中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

八年級數(shù)學(xué)教案

時間:2023-01-03 09:21:12 數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

八年級數(shù)學(xué)教案【精】

  作為一位杰出的教職工,總不可避免地需要編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。那么教案應(yīng)該怎么寫才合適呢?下面是小編整理的八年級數(shù)學(xué)教案,僅供參考,大家一起來看看吧。

八年級數(shù)學(xué)教案【精】

八年級數(shù)學(xué)教案1

  八年級下數(shù)學(xué)教案-變量與函數(shù)(2)

  一、教學(xué)目的

  1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。

  2.使學(xué)生理解求自變量的取值范圍的兩個依據(jù)。

  3.使學(xué)生掌握關(guān)于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。

  4.通過求函數(shù)中自變量的取值范圍使學(xué)生進一步理解函數(shù)概念。

  二、教學(xué)重點、難點

  重點:函數(shù)自變量取值的求法。

  難點:函靈敏處變量取值的確定。

  三、教學(xué)過程

  復(fù)習(xí)提問

  1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內(nèi)容?

  2.什么叫分式?當(dāng)x取什么數(shù)時,分式x+2/2x+3有意義?

 。ù穑悍帜咐锖凶帜傅挠欣硎浇蟹质,分母≠0,即x≠3/2。)

  3.什么叫二次根式?使二次根式成立的條件是什么?

 。ù穑焊笖(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)

  4.舉出一個函數(shù)的實例,并指出式中的變量與常量、自變量與函數(shù)。

  新課

  1.結(jié)合同學(xué)舉出的實例說明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

  2.結(jié)合同學(xué)舉出的實例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:

 。1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達式)有意義。

 。2)自變量取值范圍要使實際問題有意義。

  3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。

  推廣與聯(lián)想:請同學(xué)按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。

  4.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點:

 。1)例3中的4個小題歸納起來仍是三類題型。

 。2)求函數(shù)值的問題實際是求代數(shù)式值的問題。

  補充例題

  求下列函數(shù)當(dāng)x=3時的函數(shù)值:

 。1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

 。ù穑海1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

  小結(jié)

  1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。

  2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):

 。1)要使函數(shù)的解析式有意義。

 、俸瘮(shù)的解析式是整式時,自變量可取全體實數(shù);

 、诤瘮(shù)的解析式是分式時,自變量的取值應(yīng)使分母≠0;

 、酆瘮(shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)≥0。

 。2)對于反映實際問題的函數(shù)關(guān)系,應(yīng)使實際問題有意義。

  3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

  練習(xí):P94中1,2,3。

  作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。

  四、教學(xué)注意問題

  1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。

  2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。

  3.注意培養(yǎng)學(xué)生對于“具體問題要具體分析”的良好學(xué)習(xí)方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。

八年級數(shù)學(xué)教案2

  教學(xué)目標(biāo)

  1.知識與技能

  領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

  2.過程與方法

  經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

  3.情感、態(tài)度與價值觀

  培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

  重、難點與關(guān)鍵

  1.重點:理解完全平方公式因式分解,并學(xué)會應(yīng)用.

  2.難點:靈活地應(yīng)用公式法進行因式分解.

  3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應(yīng)用公式法分解因式的目的

  教學(xué)方法

  采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

  教學(xué)過程

  一、回顧交流,導(dǎo)入新知

  【問題牽引】

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2.

  【知識遷移】

  2.計算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2.

  【教師活動】引導(dǎo)學(xué)生完成下面兩道題,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2.

  【學(xué)生活動】從逆向思維的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

  二、范例學(xué)習(xí),應(yīng)用所學(xué)

  【例1】把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4.

  【例2】如果x2+axy+16y2是完全平方,求a的值.

  【思路點撥】根據(jù)完全平方式的定義,解此題時應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.

  三、隨堂練習(xí),鞏固深化

  課本P170練習(xí)第1、2題.

  【探研時空】

  1.已知x+y=7,xy=10,求下列各式的值.

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值.

  四、課堂總結(jié),發(fā)展?jié)撃?/p>

  由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2.

  在運用公式因式分解時,要注意:

  (1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當(dāng)多項式是二項式時,考慮用平方差公式分解;當(dāng)多項式是三項時,應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項式各項有公因式時,應(yīng)該首先考慮提公因式,然后再運用公式分解.

  五、布置作業(yè),專題突破

八年級數(shù)學(xué)教案3

  一、學(xué)生起點分析

  學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結(jié)論?

