必修三上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃模板
一、教學(xué)目標(biāo):
1、知識(shí)與技能
、 理解輾轉(zhuǎn)相除法與更相減損術(shù)中蘊(yùn)含的數(shù)學(xué)原理,并能根據(jù)這些原理進(jìn)行算法分析;
⑵ 基本能根據(jù)算法語句與程序框圖的知識(shí)設(shè)計(jì)完整的程序框圖并寫出算法程序.
2、過程與方法
在輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的學(xué)習(xí)過程中對比我們常見的約分求公因式的方法,比較它們在算法上的區(qū)別,并從程序的學(xué)習(xí)中體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn),領(lǐng)會(huì)數(shù)學(xué)算法與計(jì)算機(jī)處理的結(jié)合方式,初步掌握把數(shù)學(xué)算法轉(zhuǎn)化成計(jì)算機(jī)語言的一般步驟.
3、情感與價(jià)值觀
、 通過閱讀中國古代數(shù)學(xué)中的算法案例,體會(huì)中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn).
⑵ 在學(xué)習(xí)古代數(shù)學(xué)家解決數(shù)學(xué)問題的方法的過程中培養(yǎng)嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力,在利用算法解決數(shù)學(xué)問題的過程中培養(yǎng)理性的精神和動(dòng)手實(shí)踐的能力.
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)求最大公約數(shù)的方法.
難點(diǎn):把輾轉(zhuǎn)相除法與更相減損術(shù)的方法轉(zhuǎn)換成程序框圖與程序語言.
三、教學(xué)過程:
(一)創(chuàng)設(shè)情景、導(dǎo)入課題
1.研究一個(gè)實(shí)際問題的算法,主要從哪幾方面展開?
算法步驟、程序框圖和編寫程序三方面展開.
2.在程序框圖中算法的`基本邏輯結(jié)構(gòu)有哪幾種?
順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
3.在程序設(shè)計(jì)中基本的算法語句有哪幾種?
輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句
4.思考1:18與30的最大公約數(shù)是多少?你是怎樣得到的?
5. 思考2:對于8251與6105這兩個(gè)數(shù),它們的最大公約數(shù)是多少?你是怎樣得到的?
由于它們公有的質(zhì)因數(shù)較大,利用上述方法求最大公約數(shù)就比較困難.有沒有其它的方法可以較簡單的找出它們的最大公約數(shù)呢?
(板書課題)
(二)師生互動(dòng)、探究新知
1. 輾轉(zhuǎn)相除法
思考3:注意到8251=6105×1+2146,那么8251與6105這兩個(gè)數(shù)的公約數(shù)和6105與2146的公約數(shù)有什么關(guān)系?
我們發(fā)現(xiàn)6105=2146×2+1813,同理,6105與2146的公約數(shù)和2146與1813的公約數(shù)相等.
思考4:重復(fù)上述操作,你能得到8251與6105這兩個(gè)數(shù)的最大公約數(shù)嗎?
6105=2146×2+1813
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4+0
以上我們求最大公約數(shù)的方法就是輾轉(zhuǎn)相除法,也叫歐幾里德算法,它是由歐幾里德在公元前300年左右首先提出的.
利用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
第一步:用較大的數(shù)m除以較小的數(shù)n得到一個(gè)商 和一個(gè)余數(shù) ;
第二步:若 =0,則n為m,n的最大公約數(shù);若 ≠0,則用除數(shù)n除以余數(shù) 得到一個(gè)商 和一個(gè)余數(shù) ;
第三步:若 =0,則 為m,n的最大公約數(shù);若 ≠0,則用除數(shù) 除以余數(shù) 得到一個(gè)商 和一個(gè)余數(shù) ;
……
依次計(jì)算直至 =0,此時(shí)所得到的 即為所求的最大公約數(shù).
思考5:你能把輾轉(zhuǎn)相除法編成一個(gè)計(jì)算機(jī)程序嗎?
第一步,給定兩個(gè)正整數(shù)m,n(m>n).
第二步,計(jì)算m除以n所得的余數(shù)r.
第三步,m=n,n=r.
第四步,若r=0,則m,n的最大公約數(shù)等于m;否則,返回第二步.
INPUT m,n
DO
r=m MOD n
m=n
n=r
LOOP UNTIL r=0
PRINT m
END
【必修三上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:
人教B版必修三上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃模板06-02
初三上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃03-30
數(shù)學(xué)必修教學(xué)計(jì)劃06-25
數(shù)學(xué)必修教學(xué)計(jì)劃03-30
初三上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃范文07-15
高三上學(xué)期文科數(shù)學(xué)教學(xué)計(jì)劃08-03
高三上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃05-10