中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

七年級數(shù)學(xué)教案

時間:2023-02-25 08:16:31 數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

七年級數(shù)學(xué)教案14篇

  作為一無名無私奉獻(xiàn)的教育工作者,就難以避免地要準(zhǔn)備教案,編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么寫教案需要注意哪些問題呢?下面是小編幫大家整理的七年級數(shù)學(xué)教案,僅供參考,大家一起來看看吧。

七年級數(shù)學(xué)教案14篇

  七年級數(shù)學(xué)教案 篇1

  一、知識結(jié)構(gòu)

  二、 重點、難點分析

  本節(jié)教學(xué)的重點是掌握單項式與多項式相乘的法則.難點是正確、迅速地進(jìn)行單項式與多項式相乘的計算.本節(jié)知識是進(jìn)一步學(xué)習(xí)多項式乘法,以及乘法公式等后續(xù)知識的基礎(chǔ)。

  1.單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,即

  其中,可以表示一個數(shù)、一個字母,也可以是一個代數(shù)式.

  2.利用法則進(jìn)行單項式和多項式運算時要注意:

 。1)多項式每一項都包括前面的符號,例如中的多項式,共有兩項,就是.運用法則計算時,一定要強(qiáng)調(diào)積的符號.

 。2)單項式必須和多項式中的每一項相乘,不能漏乘多項式中的任何一項.因此,單項式與多項式相乘的結(jié)果是一個多項式,其項數(shù)與因式中多項式的項數(shù)相同.

 。3)對于混合運算,要注意運算順序,同時要注意:運算結(jié)果如有同類項要合并,從而得出最簡結(jié)果.

  3根據(jù)去括號法則和多項式中每一項包含它前面的符號,來確定乘積每一項的符號;

  4非零單項式乘以不含同類項的多項式,乘積仍然是多項式;積的項數(shù)與所乘多項式的項數(shù)相等;

  5對于含有乘方、乘法、加減法的混合運算的題目,要注意運算順序;也要注意合并同類項,得出最簡結(jié)果.

  三、教法建議

  1.單項式與多項式相乘的基本依據(jù)是乘法分配律,故在本課開始先講述乘法分配律,由有理數(shù)過渡到字母.

  2.由乘法分配律過渡到單項乘多項式的法則時,也可以采用以下代換的方法,如計算:(-4x 2 )·(2x 2 +3x-1).

  設(shè)m=-4x 2,a=2x 2,b=3x,c=-1,

  ∴ (-4x 2 )·(2x 2 +3x-1)

  =m(a+b+c)

  =ma+mb+mc

  =(-4x 2 )·2x 2 +(-4x 2 )·3x+(-4x 2 )·(-1)

  =-8x 4 -12x 3 +4x 2.

  這樣過渡較自然,同時也滲透了一些代換的思想.

  3.單項式與多項式相乘,積仍是多項式,它的項數(shù)與多項式的項數(shù)相同.這是單項式與多項式相乘的結(jié)果,這個結(jié)果也是我們掌握法則的關(guān)鍵.一般說來,對于一個運算法則的掌握應(yīng)從分析結(jié)果開始,分析結(jié)果的結(jié)構(gòu),分析結(jié)果與各算式的關(guān)系,這樣才能較好地掌握法則.

  教學(xué)設(shè)計示例

  一、教學(xué)目標(biāo)

  1.理解和掌握單項式與多項式乘法法則及推導(dǎo).

  2.熟練運用法則進(jìn)行單項式與多項式的乘法計算.

  3.培養(yǎng)靈活運用知識的能力,通過用文字概括法則,提高學(xué)生數(shù)學(xué)表達(dá)能力.

  4.通過反饋練習(xí),培養(yǎng)學(xué)生計算能力和綜合運用知識的能力.

  5.滲透公式恒等變形的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:講授法、練習(xí)法.

  2.學(xué)生學(xué)法:學(xué)習(xí)單項式與多項式相乘的運算法則是運用了“轉(zhuǎn)化”的數(shù)學(xué)思想方法,利用分配律把單項式乘以多項式問題轉(zhuǎn)化為前面學(xué)過的單項式與單項式相乘;最后再合并同

  類項,故在學(xué)習(xí)中應(yīng)充分利用這種方法去解題.

  三、重點·難點·疑點及解決辦法

 。ㄒ唬┲攸c

  單項式與多項式乘法法則及其應(yīng)用.

 。ǘ╇y點

  單項式與多項式相乘時結(jié)果的符號的確定.

 。ㄈ┙鉀Q辦法

  復(fù)習(xí)單項式與單項式的乘法法則,并注意在解題過程中將單項式乘多項式轉(zhuǎn)化為單項

  式乘單項式后符號確定的問題.

  四、課時安排

  一課時.

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片.

  六、師生互動活動設(shè)計

  1.設(shè)計一道可運用乘法分配律進(jìn)行簡便運算的題目,讓學(xué)生復(fù)習(xí)乘法分配律,并為引入單項式與多項式的乘法法則打下良好的基礎(chǔ).

  2.通過面積分割法,形象直觀地引入單項式與多項式的乘法法則,并引導(dǎo)學(xué)生用文字語言概括出其結(jié)論.

  3.通過舉例,教師分析、講解并示范板書全過程,讓學(xué)生規(guī)范解題過程,再通過反復(fù)的練習(xí)鞏固所學(xué)過的法則.

  七、教學(xué)步驟

 。ㄒ唬┟鞔_目標(biāo)

  本節(jié)課重點學(xué)習(xí)單項式與多項式的乘法法則及其應(yīng)用.

  (二)整體感知

  單項式乘以多項式的乘法運算主要是將它轉(zhuǎn)化為單項式與單項式的乘法運算,放首先應(yīng)適當(dāng)復(fù)習(xí)并掌握單項式與單項式的乘法運算方法,再在計算過程中注意單項式與多項式相乘后的符號問題.

 。ㄈ┙虒W(xué)過程

  1.復(fù)習(xí)導(dǎo)入

  復(fù)習(xí):

  (1)敘述單項式乘法法則.

 。▎雾検较喑,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.)

  (2)什么叫多項式?說出多項式的項和各項系數(shù).

  2.探索新知,講授新課

  簡便計算:

  引申:計算,基中m、a、b、c都是單項式,因為式中字母都表示數(shù),故分配律對代數(shù)式也適用,則

  引導(dǎo)學(xué)生用學(xué)過的長方形面積知識加以驗證,把寬為m,長分別是a、b、c的'三個小長方形拼成大長方形,研究圖形面積的整體與部分關(guān)系.

  由該等式,你能說出單項式與多項式相乘的法則嗎?單項式與多項式乘法法則:單項式

  與多項式相乘,就是用單項式乘多項式的每一項,再把所得的積相加.

  例1計算:

  說明:計算按課本,講解時,要緊扣法則:①用單項式遍乘多項式的各項,不要漏乘.②要注意符號,多項式的每一項包括它前面的符號.③“把所得積相加”時,不要忘了加上加號.

  例2化簡:

  化簡按課本,化街時直接寫成省略加號的代數(shù)和,注意正確表達(dá),做完乘法后,要合并同類項.