  反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中

  可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時的引導(dǎo)。

  二、學(xué)習(xí)任務(wù)分析

  本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學(xué)目標(biāo):

  ● 知識與技能目標(biāo)

  1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過程與方法目標(biāo)

  1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;

  2.經(jīng)歷從實驗到驗證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

  ● 情感與態(tài)度目標(biāo)

  1.體驗生活中的數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

  2.在探索過程中體驗成功的喜悅,樹立學(xué)習(xí)的自信心。

  教學(xué)重點

  理解勾股定理逆定理的具體內(nèi)容。

  三、教法學(xué)法

  1.教學(xué)方法:實驗猜想歸納論證

  本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學(xué)結(jié)論已有一定的體驗

  但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個方面對學(xué)生進行引導(dǎo):

  (1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;

  (2)從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程;

  (3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。

  2.課前準(zhǔn)備

  教具:教材、電腦、多媒體課件。

  學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

  四、教學(xué)過程設(shè)計

  本節(jié)課設(shè)計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內(nèi)容:

  情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?

  2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

  意圖:

  通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

  第二環(huán)節(jié):合作探究

  內(nèi)容1:探究

  下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

  1.這三組數(shù)都滿足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動小組,每個小組可以任選其中的一組數(shù)。

  意圖:

  通過學(xué)生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結(jié)論;在活動中體驗出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經(jīng)過學(xué)生充分討論后,匯總各小組實驗結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

  從上面的分組實驗很容易得出如下結(jié)論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  內(nèi)容2:說理

  提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個發(fā)現(xiàn)。你認(rèn)為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?

  意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時明晰結(jié)論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  滿足 的三個正整數(shù),稱為勾股數(shù)。

  注意事項:為了讓學(xué)生確認(rèn)該結(jié)論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學(xué)有一個直觀的認(rèn)識。

  活動3:反思總結(jié)

  提問:

  1.同學(xué)們還能找出哪些勾股數(shù)呢?

  2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

  4.通過今天同學(xué)們合作探究,你能體驗出一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

  意圖:進一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系

  第三環(huán)節(jié):小試牛刀

  內(nèi)容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

 、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴大相同的倍數(shù)后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過練習(xí),加強對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用

  效果

  每題都要求學(xué)生獨立完成(5分鐘),并指出各題分別用了哪些知識。

  第四環(huán)節(jié):登高望遠(yuǎn)

  內(nèi)容:

  1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應(yīng)是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

  解答:由題意畫出相應(yīng)的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉(zhuǎn)彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

  效果:

  學(xué)生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形( ),以便于計算。

  第五環(huán)節(jié):鞏固提高

  內(nèi)容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學(xué)生充分利用所學(xué)知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進行計算,從而解決問題。

  效果:

  學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

  第六環(huán)節(jié):交流小結(jié)

  內(nèi)容:

  師生相互交流總結(jié)出:

  1.今天所學(xué)內(nèi)容①會利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);

  2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形, 便于計算。

  意圖:

  鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識。

  效果:

  學(xué)生暢所欲言自己的切身感受與實際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應(yīng)用。

  第七環(huán)節(jié):布置作業(yè)

  課本習(xí)題1.4第1,2,4題。

  五、教學(xué)反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。

  2.注重引導(dǎo)學(xué)生積極參與實驗活動,從中體驗任何一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學(xué)知識解決實際問題時,引導(dǎo)學(xué)生善于對公式變形,便于簡便計算。

  4.注重對學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進一步關(guān)注。

  5.對于勾股定理的逆定理的論證可根據(jù)學(xué)生的實際情況做適當(dāng)調(diào)整,不做要求。

  由于本班學(xué)生整體水平較高,因而本設(shè)計教學(xué)容量相對較大,教學(xué)中,應(yīng)注意根據(jù)自己班級學(xué)生的狀況進行適當(dāng)?shù)膭h減或調(diào)整。

  附:板書設(shè)計

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠(yuǎn)

八年級數(shù)學(xué)教案4

  一.教學(xué)目標(biāo):

  1.了解方差的定義和計算公式。

  2.理解方差概念的產(chǎn)生和形成的過程。

  3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

  二.重點、難點和難點的突破方法:

  1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

  2.難點:理解方差公式

  3.難點的突破方法:

  方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。

  (1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。

  (2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法?梢援嬚劬圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。

  (3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

  三.例習(xí)題的意圖分析:

  1.教材P125的討論問題的意圖:

  (1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

  (2).為引入方差概念和方差計算公式作鋪墊。

  (3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。

  (4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。

  2.教材P154例1的設(shè)計意圖:

  (1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。

  (2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實際問題。

  四.課堂引入:

  除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學(xué)生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學(xué)生也更感興趣一些。

  五.例題的分析:

  教材P154例1在分析過程中應(yīng)抓住以下幾點:

  1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

  2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。

  3.方差怎樣去體現(xiàn)波動大小?

  這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

  六.隨堂練習(xí):

  1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  問:(1)哪種農(nóng)作物的苗長的比較高?

