師:你在今天的學習中學到了哪些知識?比的基本特性是什么?如何利用比的基本性質將整數(shù)比、分數(shù)比、小數(shù)比轉化為最簡單的整數(shù)比?
【小學六年級數(shù)學《比的基本性質》教案】相關文章:
小學數(shù)學《分數(shù)的基本性質》說課稿11-26
比的基本性質教案04-06
小學數(shù)學《分數(shù)基本性質》試題分享06-22
分數(shù)的基本性質小學數(shù)學教學反思06-06
《比的基本性質》數(shù)學教學反思11-07