  練習(xí):錯例辨析

 。2)錯在單項式與多項式的每一項相乘之后沒有添上加號,故正確答案為

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  1.由學(xué)生敘述單項式與多項式相乘法則,并回答積仍是多項式,積的項數(shù)與多項式因式的項數(shù)相同.

  2.考點剖析:單項式乘以多項式這一知識點在中考試卷中都是以與其他知識綜合命題的形式考查的.但它是多項式乘法、因式分解、分式通分、解分式方程等知識的重要基礎(chǔ).故必須掌握好.如

  (99,河北)下列運算中,不正確的為()

  A.B.

  C.D.

  八、布置作業(yè)

  參考答案:

  略

  七年級數(shù)學(xué)教案 篇2

  [教學(xué)目標(biāo)]

  1. 通過動手、操作、推斷、交流等活動,進(jìn)一步發(fā)展空間觀念,培養(yǎng)識圖能力,推理能力和有條理表達(dá)能力

  2. 在具體情境中了解鄰補(bǔ)角、對頂角,能找出圖形中的一個角的鄰補(bǔ)角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題

  [教學(xué)重點與難點]

  重點:鄰補(bǔ)角與對頂角的概念.對頂角性質(zhì)與應(yīng)用

  難點:理解對頂角相等的性質(zhì)的探索

  [教學(xué)設(shè)計]

  一.創(chuàng)設(shè)情境 激發(fā)好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角

  在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。

  觀察剪刀剪布的過程,引入兩條相交直線所成的角。

  學(xué)生觀察、思考、回答問題

  教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發(fā)生了什么變化?剪刀張開的'口又怎么變化?

  教師點評:如果把剪刀的構(gòu)造看作是兩條相交的直線,以上就關(guān)系到兩條直線相交所成的角的問題,

  二.認(rèn)識鄰補(bǔ)角和對頂角,探索對頂角性質(zhì)

  1.學(xué)生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配

  共能組成幾對角?根據(jù)不同的位置怎么將它們分類?

  學(xué)生思考并在小組內(nèi)交流,全班交流。

  當(dāng)學(xué)生直觀地感知角有“相鄰”、“對頂”關(guān)系時,教師引導(dǎo)學(xué)生用

  幾何語言準(zhǔn)確表達(dá);

  有公共的頂點O,而且 的兩邊分別是 兩邊的反向延長線

  2.學(xué)生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類角的度數(shù)有什么關(guān)系?

  (學(xué)生得出結(jié)論:相鄰關(guān)系的兩個角互補(bǔ),對頂?shù)膬蓚角相等)

  3學(xué)生根據(jù)觀察和度量完成下表:

  兩條直線相交 所形成的角 分類 位置關(guān)系 數(shù)量關(guān)系

  教師提問:如果改變 的大小,會改變它與其它角的位置關(guān)系和數(shù)量關(guān)系嗎?

  4.概括形成鄰補(bǔ)角、對頂角概念和對頂角的性質(zhì)

  三.初步應(yīng)用

  練習(xí):

  下列說法對不對

  (1) 鄰補(bǔ)角可以看成是平角被過它頂點的一條射線分成的兩個角

  (2) 鄰補(bǔ)角是互補(bǔ)的兩個角,互補(bǔ)的兩個角是鄰補(bǔ)角

  (3) 對頂角相等,相等的兩個角是對頂角

  學(xué)生利用對頂角相等的性質(zhì)解釋剪刀剪布過程中所看到的現(xiàn)象

  四.鞏固運用例題:如圖,直線a,b相交, ,求 的度數(shù)。

  [鞏固練習(xí)](教科書5頁練習(xí))已知,如圖, ,求: 的度數(shù)

  [小結(jié)]

  鄰補(bǔ)角、對頂角.

  [作業(yè)]課本P9-1,2P10-7,8

  七年級數(shù)學(xué)教案 篇3

  學(xué)習(xí)目標(biāo)

  1. 理解有序數(shù)對的應(yīng)用意義,了解平面上確定點的常用方法

  2. 培養(yǎng)用數(shù)學(xué)的意識,激發(fā)學(xué)習(xí)興趣.

  學(xué)習(xí)重點: 理解有序數(shù)對的意義和作用

  學(xué)習(xí)難點: 用有序數(shù)對表示點的位置

  學(xué)習(xí)過程

  一.問題導(dǎo)入

  1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學(xué)們欣賞下面圖案.

  2.地質(zhì)部門在某地埋下一個標(biāo)志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。

  3.某人買了一張8排6號的電影票,很快找到了自己的座位。

  分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。

  你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?

  二.概念確定

  有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)

  利用有序數(shù)對,可以很準(zhǔn)確地表示出一個位置。

  1.在教室里,根據(jù)座位圖,確定數(shù)學(xué)課代表的位置

  2.教材40頁練習(xí)

  三.方法歸類

  常見的確定平面上的點位置常用的方法

  (1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。

  (2)以某一點為觀察點,用方位角、目標(biāo)到這個點的距離這兩個數(shù)來確定目標(biāo)所在的位置。

  1.如圖,A點為原點(0,0),則B點記為(3,1)

  2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。

  例2 如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說:

  (1)北偏東方向上有哪些目標(biāo)?要想確定敵艦B的位置,還需要什么數(shù)據(jù)?

  (2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?

  (3)要確定每艘敵艦的位置,各需要幾個數(shù)據(jù)?

  [鞏固練習(xí)]

  1. 如圖是某城市市區(qū)的一部分示意圖,對市政府來說:

  北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數(shù)據(jù)?火車站與學(xué)校分別位于市政府的`什么方向,怎樣確定他們的位置?

  結(jié)合實際問題歸納方法

  學(xué)生嘗試描述位置

  2. 如圖,馬所處的位置為(2,3).

 。1) 你能表示出象的位置嗎?

 。2) 寫出馬的下一步可以到達(dá)的位置。

  [小結(jié)]

  1. 為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎?

  2. 幾種常用的表示點位置的方法.

  [作業(yè)]

  必做題:教科書44頁:1題

  七年級數(shù)學(xué)教案 篇4

  【教學(xué)目標(biāo)】

  引導(dǎo)學(xué)生通過常規(guī)分析,得出解題思路,經(jīng)歷提出問題,自探問題,應(yīng)用知識的過程,自主總結(jié)出解題辦法;

  【教學(xué)難點】

  找出題目中的可有可無的已知條件,說一說為什么可以這樣認(rèn)為

  【教學(xué)過程】

  問:以前學(xué)過的有關(guān)路程,時間,和速度之間的關(guān)系是怎么樣的?你能寫出它們之間的關(guān)系嗎?

  出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍。現(xiàn)在汽車從甲地到乙地需要多少小時?

  分析:要求現(xiàn)在汽車從甲地到乙地需要多少小時,那么先要求出汽車現(xiàn)在的速度,而汽車現(xiàn)在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據(jù)`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時',可以求出汽車原來的速度。

  學(xué)生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現(xiàn)在的速度:32×2.5=80(千米)

  現(xiàn)在的時間:352÷80=4.4(小時)

  問:用比例的思路該怎么樣理解這道題目呢?

  分析:甲、乙兩地的公路長度一定,汽車的'速度和所需的時間成反比例。因為現(xiàn)在的速度是原來的2.5倍,所以原來的時間是現(xiàn)在的

  2.5倍。即:11÷2.5=4.4(小時)。

  這樣解答使得`甲乙兩地公路全長352千米'成了多余條件,但是又不影響解答問題。

  【我們來探索】

  一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?