  (2)哪種農(nóng)作物的苗長得比較整齊?

  2.段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?

  測試次數(shù)1 2 3 4 5

  段巍13 14 13 12 13

  金志強10 13 16 14 12

  參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

  2.段巍的成績比金志強的成績要穩(wěn)定。

  七.課后練習(xí):

  1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

  2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。

  3.甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?

  4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)

  小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

  答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好

  4. =10.9、S =0.02;

  =10.9、S =0.008

  選擇小兵參加比賽。

八年級數(shù)學(xué)教案5

  ●教學(xué)目標(biāo)

  (一)教學(xué)知識點

  1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個三角形是否相似.

  2.能根據(jù)相似比進行計 算.

  (二)能力訓(xùn)練要求

  1.能根據(jù)定義判斷兩個三角形是否相似,訓(xùn)練 學(xué)生的判斷能力.

  2.能根據(jù)相似比求長度和角度,培養(yǎng)學(xué)生的運用能力.

  (三)情感與價值觀要求

  通過與相似多邊形有關(guān)概念的類比,滲透類比的教學(xué)思想,并領(lǐng)會特殊與一般的關(guān)系.

  ●教學(xué)重點 相似三角形的定義及運用.

  ●教學(xué)難點 根據(jù)定義求線段長或角的度數(shù).

  ●教學(xué)過程

 、.創(chuàng)設(shè)問題情境,引入新課

  今天, 我們就來研究相似三角形.

 、.新課講解

  1.相似三角形的定義及記法

  三角對應(yīng)相等,三邊 對應(yīng)成比例的兩個三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF

  其中對應(yīng)頂點要寫在對應(yīng)位置,如A與D,B與E,C與F相對應(yīng).AB∶DE等于相似比.

  2.想一想

  如果△ABC∽△DEF,那么哪些角是對應(yīng)角?哪些邊是對應(yīng)邊?對應(yīng) 角 有什么關(guān)系?對應(yīng)邊呢?

  所以 D、E、F. .

  3.議一議,學(xué)生討論

  (1)兩個全等三角形一定相似嗎?為什么?

  (2)兩個直角三角 形一 定相似嗎?兩個等腰直角三角形呢?為 什么?

  (3)兩個等腰三角形一定相似嗎?兩個等邊三角形呢?為什么?

  結(jié)論:兩 個全等三角形一定相似.

  兩個 等腰直角三角形一定相似.兩個等邊三角形一定相似.兩個直角三角形和兩個等腰三角形不一定相似.

  4.例題

  例1、有一塊呈三角形形狀 的草坪,其中一邊的長是20 m,在這個草坪的圖紙上,這條邊長5 cm,其他兩邊的 長都是3.5 cm,求該草坪其他兩邊的實際長度.

  例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

  ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長.

  5.想一想

  在例2的條件下,圖中有哪些線段成比例?

 、.課堂練習(xí) P129

 、.課時小結(jié)

  相似三角形的 判定方法定義法.

 、.課后作業(yè)

八年級數(shù)學(xué)教案6

  教學(xué)目標(biāo):

  1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。

  2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實生活中一些簡單的現(xiàn)象。

  3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應(yīng)用。

  4、能利和計算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。

  教學(xué)重點:體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。

  教學(xué)難點:對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。

  教學(xué)方法:歸納教學(xué)法。

  教學(xué)過程:

  一、知識回顧與思考

  1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。

  一般地對于n個數(shù)X1,……Xn把(X1+X2+…Xn)叫做這n個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。

  如某公司要招工,測試內(nèi)容為數(shù)學(xué)、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績?yōu)閿?shù)學(xué),語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語文、外語三項測試成績的權(quán)。

  中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。

  眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)。

  如3,2,3,5,3,4中3是眾數(shù)。

  2、平均數(shù)、中位數(shù)和眾數(shù)的特征:

 。1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。

 。2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計算較繁。

 。3)中位數(shù)的優(yōu)點是計算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。

 。4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當(dāng)一組數(shù)據(jù)中個別數(shù)據(jù)變動較大時,適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。

  3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:

  算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時,就是算術(shù)平均數(shù)。

  4、利用計算器求一組數(shù)據(jù)的平均數(shù)。

  利用科學(xué)計算器求平均數(shù)的方法計算平均數(shù)。

  二、例題講解:

  例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下:

  每人銷售件數(shù) 1800 510 250 210 150 120

  人數(shù) 113532

 。1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);

 。2)假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售額定為平均數(shù),你認(rèn)為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。

  例2,某校規(guī)定:學(xué)生的平時作業(yè)、期中練習(xí)、期末考試三項成績分別按40%、20%、40%的比例計入學(xué)期總評成績,小亮的平時作業(yè)、期中練習(xí)、期末考試的數(shù)學(xué)成績依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評成績是多少?

  三、課堂練習(xí):復(fù)習(xí)題A組

  四、小結(jié):

  1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計算。

  2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。

  五、作業(yè):復(fù)習(xí)題B組、C組(選做)

八年級數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  知識目標(biāo):

  1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

  2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。

  3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。

  能力目標(biāo):

  1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認(rèn)識現(xiàn)實世界的意識和能力。

  2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。

  情感目標(biāo):

  1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

  2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。

  教學(xué)重點:

  掌握函數(shù)概念。

  判斷兩個變量之間的關(guān)系是否可看作函數(shù)。

  能把實際問題抽象概括為函數(shù)問題。

  教學(xué)難點:

  理解函數(shù)的概念。

  能把實際問題抽象概括為函數(shù)問題。

  教學(xué)過程設(shè)計:

  一、創(chuàng)設(shè)問題情境,導(dǎo)入新課

  『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?

  『生』:摩天輪。

  『師』:你們坐過嗎?

  ……

  『師』:當(dāng)你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?

  『生』:應(yīng)該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復(fù)依次,即轉(zhuǎn)動一圈高度就重復(fù)一次。

  『師』:分析有道理。摩天輪上一點的高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的關(guān)系。

  大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進行填表:

  t/分 0 1 2 3 4 5 …… h/米

  t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

  『師』:對于給定的時間t,相應(yīng)的高度h確定嗎?

  『生』:確定。

  『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

  『生』:研究的對象有兩個,是時間t和高度h。

  『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識世界。下面我們就去研究一些有關(guān)變量的問題。

  二、新課學(xué)習(xí)

  做一做

 。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

  填寫下表:

  層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

  『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。

  (2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

 、儆嬎惝(dāng)fenbie為50,60,100時,相應(yīng)的滑行距離S是多少?

  ②給定一個V值,你能求出相應(yīng)的S值嗎?

  解:略

  議一議

  『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

  『生』:相同點是:這三個問題中都研究了兩個變量。

  不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。

  『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應(yīng)地就確定了另一個變量的值”這一共性。

  函數(shù)的`概念

  在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。

  一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  三、隨堂練習(xí)

  書P152頁 隨堂練習(xí)1、2、3

  四、本課小結(jié)

  初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。

  在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。

  函數(shù)的三種表達式:

  圖象;(2)表格;(3)關(guān)系式。

  五、探究活動

  為了加強公民的節(jié)水意識,某市制定了如下用水收費標(biāo)準(zhǔn):每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應(yīng)交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?

 。ù鸢福篩=1.8x-6或)

  六、課后作業(yè)

  習(xí)題6.1

八年級數(shù)學(xué)教案8

  第11章平面直角坐標(biāo)系

  11。1平面上點的坐標(biāo)

  第1課時平面上點的坐標(biāo)(一)

  教學(xué)目標(biāo)

  【知識與技能】

  1。知道有序?qū)崝?shù)對的概念,認(rèn)識平面直角坐標(biāo)系的相關(guān)知識,如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點等。

  2。理解坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對的一一對應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點的坐標(biāo)。已知點的坐標(biāo),能在平面直角坐標(biāo)系中描出點。

  3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點的位置。

  【過程與方法】

  1。結(jié)合現(xiàn)實生活中表示物體位置的例子,理解有序?qū)崝?shù)對和平面直角坐標(biāo)系的作用。

  2。學(xué)會用有序?qū)崝?shù)對和平面直角坐標(biāo)系中的點來描述物體的位置。

  【情感、態(tài)度與價值觀】

  通過引入有序?qū)崝?shù)對、平面直角坐標(biāo)系讓學(xué)生體會到現(xiàn)實生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價值。

  重點難點

  【重點】

  認(rèn)識平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點。

  【難點】

  理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。

  教學(xué)過程

  一、創(chuàng)設(shè)情境、導(dǎo)入新知

  師:如果讓你描述自己在班級中的位置,你會怎么說?

  生甲:我在第3排第5個座位。

  生乙:我在第4行第7列。

  師:很好!我們買的電影票上寫著幾排幾號,是對應(yīng)某一個座位,也就是這個座位可以用排號和列號兩個數(shù)字確定下來。

  二、合作探究,獲取新知

  師:在以上幾個問題中,我們根據(jù)一個物體在兩個互相垂直的方向上的數(shù)量來表示這個物體

  的位置,這兩個數(shù)量我們可以用一個實數(shù)對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

  生:3排5號。

  師:對,它們對應(yīng)的不是同一個位置,所以要求表示物體位置的這個實數(shù)對是有序的。誰來說說我們應(yīng)該怎樣表示一個物體的位置呢?