  【總結(jié)】

  在解答應(yīng)用題時要善于應(yīng)用不同的思路和技巧,巧解問題

  【作業(yè)】

  丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?

  丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?

  七年級數(shù)學(xué)教案 篇5

  教學(xué)建議

  一、知識結(jié)構(gòu)

  二、重點難點分析

  本節(jié)教學(xué)的重點是掌握解一元一次不等式的步驟.難點是必須切實注意遇到要在不等式兩邊都乘以(或除以)同一負(fù)數(shù)時,必須改變不等號的方向.掌握一元一次不等式的解法是進(jìn)一步學(xué)習(xí)一元一次方程組的解法以及一元二次不等式的解法的重要基礎(chǔ).

  1、一元一次不等式和一元一次方程概念的異同點

  相同點:二者都是只含有一個未知數(shù),未知數(shù)的次數(shù)都是1,左、右兩邊都是整式.

  不同點:一元一次不等式表示不等關(guān)系,一元一次方程表示相等關(guān)系.

 。3)同方程類似,我們把或叫做一元一次不等式的標(biāo)準(zhǔn)形式.

  2、一元一次不等式和一元一次方程解法的異同點

  相同點:步驟相同,二者都是經(jīng)過變形,把左邊變成,右邊變?yōu)橐粋常數(shù).

  不同點:在進(jìn)行第(1)步去分母和第(5)步將項的系數(shù)化為1的變形時,要根據(jù)同乘(或同除)的數(shù)的正負(fù),決定是否要改變不等號的方向.當(dāng)然,如果不能確定同乘(或同除)的數(shù)的符號時,就要進(jìn)行討論.這正是解不等式時最容易發(fā)生錯誤的地方.

  注意:(1)解方程的移項法則對解不等式同樣適用.

 。2)解不等式時,上述的五個步驟不一定都能用到,并且也不一定按照自上而百的順序,要根據(jù)不等式形式靈活安排求解步驟.熟練后,步驟及檢驗還可以合并簡化.

  三、教法建議

  在講一元一次不等式的解法時,應(yīng)突出抓住與方程解法不同的.地方,加強(qiáng)“去分母”和“系數(shù)化成l”這兩個步驟的訓(xùn)練,因為這兩個步驟會出現(xiàn)“在不等式兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變”的情況,為此可以同一元一次方程對照著講.

  解不等式的過程就是將不等式進(jìn)行同解變形的過程,這也是一種運算.新大綱規(guī)定:“運算能力包括會根據(jù)法則公式等正確地進(jìn)行運算,理解運算的算理,能根據(jù)題目條件尋求合理,簡捷的運算途徑.”要培養(yǎng)解不等式的能力首先要使學(xué)生理解和掌握算理,即掌握不等式的基本性質(zhì),正確理解不等式、不等式的解集等有關(guān)概念.

  這節(jié)課是在復(fù)習(xí)一元一次方程的基本思想和步驟中學(xué)習(xí)解一元一次不等式的.要突出不等式基本性質(zhì)3,這是解不等式容易出錯的地方.同時還要反復(fù)提醒同學(xué)注意克服解方程變形中常犯的錯誤,在解不等式中也要重現(xiàn).

  七年級數(shù)學(xué)教案 篇6

  一、教學(xué)目標(biāo)

  1了解平行線的概念,理解學(xué)過的描述圖形形狀和位置關(guān)系的語句

  2掌握平行公理及推論,會用三角尺和直尺過已知直線外一點畫這條直線的平行線;會用學(xué)過的幾何語句描述簡單的圖形和根據(jù)語句畫圖

  3通過畫平行線和按幾何語句畫圖的題目練習(xí),培養(yǎng)學(xué)生畫圖能力

  4通過平行公理推論的推理,培養(yǎng)學(xué)生的邏輯思維能力和進(jìn)行推理的能力

  二、學(xué)法引導(dǎo)

  1教師教法:嘗試法、引導(dǎo)法、發(fā)現(xiàn)法

  2學(xué)生學(xué)法:在教師的引導(dǎo)下,嘗試發(fā)現(xiàn)新知,造就成就感

  三、重點、難點及解決辦法

 。ㄒ唬┲攸c

  平行公理及推論

  (二)難點

  平行線概念的理解

 。ㄈ┙鉀Q辦法

  通過引導(dǎo)學(xué)生嘗試發(fā)現(xiàn)新知、練習(xí)鞏固的方法來解決

  四、教具學(xué)具準(zhǔn)備

  投影儀、三角板、自制膠片

  五、師生互動活動設(shè)計

  1通過投影片和適當(dāng)問題創(chuàng)設(shè)情境,引入新課

  2通過教師引導(dǎo),學(xué)生積極思維,進(jìn)行反饋練習(xí),完成新授

  3學(xué)生自己完成本課小結(jié)

  六、教學(xué)步驟

 。ǎ┟鞔_目標(biāo)

  掌握平行公理及其推論的應(yīng)用,能畫出平行線,會用幾何語句描述圖形的畫法,培養(yǎng)學(xué)生的邏輯推理能力

 。ǘ┱w感知

  以情境引出課題,以生活知識和已有的知識為基礎(chǔ),引導(dǎo)學(xué)生學(xué)習(xí)平行公理及其推論,并以變式訓(xùn)練強(qiáng)化和鞏固新知

  (三)教學(xué)過程

  創(chuàng)設(shè)情境,引出課題

  師:前面我們學(xué)習(xí)了兩條直線相交的情形,下面清同學(xué)們看投影片觀察投影片中的鐵路橋梁以及立在路邊的三根電線桿,再請同學(xué)們觀察黑板相對的兩條邊和橫格本中兩條橫線,若把它們向兩方延長,看成直線,它們還是相交直線嗎?

  學(xué)生齊聲答:不是

  師:因此,平面內(nèi)的兩條直線除了相交以外,還有不相交的情形,這就是我們本節(jié)所要研究的內(nèi)容(板書課題)

 。郯鍟24平行線及平行公理

  【教法說明】通過具體的實物和實物的圖形,使學(xué)生建立起不相交的感性認(rèn)識,同時在頭腦中初步形成平行線的.圖形

  探究新知,講授新課

  師:在我們生活的周圍,平面內(nèi)不相交的情形還有許多,你能舉例說明嗎?

  學(xué)生:窗戶相對的棱,桌面的對邊,書的對邊……

  師:我們把它們向兩方無限延伸,得到的直線總也不會相交我們把這樣的直線叫做平行線

  [板書]在同一平面內(nèi),不相交的兩條直線叫做平行線

  【教法說明】初中幾何必須重視幾何概念的直觀性,所以讓學(xué)生多觀察實物形狀,在形成了感性認(rèn)識的基礎(chǔ)上,認(rèn)識數(shù)學(xué)名稱,讓學(xué)生從中感受到數(shù)學(xué)的實在性,減少抽象性

  教師出示投影片(課本第74頁圖2?17)

  師:請同學(xué)們觀察,長方體的棱與無論怎樣延長,它們會不會相交?

  學(xué)生:不會相交

  師:那么它們是平行線嗎?