  生:用一個有序的實數(shù)對來表示。

  師:對。我們學(xué)過實數(shù)與數(shù)軸上的點是一一對應(yīng)的,有序?qū)崝?shù)對是不是也可以和一個點對應(yīng)起來呢?

  生:可以。

  教師在黑板上作圖:

  我們可以在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

  正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構(gòu)成了平面直角坐標(biāo)系,這個平面叫做坐標(biāo)平面。

  師:有了平面直角坐標(biāo)系,平面內(nèi)的點就可以用一個有序?qū)崝?shù)對來表示了,F(xiàn)在請大家自己動手畫一個平面直角坐標(biāo)系。

  學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯誤。

  教師邊操作邊講解:

  如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點P的坐標(biāo)。在x軸上的點,過這點向y軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點,過這點向x軸作垂線,對應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點的橫坐標(biāo)和縱坐標(biāo)都是0,即原點的坐標(biāo)是(0,0)。

  教師多媒體出示:

  師:如圖,請同學(xué)們寫出A、B、C、D這四點的坐標(biāo)。

  生甲:A點的坐標(biāo)是(—5,4)。

  生乙:B點的坐標(biāo)是(—3,—2)。

  生丙:C點的坐標(biāo)是(4,0)。

  生。篋點的坐標(biāo)是(0,—6)。

  師:很好!我們已經(jīng)知道了怎樣寫出點的坐標(biāo),如果已知一點的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個點呢?

  教師邊操作邊講解:

  在x軸上找出橫坐標(biāo)是3的點,過這一點向x軸作垂線,橫坐標(biāo)是3的點都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點,過這一點向y軸作垂線,縱坐標(biāo)是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點。下面請同學(xué)們在方格紙中建立一個平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

  學(xué)生動手作圖,教師巡視指導(dǎo)。

  三、深入探究,層層推進

  師:兩個坐標(biāo)軸把坐標(biāo)平面劃分為四個區(qū)域,從x軸正半軸開始,按逆時針方向,把這四個區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個象限。在同一象限內(nèi)的點,它們的橫坐標(biāo)的符號一樣嗎?縱坐標(biāo)的符號一樣嗎?

  生:都一樣。

  師:對,由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點的橫坐標(biāo)的符號為+,縱坐標(biāo)的符號也為+。你能說出其他象限內(nèi)點的坐標(biāo)的符號嗎?

  生:能。第二象限內(nèi)的點的坐標(biāo)的符號為(—,+),第三象限內(nèi)的點的坐標(biāo)的符號為(—,—),第四象限內(nèi)的點的坐標(biāo)的符號為(+,—)。

  師:很好!我們知道了一點所在的象限,就能知道它的坐標(biāo)的符號。同樣的,我們由點的坐標(biāo)也能知道它所在的象限。一點的坐標(biāo)的符號為(—,+),你能判斷這點是在哪個象限嗎?

  生:能,在第二象限。

  四、練習(xí)新知

  師:現(xiàn)在我給出幾個點,你們判斷一下它們分別在哪個象限。

  教師寫出四個點的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。

  生甲:A點在第三象限。

  生乙:B點在第四象限。

  生丙:C點不屬于任何一個象限,它在y軸上。

  生。篋點不屬于任何一個象限,它在x軸上。

  師:很好!現(xiàn)在請大家在方格紙上建立一個平面直角坐標(biāo)系,在上面描出這些點。

  學(xué)生作圖,教師巡視,并予以指導(dǎo)。

  五、課堂小結(jié)

  師:本節(jié)課你學(xué)到了哪些新的知識?

  生:認(rèn)識了平面直角坐標(biāo)系,會寫出坐標(biāo)平面內(nèi)點的坐標(biāo),已知坐標(biāo)能描點,知道了四個象限以及四個象限內(nèi)點的符號特征。

  教師補充完善。

  教學(xué)反思

  物體位置的說法和表述物體的位置等問題,學(xué)生在實際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動中,主動學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實用性,增強了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  第2課時平面上點的坐標(biāo)(二)

  教學(xué)目標(biāo)

  【知識與技能】

  進一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識坐標(biāo)系中的圖形。

  【過程與方法】

  通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

  【情感、態(tài)度與價值觀】

  培養(yǎng)學(xué)生的合作交流意識和探索精神,體驗通過二維坐標(biāo)來描述圖形頂點,從而描述圖形的方法。

  重點難點

  【重點】

  理解平面上的點連接成的圖形,計算圍成的圖形的面積。

  【難點】

  不規(guī)則圖形面積的求法。

  教學(xué)過程

  一、創(chuàng)設(shè)情境,導(dǎo)入新知

  師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個點。

  學(xué)生作圖。

  教師邊操作邊講解:

  二、合作探究,獲取新知

  師:現(xiàn)在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

  生甲:三角形。

  生乙:直角三角形。

  師:你能計算出它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎樣算的呢?

  生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

  師:很好!

  教師邊操作邊講解:

  大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

  圖形?

  學(xué)生完成操作后回答:平行四邊形。

  師:你能計算它的面積嗎?

  生:能。

  教師挑一名學(xué)生:你是怎么計算的呢?

  生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

  教師多媒體出示下圖:

八年級數(shù)學(xué)教案9

  一、教學(xué)目標(biāo)

  1、認(rèn)識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

  2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。

  3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  二、重點、難點和難點的突破方法:

  1、重點:認(rèn)識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

  2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  3、難點的突破方法:

  首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:

  中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。

  教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。

  在利用中位數(shù)、眾數(shù)分析實際問題時,應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實例,使同學(xué)在分析不同實例中有所體會。

  三、例習(xí)題的意圖分析

  1、教材P143的例4的意圖

  (1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。

  (2)、這個例題另一個意圖是交待了當(dāng)數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)

  (3)、問題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學(xué)中的一個重要的數(shù)據(jù)代表。

  (4)、這個例題再一次體現(xiàn)了統(tǒng)計學(xué)知識與實際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。

  2、教材P145例5的意圖

  (1)、通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。

  (2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

  (3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

  四、課堂引入

  嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。

  五、例習(xí)題的分析

  教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

  教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。

  六、隨堂練習(xí)

  1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)

  1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

  求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。

  假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售定額定為320件,你認(rèn)為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

  2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:

  1匹1.2匹1.5匹2匹

  3月12臺20臺8臺4臺

  4月16臺30臺14臺8臺

  根據(jù)表格回答問題:

  商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?

  假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?

  答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。

  2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。

  七、課后練習(xí)

  1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

  2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

  3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )

  A.97、96 B.96、96.4 C.96、97 D.98、97

  4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

  A.24、25 B.23、24 C.25、25 D.23、25

  5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:

  溫度(℃) -8 -1 7 15 21 24 30

  天數(shù)3 5 5 7 6 2 2

  請你根據(jù)上述數(shù)據(jù)回答問題:

  (1).該組數(shù)據(jù)的中位數(shù)是什么?

  (2).若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?

  答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天

八年級數(shù)學(xué)教案10

  一、學(xué)習(xí)目標(biāo)

  1.多項式除以單項式的運算法則及其應(yīng)用。

  2.多項式除以單項式的運算算理。

  二、重點難點

  重點:多項式除以單項式的運算法則及其應(yīng)用。

  難點:探索多項式與單項式相除的運算法則的過程。

  三、合作學(xué)習(xí)

  (一)回顧單項式除以單項式法則

 。ǘ⿲W(xué)生動手,探究新課

  1.計算下列各式:

 。1)(am+bm)÷m;

 。2)(a2+ab)÷a;

 。3)(4x2y+2xy2)÷2xy。

  2.提問:

  ①說說你是怎樣計算的;

  ②還有什么發(fā)現(xiàn)嗎?

 。ㄈ┛偨Y(jié)法則

  1.多項式除以單項式:先把這個多項式的每一項除以XXXXXXXXXXX,再把所得的商XXXXXX

  2.本質(zhì):把多項式除以單項式轉(zhuǎn)化成XXXXXXXXXXXXXX

  四、精講精練

  例:(1)(12a3—6a2+3a)÷3a;

 。2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

 。3)[(x+y)2—y(2x+y)—8x]÷2x;

 。4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

  隨堂練習(xí):教科書練習(xí)。

  五、小結(jié)

  1、單項式的除法法則

  2、應(yīng)用單項式除法法則應(yīng)注意:

  A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運算過程中注意單項式的系數(shù)飽含它前面的符號;

  B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);

  C、被除式單獨有的字母及其指數(shù),作為商的一個因式,不要遺漏;

  D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行;

  E、多項式除以單項式法則。

八年級數(shù)學(xué)教案11

  【教學(xué)目標(biāo)】

  一、教學(xué)知識點

  1.命題的組成.

  2.命題真假的判斷。

  二、能力訓(xùn)練要求:

  1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假

  2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法

  三、情感與價值觀要求:

  1.通過反例說明假命題,使學(xué)生認(rèn)識到任何事情都是正反兩方面對立統(tǒng)一

  2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣

  3.通過對《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價值

  【教學(xué)重點】準(zhǔn)確的找出命題的條件和結(jié)論

  【教學(xué)難點】理解判斷一個真命題需要證明

  【教學(xué)方】探討、合作交流

  【教具準(zhǔn)備】投影片

  【教學(xué)過程】

  一、情景創(chuàng)設(shè)、引入新課

  師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?