  學(xué)生:不是

  師:也就是說平行線的定義必須有怎樣的前提條件?

  學(xué)生:在同一平面內(nèi)

  師:誰能說為什么要有這個前提條件?

  學(xué)生:因為空間里,不相交的直線不一定平行

  【教法說明】通過教師的引導(dǎo),學(xué)生觀察分析,自己得出結(jié)論,從而使學(xué)生切實體會到平行線的“在同一平面內(nèi)”這個前提條件的重要性

  教師在黑板上給出課本第73頁圖2

  講解:平行用符號“”表示,如圖直線與是平行線記作“”(或)讀作“平行于”(或平行于)也就是說平行是相互的

  【教法說明】這里教師不必贅述,讓學(xué)生清楚平行線符號表示、讀法和記法就可以了,對于平行線的圖形經(jīng)常會使用變式圖形,不要總是橫平豎直的,以防形成思維定式

  師:請同學(xué)們思考,在同一平面內(nèi)任意畫兩條不同的直線,它們的位置關(guān)系只能有幾種情況,試畫一畫,同桌的可以討論

  學(xué)生:兩種相交和平行

  由此師生共同小結(jié):在同一平面內(nèi),兩條直線的位置關(guān)系只有相交、平行兩種

  嘗試反饋,鞏固練習(xí)(出示投影)

  1判斷正誤

 。1)兩條不相交的直線叫做平行線()

  (2)有且只有一個公共點的兩直線是相交直線()

 。3)在同一平面內(nèi),不相交的兩條直線一定平行()

 。4)一個平面內(nèi)的兩條直線,必把這個平面分為四部分(。

  2下列說法中正確的是()

  A在同一平面內(nèi),兩條直線的位置關(guān)系有相交、垂直、平行三種

  B在同一平面內(nèi),不垂直的兩直線必平行

  C在同一平面內(nèi),不平行的兩直線必垂直

  D在同一平面內(nèi),不相交的兩直線一定不垂直

  學(xué)生活動:學(xué)生回答,并簡要說明理由

  【教法說明】這組練習(xí)旨在鞏固學(xué)生掌握平行線定義及平面內(nèi)兩直線的位置關(guān)系,通過判斷(1)、(3)題讓學(xué)生進(jìn)一步體會平行線的“在同一平面內(nèi)”的前提條件,通過判斷(2)、(4)題和選擇題使學(xué)生對兩直線位置關(guān)系,尤其是對垂直是相交的一種特殊情況有更深層的理解

  師:我們很容易畫出兩條相交直線,而對于平行線的畫法,我們在小學(xué)就學(xué)過用直尺和三角板畫,下面清同學(xué)在練習(xí)本上完成下面題目(投影顯示)

  已知直線和外一點,過點畫直線

  師:請根據(jù)語句,自己畫出已知圖形

  學(xué)生活動:學(xué)生在練習(xí)本上畫出圖形

  師:下面請你們按要求畫出直線

  學(xué)生活動:學(xué)生能夠很快完成,然后請一個學(xué)生在黑板上板演,其他學(xué)生觀察他的畫圖過程是否正確,然后師生一起訂正

  注意:(1)在推動三角尺時,直尺不要動;

  (2)畫平行線必須用直尺三角板,不能徒手畫

  【教法說明】畫平行線是幾何畫圖的基本技能之一,在以后的畫圖中常常會遇到,要求學(xué)生使用工具,不僅能養(yǎng)成良好的學(xué)習(xí)習(xí)慣,也能培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度

  嘗試反饋,鞏固練習(xí)(出示投影)

  1畫線段,畫任意射線,在上取、、三點,使,連結(jié),用三角板畫,,分別交于、,量出、、的長(精確到)

  2讀下列語句,并畫圖形

 。1)點是直線外的一點,直線經(jīng)過點,且與直線平行

  (2)直線、是相交直線,點是直線、外的一點,直線經(jīng)過點與直線平行與直線相交于

 。3)過點畫,交的延長線于

  學(xué)生活動:學(xué)生在練習(xí)本上按要求畫圖,并由兩個學(xué)生在黑板上畫第2題的(2)、(3)題,學(xué)生畫完后教師給出第1題的圖形(提前做好的投影片),請學(xué)生回答測量的結(jié)果,然后共同訂正第2題的(2)、(3)題

  【教法說明】這組練習(xí)重點鞏固平行線的畫法及理解描述圖形形狀和位置關(guān)系的語句,能夠根據(jù)語句畫出正確圖形,注意要求學(xué)生用準(zhǔn)確的幾何語言反映圖形,同時真正理解幾何語言才能畫好圖形

  師:我們練習(xí)了過直線外一點畫已知直線的平行線,請同學(xué)們回憶,過直線外一點能不能畫直線的垂線,能畫幾條?

  學(xué)生活動:學(xué)生思考并回答,能畫,而且只能畫一條

  師:下面請你試一試,前面我們完成的過直線外一點與已知直線平行的直線可以畫幾條,想一想,你能得到什么結(jié)論?

  學(xué)生活動:學(xué)生動手操作,思考后總結(jié)出結(jié)論:經(jīng)過直線外一點,有且只有一條直線與已知直線平行

  師:我們把這個結(jié)論叫平行公理,教師板書

  【板書】平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  【教法說明】學(xué)生對垂線的惟一性比較熟悉,通過對惟一性的回顧,學(xué)生能夠用類比的思想,把自己動手得到的實驗結(jié)論采用準(zhǔn)確的幾何語言描述出來,這樣不僅培養(yǎng)了學(xué)生善于類比的思想,同時也訓(xùn)練了學(xué)生語言的規(guī)范性

  師:過直線外一點,能畫這條直線的惟一平行線,若沒有條件“過直線外一點”,問你能畫已知直線的平行線嗎?能畫多少條?

  學(xué)生:思考后,立即回答,能畫無數(shù)條

  師:請同學(xué)們在練習(xí)本上完成

 。ǔ鍪就队埃

  已知直線,分別畫直線、,使,

  學(xué)生活動:學(xué)生在練習(xí)本上完成

  師:請同學(xué)們觀察,直線、能不能相交?

  學(xué)生活動:觀察,回答:不相交,也就是說

  師:為什么呢?同桌可以討論

  學(xué)生活動:學(xué)生積極討論,各抒己見

  【教法說明】幾何的學(xué)習(xí)不僅要求學(xué)生有較強(qiáng)的識圖能力,而且要求學(xué)生有過硬的分析能力,也就是說理能力初一幾何課是幾何課的起始課,從開始就讓學(xué)生養(yǎng)成自己動手、動腦、思考、分析問題的習(xí)慣,即加強(qiáng)幾何思維不慣的培養(yǎng),這是個很重要的內(nèi)容

  學(xué)生活動:教師讓學(xué)生積極發(fā)表意見,然后給出正確的引導(dǎo)

  師:我們觀察圖形,如果直線與相交,設(shè)交點為,那么會產(chǎn)生什么問題呢?請同學(xué)們討論

  學(xué)生活動:學(xué)生在教師的啟發(fā)引導(dǎo)下思考、討論,得出結(jié)論

  師:同學(xué)們想得很好,因為,,于是過點就有兩條直線、都與平行,根據(jù)平行公理,這是不可能的,這就是說,與不能相交,只能平行,由此我們得到平行公理的推論

 。郯鍟萑绻麅蓷l直線都和第三條直線平行,那么這兩條直線也互相平行

  師:在同一平面內(nèi),不相交的兩條直線是平行的,那么不相交的兩條射線(或線段)也是平行的,對嗎?為什么?