  新課:

 。1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

  1.如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。

  2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。

  3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。

  4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。

  5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。

  師:由此可見,每個命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項,結(jié)論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

  二、例題講解:

  例1:師:下列命題的條件是什么?結(jié)論是什么?

  1.如果兩個角相等,那么他們是對頂角;

  2.如果a>b,b>c,那么a=c;

  3.兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等;

  4.菱形的四條邊都相等;

  5.全等三角形的面積相等。

  例題教學(xué)建議:1:其中(1)、(2)請學(xué)生直接回答,(3)、(4)、(5)請學(xué)生分成小組交流然后回答。

  2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴展成這種形式,以分清條件和結(jié)論。

  例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

  師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通常可以舉一個例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。

  教學(xué)建議:對于反例的要求可以采取啟發(fā)式層層遞進方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

  三、思維拓展:

  拓展1.師:如何證實一個命題是真命題呢?請同學(xué)們分小組交流一下。

  教學(xué)建議:不急于解決學(xué)生怎么證實真命題的問題,可按以下程序設(shè)計教學(xué)過程

 。1)首先給學(xué)生介紹歐幾里得的《原本》

  (2)引出概念:公理、定理,證明

 。3)啟發(fā)學(xué)生,現(xiàn)在如何證實一個命題的正確性

 。4)給出本套教材所選用如下6個命題作為公理

  (5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

  拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

  建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實踐驗證的,不需要再進行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。

  練習(xí)書p197習(xí)題6.31

  四、問題式總結(jié)

  師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?

  建議:可對學(xué)生進行提示性引導(dǎo),如:命題的構(gòu)成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。

  作業(yè):書p197習(xí)題6.32、3

  板書設(shè)計:

  定義與命題

  課時2

  條件

  1.命題的結(jié)構(gòu)特征

  結(jié)論

  1.假命題——可以舉反例

  2.命題真假的判別

  2.真命題——需要證明 學(xué)生活動一——

  探索命題的結(jié)構(gòu)特征

  學(xué)生觀察、分組討論,得出結(jié)論:

  (1)這五個命題都是用“如果……那么……”形式敘述的

 。2)這五個命題都是由已知得到結(jié)論

  (3)這五個命題都有條件和結(jié)論

  學(xué)生活動二——

  探索命題的條件和結(jié)論

  生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個三角形兩角和其中一角對邊對應(yīng)相等是條件,那么這兩個三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

  學(xué)生活動三

  探索命題的真假——如何判斷假命題

  生:可以舉一個例子,說明命題1是不正確的,如圖:

  已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角

  生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c

  生:由此說明:命題1、2是不正確的

  生:命題3、4、5是正確的

  學(xué)生活動四

  探索命題的真假——如何證實一個命題是真命題

  學(xué)生交流:

  生:用我們以前學(xué)過的觀察、實驗、驗證特例等方法

  生:這些方法往往并不可靠

  生:能夠根據(jù)已知道的真命題證實呢?

  生:那已經(jīng)知道的真命題又是如何證實的?

  生:那可怎么辦呢?

  生:可通過證明的方法

  學(xué)生分小組討論得出結(jié)論

  生:命題的結(jié)構(gòu)特征:條件和結(jié)論

  生:命題有真假之分

  生:可以通過舉反例的方法判斷假命題

  生:可通過證明的方法證實真命題

八年級數(shù)學(xué)教案12

  【教學(xué)目標(biāo)】

  知識目標(biāo):

  解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。

  能力目標(biāo):

  (1)經(jīng)歷探索乘法運算法則的過程,發(fā)展觀察、歸納、猜測、驗證等能力;

  (2)體會乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語言表達能力。

  情感目標(biāo):

  充分調(diào)動學(xué)生學(xué)習(xí)的積極性、主動性

  【教學(xué)重點】

  單項式與多項式的乘法運算

  【教學(xué)難點】

  推測整式乘法的運算法則。

  【教學(xué)過程】

  一、復(fù)習(xí)引入

  通過對已學(xué)知識的復(fù)習(xí)引入課題(學(xué)生作答)

  1.請說出單項式與單項式相乘的法則:

  單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個因式。

 。ㄏ禂(shù)×系數(shù))×(同字母冪相乘)×單獨的冪

  例如:( 2a2b3c) (-3ab)

  解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

  = -6a3b4c

  2.說出多項式2x2-3x-1的項和各項的系數(shù)項分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1

  問:如何計算單項式與多項式相乘?例如:2a2· (3a2 - 5b)該怎樣計算?