  學(xué)生活動:學(xué)生思考,回答:不對,給出反例圖形,

  例如:如圖1所示,射線與就不相交,也不平行

  師:同學(xué)們想一想,當(dāng)我們說兩條射線或線段平行時,實際上是什么平行才可以呢?

  生:它們所在的直線平行

  嘗試反饋,鞏固練習(xí)(投影)

  七年級數(shù)學(xué)教案 篇7

  學(xué)習(xí)目標(biāo):

  1、學(xué)會用計算器進(jìn)行有理數(shù)的除法運算.

  2、掌握有理數(shù)的混合運算順序.

  3、通過探究、練習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣

  學(xué)習(xí)重點:有理數(shù)的混合運算

  學(xué)習(xí)難點:運算順序的確定與性質(zhì)符號的'處理

  教學(xué)方法:觀察、類比、對比、歸納

  教學(xué)過程

  一、學(xué)前準(zhǔn)備

  1、計算

  1)(—0.0318)÷(—1.4)2)2+(—8)÷2

  二、探究新知

  1、由上面的問題1,計算方便嗎?想過別的方法嗎?

  2、由上面的問題2,你的計算方法是先算法,再算法。

  3、結(jié)合問題1,閱讀課本P36—P37頁內(nèi)容(帶計算器的同學(xué)跟著操作、練習(xí))

  4、結(jié)合問題2,你先猜想,有理數(shù)的混合運算順序應(yīng)該是?

  5、閱讀P36,并動手做做

  三、新知應(yīng)用

  1、計算

  1)、18—6÷(—2)×2)11+(—22)—3×(—11)

  3)(—0.1)÷×(—100)

  2、師生小結(jié)

  四、回顧與反思

  請你回顧本節(jié)課所學(xué)習(xí)的主要內(nèi)容

  3頁

  五、自我檢測

  1、選擇題

  1)若兩個有理數(shù)的和與它們的積都是正數(shù),則這兩個數(shù)()

  A.都是正數(shù)B.是符號相同的非零數(shù)C.都是負(fù)數(shù)D.都是非負(fù)數(shù)

  2)下列說法正確的是()

  A.負(fù)數(shù)沒有倒數(shù)B.正數(shù)的倒數(shù)比自身小

  C.任何有理數(shù)都有倒數(shù)D.-1的倒數(shù)是-1

  3)關(guān)于0,下列說法不正確的是()

  A.0有相反數(shù)B.0有絕對值

  C.0有倒數(shù)D.0是絕對值和相反數(shù)都相等的數(shù)

  4)下列運算結(jié)果不一定為負(fù)數(shù)的是()

  A.異號兩數(shù)相乘B.異號兩數(shù)相除

  C.異號兩數(shù)相加D.奇數(shù)個負(fù)因數(shù)的乘積

  5)下列運算有錯誤的是()

  A.÷(-3)=3×(-3)B.

  C.8-(-2)=8+2D.2-7=(+2)+(-7)

  6)下列運算正確的是()

  A.;B.0-2=-2;C.;D.(-2)÷(-4)=2

  2、計算

  1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

  3)(—48)÷8—(—25)×(—6)4)

  六、作業(yè)

  1、P39第7題(4、5、7、8)、第8題

  2、選做題:P39第10、11、12、1314、15題

  七年級數(shù)學(xué)教案 篇8

  一、說教材分析

  1.教材的地位和作用

  二元一次方程組是初中數(shù)學(xué)的重點內(nèi)容之一,是一元一次方程知識的延續(xù)和提高,又是學(xué)習(xí)其他數(shù)學(xué)知識的基礎(chǔ)。本節(jié)課是在學(xué)生學(xué)習(xí)了一元一次方程的基礎(chǔ)上,繼續(xù)學(xué)習(xí)另一種方程及方程組,它是學(xué)生系統(tǒng)學(xué)習(xí)二元一次方程組知識的前提和基礎(chǔ)。通過類比,讓學(xué)生從中充分體會二元一次方程組,理解并掌握解二元一次方程組的基本概念,為以后函數(shù)等知識的學(xué)習(xí)打下基礎(chǔ)。

  2.教學(xué)目標(biāo)

  知識目標(biāo):通過實例了解二元一次方程和它的解,二元一次方程組和它的解。

  能力目標(biāo):會判斷一組未知數(shù)的值是否為二元一次方程及方程組的解。會在實際問題中列二元一次方程組。

  情感目標(biāo):使學(xué)生通過交流、合作、討論獲取成功體驗,激發(fā)學(xué)生學(xué)習(xí)知識的興趣,增強(qiáng)學(xué)生的自信心。

  3.重點、難點

  重點:二元一次方程和二元一次方程的解,二元一次方程組和二元一次方程組的解的概念。

  難點:在實際生活中二元一次方程組的應(yīng)用。

  二、教法

  現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、言道者,教學(xué)的一切活動必須以強(qiáng)調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與教學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時,給學(xué)生留出足夠的思考時間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。

  另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好發(fā)激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。

  三、學(xué)法

  “問題”是數(shù)學(xué)教學(xué)的心臟,活動是數(shù)學(xué)教學(xué)中的靈魂。所以我在學(xué)生思維最近發(fā)展區(qū)內(nèi)設(shè)置并提出一系列問題,通過數(shù)學(xué)活動,引導(dǎo)學(xué)生:自主性學(xué)習(xí),合作式學(xué)習(xí),探究式學(xué)習(xí)等,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的數(shù)學(xué)思維和參與度,力求學(xué)生在“雙基”數(shù)學(xué)能力和理性精神方面得到一定發(fā)展。

  四、教學(xué)過程

  新課標(biāo)指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):

  (1)復(fù)習(xí)舊知,溫故知新

  籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊勝一場得2分.負(fù)一場得1分,某隊為了爭取較好的'名次,想在全部10場比賽中得到16分,那么這個隊勝負(fù)場數(shù)分別是多少?

  設(shè)計意圖:構(gòu)建注意主張教學(xué)應(yīng)從學(xué)生已有的知識體系出發(fā),方程是本節(jié)課深入研究二元一次方程組的認(rèn)知基礎(chǔ),這樣設(shè)計有利于引導(dǎo)學(xué)生順利地進(jìn)入學(xué)習(xí)情境。

  (2)創(chuàng)設(shè)情境,提出問題

  這個問題中包含了哪些必須同時滿足的條件?設(shè)勝的場數(shù)是-,負(fù)的場數(shù)是y,你能用方程把這些條件表示出來嗎?

  由問題知道,題中包含兩個必須同時滿足的條件:

  勝的場數(shù)+負(fù)的場數(shù)=總場數(shù),

  勝場積分+負(fù)場積分=總積分。

  這兩個條件可以用方程

  -+y=10

  2-+y=16

  表示:

  上面兩個方程中,每個方程都含有兩個未知數(shù)(-和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程.