  這便是我們今天要研究的問題。

  二、新知探究

  已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)

  現(xiàn)將這個長方形分割為寬為m,長分別為a、b、c的三個小長方形,其面積之和為ma+mb+mc因為分割前后長方形沒變所以m(a+b+c)=ma+mb+mc

  上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個別同學(xué)作答,教師作評)

  結(jié)論單項式與多項式相乘的運算法則:

  用單項式分別去乘多項式的每一項,再把所得的積相加。

  用字母表示為:m(a+b+c)=ma+mb+mc

  運算思路:單×多

  轉(zhuǎn)化

  分配律

  單×單

  三、例題講解

  例計算:(1)(-2a2)· (3ab2– 5ab3)

  (2)(- 4x) ·(2x2+3x-1)

  解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

  (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

八年級數(shù)學(xué)教案13

  數(shù)據(jù)的波動

  教學(xué)目標(biāo):

  1、經(jīng)歷數(shù)據(jù)離散程度的探索過程

  2、了解刻畫數(shù)據(jù)離散程度的三個量度極差、標(biāo)準(zhǔn)差和方差,能借助計算器求出相應(yīng)的數(shù)值。

  教學(xué)重點:會計算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。

  教學(xué)難點:理解數(shù)據(jù)離散程度與三個差之間的關(guān)系。

  教學(xué)準(zhǔn)備:計算器,投影片等

  教學(xué)過程:

  一、創(chuàng)設(shè)情境

  1、投影課本P138引例。

  (通過對問題串的解決,使學(xué)生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時讓學(xué)生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個量度極差)

  2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。

  二、活動與探究

  如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)

  問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?

  2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的差距。

  3、在甲、丙兩廠中,你認(rèn)為哪個廠雞腿質(zhì)量更符合要求?為什么?

  (在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個丙廠,其平均質(zhì)量和極差與甲廠相同,此時導(dǎo)致學(xué)生思想認(rèn)識上的矛盾,為引出另兩個刻畫數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。

  三、講解概念:

  方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

  設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為

  則s2= ,

  而s= 稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)

  從上面計算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

  四、做一做

  你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

  (通過對此問題的解決,使學(xué)生回顧了用計算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟)

  五、鞏固練習(xí):課本第172頁隨堂練習(xí)

  六、課堂小結(jié):

  1、怎樣刻畫一組數(shù)據(jù)的離散程度?

  2、怎樣求方差和標(biāo)準(zhǔn)差?

  七、布置作業(yè):習(xí)題5.5第1、2題。

八年級數(shù)學(xué)教案14

  課題:一元二次方程實數(shù)根錯例剖析課

  【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

  【課前練習(xí)】

  1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。

  【典型例題】

  例1 下列方程中兩實數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯答: B

  正解: C

  錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯解 :B

  正解:D

  錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0

  例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

  錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實根。

  正解: -1≤k<2且k≠

  例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當(dāng)x12+x22=15時,求m的值。

  錯解:由根與系數(shù)的關(guān)系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

  =[-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。

  正解:m = 2

  例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。

  錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠蹋杂袑崝?shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

  錯解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負(fù)數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習(xí)】

  練習(xí)1、(01濟南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。

 。1)求k的取值范圍;

 。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當(dāng)k< 時,方程有兩個不相等的實數(shù)根。

 。2)存在。

  如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

  ∴當(dāng)k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

  解:上面解法錯在如下兩個方面:

  (1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實數(shù)根。

  (2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)

  練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?

  解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=

  (2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4

  ∴當(dāng)a≥ -4且a≠0時,方程有實數(shù)根。

  又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實數(shù)根。

  【小結(jié)】

  以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。

  1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

  2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。

  3、條件多面時(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

  2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。

  求證:關(guān)于x的方程

  (m-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。

  考題匯編

  1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

  2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

 。1)若方程的一個根為1,求m的值。

 。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。

  3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級數(shù)學(xué)教案15

  一、教學(xué)目標(biāo):

  1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.

  2、會求一組數(shù)據(jù)的極差.

  二、重點、難點和難點的突破方法

  1、重點:會求一組數(shù)據(jù)的極差.

  2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.

  三、課堂引入:

  下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

  從表中你能得到哪些信息?

  比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

  經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.

  這是不是說,兩個時段的氣溫情況沒有什么差異呢?

  根據(jù)兩段時間的氣溫情況可繪成的折線圖.

  觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.

  用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).

  四、例習(xí)題分析

  本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析

  問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案10-11

八年級數(shù)學(xué)教案11-13

八年級數(shù)學(xué)教案06-01

八年級數(shù)學(xué)教案12-26

八年級上冊數(shù)學(xué)教案07-26

八年級下冊數(shù)學(xué)教案08-30

八年級數(shù)學(xué)教案優(yōu)秀03-16

八年級上冊數(shù)學(xué)教案12-23

【熱】八年級數(shù)學(xué)教案12-30

八年級數(shù)學(xué)教案【熱門】01-02