  把兩個方程合在一起,寫成

  -+y=10

  2-+y=16

  像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組。

  設(shè)計意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認(rèn)知沖突,使學(xué)生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強(qiáng)烈的求知欲望,產(chǎn)生了強(qiáng)勁的學(xué)習(xí)動力,此時我把學(xué)生帶入下一環(huán)節(jié)。

  (3)發(fā)現(xiàn)問題,探求新知

  滿足方程①,且符合問題的實際意義的-、y的值有哪些?把它們填入表中。

  - -y

  y

  上表中哪對-、y的值還滿足方程②。

  一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解。

  二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。

  設(shè)計意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識的教學(xué)必須在學(xué)生自主探索,經(jīng)驗歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過學(xué)習(xí)用坐標(biāo)表示平移觀察分析、獨立思考、小組交流等活動,引導(dǎo)學(xué)生歸納。

  (4)分析思考,加深理解

  通過前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)所要學(xué)習(xí)的內(nèi)容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學(xué)生導(dǎo)入第五個環(huán)節(jié)。

  (5)強(qiáng)化訓(xùn)練,鞏固雙基

  課堂練習(xí):

  設(shè)計意圖:幾道練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),升華知識。

  練習(xí)2:已知下列三對數(shù)值:

  哪一對是下列方程組的解?

  (設(shè)計意圖:數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識要明確其內(nèi)涵和外延(條件、結(jié)論、應(yīng)用范圍等),通過對二元一次方程組的幾個重要方面的闡述,使學(xué)生的認(rèn)知結(jié)構(gòu)得到優(yōu)化,知識體系得到完善,使學(xué)生的數(shù)學(xué)理解又一次突破思維的難點。

  (6)小結(jié)歸納,拓展深化

  我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認(rèn)知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主體作用,從學(xué)習(xí)的指示、方法、體驗是那個方面進(jìn)行歸納,我設(shè)計了這個問題:

 、偻ㄟ^本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;

  (7)布置作業(yè),提高升華

  教科書第89頁1、第90頁第1題。

  以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了兩個題,不僅是對本節(jié)課內(nèi)容的一個反饋,也是對本節(jié)課知識的一個鞏固?偟脑O(shè)計意圖是反饋教學(xué),鞏固提高。

  以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動腦思考、層層遞進(jìn),對知識的理解逐步深入,使課堂效益達(dá)到狀態(tài)。

  五、評價與反思

  本節(jié)課是在學(xué)生學(xué)習(xí)了一元一次方程基礎(chǔ)上進(jìn)行的,主要是引導(dǎo)學(xué)生運用類比思想,依次經(jīng)過比較、歸納等活動,最終探索出二元一次方程組。下面是關(guān)于本節(jié)課的幾點說明:

  1、本節(jié)課對教材的內(nèi)容進(jìn)行了優(yōu)化處理,為跳躍較大的知識點作充分的鋪墊,密切聯(lián)系新舊知識,讓學(xué)生借助已有的知識和方法主動探索新知識,擴(kuò)大知識結(jié)構(gòu),發(fā)展能力,完善人格,從而使課堂教學(xué)真正落實到學(xué)生的發(fā)展上,體現(xiàn)了以教師為主導(dǎo)、學(xué)生為主體,以思想為導(dǎo)向、知識為載體,以方法為中介、訓(xùn)練為主干,以培養(yǎng)學(xué)生的思維能力為中心、操作為動力的教學(xué)理念。

  2、在課堂教學(xué)中為學(xué)生提供充分的探索空間,注重引導(dǎo)學(xué)生分工合作,獨立思考,形成主見并進(jìn)行交流,創(chuàng)設(shè)民主、寬松和諧的課堂氣氛,讓學(xué)生暢所欲言,同時進(jìn)行實驗操作,使課堂教學(xué)靈活直觀,新鮮有趣,從而使課堂教學(xué)實現(xiàn)教學(xué)思想的先進(jìn)性、教學(xué)目標(biāo)的整體性、教學(xué)過程的有序性、教學(xué)方法的靈活性、教學(xué)手段的多樣性、教學(xué)效果的可靠性。

  3、注重量化評價與質(zhì)懷評價相結(jié)合,充分利用課堂觀察評價、問題討論評價、學(xué)生自我評價等多元化評價,通過幾組習(xí)題,將學(xué)生水平層次記錄在案,為學(xué)生的學(xué)習(xí)評價提供充分的科學(xué)依據(jù),從而綜合檢驗學(xué)生對數(shù)學(xué)知識、技能的理解,以及學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程在情感和態(tài)度的形成和發(fā)展。

  七年級數(shù)學(xué)教案 篇9

  教學(xué)目標(biāo)

  1. 使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;

  2. 初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.

  教學(xué)重點和難點

  重點:列代數(shù)式.

  難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系.

  課堂教學(xué)過程設(shè)計

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

  1?用代數(shù)式表示乙數(shù):(投影)

  (1)乙數(shù)比x大5;(x+5)

  (2)乙數(shù)比x的2倍小3;(2x-3)

  (3)乙數(shù)比x的倒數(shù)小7;( -7)

  (4)乙數(shù)比x大16%?((1+16%)x)

  (應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)

  2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴嬎汴P(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學(xué)習(xí)這個問題?

  二、講授新課

  例1 用代數(shù)式表示乙數(shù):

  (1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;

  (3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?

  分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?

  解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  最后,教師需指出:第4小題的答案也可寫成x+16%x?

  例2 用代數(shù)式表示:

  (1)甲乙兩數(shù)和的2倍;

  (2)甲數(shù)的 與乙數(shù)的 的差;

  (3)甲乙兩數(shù)的平方和;

  (4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

  (5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

  分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?

  解:設(shè)甲數(shù)為a,乙數(shù)為b,則

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序?

  例3 用代數(shù)式表示:

  (1)被3整除得n的數(shù);

  (2)被5除商m余2的數(shù)?

  分析本題時,可提出以下問題:

  (1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

  (2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

  解:(1)3n; (2)5m+2?

  (這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準(zhǔn)備)?

  例4 設(shè)字母a表示一個數(shù),用代數(shù)式表示:

  (1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;

  (3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?

  分析:啟發(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力?)

  例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:

  (1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?

  (2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?

  分析本題時,可提出如下問題:

  (1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

  解:(1)m(m+6)個; (2)( m)m個?

  三、課堂練習(xí)

  1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

  (1)甲數(shù)的2倍,與乙數(shù)的. 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;

  (3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

  2?用代數(shù)式表示:

  (1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);

  (3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?

  3?用代數(shù)式表示:

  (1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);

  (3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、師生共同小結(jié)

  首先,請學(xué)生回答:

  1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?

  其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:

  (1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);

  (2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;

  (3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握?

  五、作業(yè)

  1?用代數(shù)式表示:

  (1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?

  (2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?

  2?已知一個長方形的周長是24厘米,一邊是a厘米,

  求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

  學(xué)法探究

  已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

  分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.

  當(dāng)圓環(huán)為三個的時候,如圖:

  此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:

  解:

  =99a+b(cm)

  七年級數(shù)學(xué)教案 篇10

  一、教材分析

  1、教材的內(nèi)容:本節(jié)課是人教版七年級下冊第五章第一節(jié)的第一課時

  2、教材的地位和作用:平面內(nèi)兩條直線的位置關(guān)系是“空間與圖形”所要研究的基本問題,這些內(nèi)容學(xué)生在前兩個學(xué)段已經(jīng)有所接觸,本章在學(xué)生已有知識和經(jīng)驗的基礎(chǔ)上,繼續(xù)研究平面內(nèi)兩條直線的位置關(guān)系,首先研究相交的兩條直線,這是后面學(xué)習(xí)垂直相交的必要基礎(chǔ)也為后面學(xué)面直角坐標(biāo)系奠定基石,因此本節(jié)課具有承前啟后的重要作用

  3、教學(xué)的重點、難點:

  重點:鄰補(bǔ)角、對頂角的概念,對頂角的性質(zhì)和應(yīng)用。

  難點:理解對頂角性質(zhì)的探索

  (確定重難點的依據(jù):本節(jié)的學(xué)習(xí)目的是研究兩條相交直線產(chǎn)生的四個角的關(guān)系,因此將鄰補(bǔ)角、對頂角的概念、性質(zhì)以及應(yīng)用作為本節(jié)的重點。同學(xué)們剛剛開始接觸幾何,對推理說理不習(xí)慣也不熟悉,所以將理解對頂角相等的性質(zhì)作為難點。)

  4、教學(xué)目標(biāo):

  A:知識與技能目標(biāo)

  (1).理解對頂角和鄰補(bǔ)角的概念,能在圖形中辨認(rèn).

  (2).掌握對頂角相等的性質(zhì)和它的推證過程

  (3).會用對頂角的性質(zhì)進(jìn)行有關(guān)的簡單推理和計算.

  B:過程與方法目標(biāo)

  (1).通過觀察、操作、探究、猜想、思考、交流、歸納、推理等培養(yǎng)學(xué)生的推理能力和有條理的表達(dá)能力,培養(yǎng)操作能力、動手能力。

  (2).體會具體到抽象再到具體的思想方法.

  C:情感、態(tài)度與價值目標(biāo)

  (1).感受圖形中和諧美、對稱美.

  (2).感受合作交流帶來的成功感,樹立自信心.

  (3).感受數(shù)學(xué)應(yīng)用的廣泛性,使學(xué)生更加熱愛數(shù)學(xué)

  二、學(xué)情分析:

  在此之前,學(xué)生已經(jīng)學(xué)習(xí)了圖形的初步認(rèn)識、對相交線和平行線有了直觀的感性認(rèn)識,且對互補(bǔ)和互余有了清楚的了解,在此基礎(chǔ)上來學(xué)習(xí)鄰補(bǔ)角和對頂角,符合學(xué)生的認(rèn)知規(guī)律,讓學(xué)生對新知識的應(yīng)用充滿好奇與期待.

  三、教法和學(xué)法:

  教法:

  葉圣陶先生倡導(dǎo):解放學(xué)生的手,解放學(xué)生的腦,解放學(xué)生的時間.根據(jù)這一思想及我校初一學(xué)生活潑好動的特點,我采取啟發(fā)式教學(xué)、探究式教學(xué)及多媒體輔助教學(xué)相結(jié)合的方法.

  學(xué)法:以學(xué)生分組實踐、自主探究、合作交流為主要形式的探究式學(xué)習(xí)方法.

  四、教學(xué)過程:

  1課前準(zhǔn)備:課件,剪刀,紙片,相交線模型

  2教學(xué)過程:設(shè)置以下六個環(huán)節(jié)

  環(huán)節(jié)一:情景屋(創(chuàng)設(shè)情景,激發(fā)學(xué)習(xí)動機(jī))

  請學(xué)生欣賞觀察圖片,圖片中有大橋上的鋼梁和鋼索,窗戶的窗格都給我們以相交線平行線的形象,讓學(xué)生感受到相交線平行線在我們生活中有著廣泛的應(yīng)用,由此產(chǎn)生研究它們了解它們的興趣和欲望,適時的給出本章課題:相交線和平行線

  環(huán)節(jié)二:問題苑(合作交流,解釋發(fā)現(xiàn))

  通過一些問題的設(shè)置,激發(fā)學(xué)生探究的欲望,具體操作:

  (1):動手嘗試:剪紙片,感知剪刀所形成的角在剪紙過程中的變化

  (2):給出問題,由剪刀這個實物抽象出幾何模型——兩條直線相交。

  (讓學(xué)生充分的感知到數(shù)學(xué)來源于生活,符合初中學(xué)生的認(rèn)識規(guī)律和興趣愛好)

  (3):分析研究此模型:

  設(shè)置以下一系列問題:

  A、兩直線相交構(gòu)成的4個角兩兩相配共能組成幾對?(6對)

  B、對各對角進(jìn)行分析,首先從位置上去分析————結(jié)論:可把這六對角分成兩大類,一類為哪些角?——特點?——它們有一條公共邊,它們的另一邊互為反向延長線——引出概念——鄰補(bǔ)角。

  另一類是哪些角?———特點?——它們的.兩邊互為反向延長線——引出概念——對頂角

  C、再從大小上進(jìn)行分析——量一量——結(jié)論:鄰補(bǔ)角互補(bǔ)、對頂角相等。

  D、你能闡述它們互補(bǔ)和相等的理由嗎?

  (一堂好課,是由一系列的真問題組成的,本環(huán)節(jié)在老師的引導(dǎo)下,由學(xué)生自由的發(fā)揮,通過觀察分析,交流討論一步一步的解決本節(jié)課的重點和難點,學(xué)生通過自己探索獲得的知識才是自己的知識,讓學(xué)生在此過程中學(xué)會學(xué)習(xí),達(dá)到教是為了不教的目的)

  環(huán)節(jié)三:快樂房(大膽創(chuàng)設(shè),感悟變換)

  (設(shè)置見投影,讓學(xué)生判斷形成的兩個角是否為鄰補(bǔ)角,這一變換讓學(xué)生充滿興趣,此時一定讓學(xué)生用鄰補(bǔ)角的特點去檢驗,達(dá)到知識的正向遷移,并理解鄰補(bǔ)角和補(bǔ)角的關(guān)系)

  環(huán)節(jié)四:實例庫(拓展應(yīng)用,升華提高)

  例子1:是一組不同形式的角,判斷是否為對頂角,此題的目的是鞏固對頂角的概念,培養(yǎng)學(xué)生的識圖能力

  例子2:例子2是用對頂角和鄰補(bǔ)角的性質(zhì)進(jìn)行簡單的計算,在這里設(shè)置了一組變式題,而且變式題目不是教師直接給出,而是啟發(fā)學(xué)生自己編,讓學(xué)生過了一把編導(dǎo)的癮,學(xué)生一定非常的開心,這樣可以活躍課堂氣氛,提高學(xué)生的思維能力

  (一方面鞏固了對頂角的性質(zhì);另一方面說明幾何里的計算題,需要用到圖形的幾何性質(zhì),因此,要有根有據(jù)地計算.例題放手讓學(xué)生自己解決,比教師單純地講解效果會更好.盡管學(xué)生書寫格式不如課本上的規(guī)范,但通過集體講評糾正后,學(xué)生印象會更深刻).

  最后安排一個腦筋急轉(zhuǎn)彎:見投影

  (讓學(xué)生始終對課堂充滿熱情,通過此練習(xí),體會到數(shù)學(xué)來自于生活又用于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣和熱情)

  環(huán)節(jié)五:點金帚(學(xué)后反思感悟收獲)

  通過本堂課的探究

  我經(jīng)歷了......

  我體會到......

  我感受到......

  (學(xué)生暢所欲言,在“以生為本”的民主氛圍中培養(yǎng)學(xué)生歸納、概括能力和語言表達(dá)能力;同時引導(dǎo)學(xué)生反思探究過程,幫助學(xué)生肯定自我,欣賞他人,同時把本節(jié)課的內(nèi)容形成知識體系.)

  角的名稱

  特征

  性質(zhì)

  相同點

  不同點

  對頂角

  ①兩條直線相交而成的角

 、谟幸粋公共頂點

  ③沒有公共邊

  對頂角相等

  都是兩直線相交而成的角,都有一個公共頂點,它們都是成對出現(xiàn)。

  對頂角沒有公共邊而鄰補(bǔ)角有一條公共邊;兩條直線相交時,一個角的對頂角有一個,而一個角的鄰補(bǔ)角有兩個

  鄰補(bǔ)角

 、賰蓷l直線相交面成的角

  ②有一個公共頂點

 、塾幸粭l公共邊

  鄰補(bǔ)角互補(bǔ)

  環(huán)節(jié)六:沉思閣(課后延伸張揚個性)

  此為課后作業(yè):

  (適當(dāng)增加利用對頂角相等解決一些說理的題目,既讓學(xué)生感受到對頂角相等這個性質(zhì)在解題中的獨特魅力,又為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ).)

  五、教學(xué)設(shè)計說明:

  設(shè)計理念:面向全體學(xué)生,實現(xiàn):

  ——人人學(xué)有價值的數(shù)學(xué)

  ——人人都能獲得必需的數(shù)學(xué)

  ——不同的人在數(shù)學(xué)上得到不同的發(fā)展

  過程設(shè)計:學(xué)生親身經(jīng)歷從現(xiàn)實生活的圖形中提出數(shù)學(xué)問題,并抽象其蘊涵的數(shù)學(xué)本質(zhì)(相交直線),最后回歸生活去運用所學(xué)知識的全過程。

  設(shè)計目的:讓學(xué)生帶著興趣、帶著問題走進(jìn)課堂,帶著新的問題、帶著高漲的熱情離開課堂,進(jìn)行不斷的探究。

  七年級數(shù)學(xué)教案 篇11

  內(nèi)容:整式的乘法—單項式乘以多項式 P58-59

  課型:新授 時間:

  學(xué)習(xí)目標(biāo):

  1、在具體情景中,了解單項式和多項式相乘的意義。

  2、在通過學(xué)生活動中,理解單項式和多項式相乘的法則,會用它們進(jìn)行計算。

  3、培養(yǎng)學(xué)生有條理的思考和表達(dá)能力。

  學(xué)習(xí)重點:單項式乘以多項式的`法則

  學(xué)習(xí)難點:對法則的理解

  學(xué)習(xí)過程

  1.學(xué)習(xí)準(zhǔn)備

  1.敘述單項式乘以單項式的法則

  2.計算

  (1)(- a2b) ?(2ab)3=

  (2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)

  3、舉例說明乘法分配律的應(yīng)用。

  2.合作探究

  (一)獨立思考,解決問題

  1、 問題: 一個施工隊修筑一條路面寬為n m的公路,第一天修筑 a m長,第二天修筑長 b m,第三天修筑長 c m,3天工修筑路面的面積是多少?

  結(jié)合圖形,完成填空。

  算法一:3天共修筑路面的總長為(a+b+c)m,因為路面的寬為bm,所以3

  天共修筑路面 m2.

  算法二:先分別計算每天修筑路面的面積,然后相加,則3天修路面 m2.

  因此,有 = 。

  3.你能用字母表示乘法分配律嗎?

  4.你能嘗試單項式乘以多項式的法則嗎?

  (二)師生探究,合作交流

  1、例3 計算:

  (1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)

  2、練一練

  (1)5x(3x+4) (2) (5a2? a+1)(-3a)

  (3)x(x2+3)+x2(x-3)-3x(x2?x-1)

  (4)(?a)(-2ab)+3a(ab-b-1))

  (三)學(xué)習(xí)

  對照學(xué)習(xí)目標(biāo),通過預(yù)習(xí),你覺得自己有哪些方面的收獲?有什么疑惑?

  (四)自我測試

  1、教科書P59 練習(xí) 3,結(jié)合解題,單項式乘以多項式的幾何意義。

  2、判斷題

  (1)-2a(3a-4b) =-6a2-8ab ( )

  (2) (3x2-xy-1) ? x =x3 -x2y-x ( )

  (3)m2- (1- m) = m2- - m ( )

  3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )

  A. -1 B. 0 C. 1 D. 無法確定

  4、計算(20xx 賀州中考)

  (-2a)?( a3 -1) =

  5、(3m)2(m2+mn-n2)=

  (五)應(yīng)用拓展

  1、計算

  (1)2a(9a2-2a+3)-(3a2) ?(2a-1)

  (2)x(x-3)+2x(x-3)=3(x2-1)

  2、若一個梯形的上底長(4m+3n)cm,下底長(2m+n)cm,高為3m2n cm,求此梯形的面積。

  3、一塊邊長為xcm的正方形地磚,因需要被裁掉一塊2cm寬的長條,為剩下部分面積是多少?

  七年級數(shù)學(xué)教案 篇12

  教學(xué)目標(biāo):

  1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應(yīng)關(guān)系;

  2,會正確地畫出數(shù)軸,會用數(shù)軸上的點表示給定的有理數(shù),會根據(jù)數(shù)軸上的點讀出所表示的有理數(shù);

  3,感受在特定的條件下數(shù)與形是可以相互轉(zhuǎn)化的,體驗生活中的數(shù)學(xué)。

  教學(xué)難點:

  數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)

  知識重點

  教學(xué)過程(師生活動) 設(shè)計理念

  設(shè)置情境

  引入課題

  教師通過實例、課件演示得到溫度計讀數(shù).

  問題1:溫度計是我們?nèi)粘I钪杏脕頊y量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?

  (多媒體出示3幅圖,三個溫度分別為零上、零度和零下)

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

  (小組討論,交流合作,動手操作) 創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,發(fā)現(xiàn)生活中的數(shù)學(xué)。

  探究新知

  教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?

  讓學(xué)生在討論的基礎(chǔ)上動手操作,在操作的基礎(chǔ)上歸納出:可以表示有理數(shù)的'直線必須滿足什么條件?

  從而得出數(shù)軸的三要素:原點、正方向、單位長度 體驗數(shù)形結(jié)合思想;只描述數(shù)軸特征即可,不用特別強(qiáng)調(diào)數(shù)軸三要求。

  從游戲中學(xué)數(shù)學(xué) 做游戲:教師準(zhǔn)備一根繩子,請8個同學(xué)走上來,把位置調(diào)整為等距離,規(guī)定第4個同學(xué)為原點,由西向東為正方向,每個同學(xué)都有一個整數(shù)編號,請大家記住,現(xiàn)在請第一排的同學(xué)依次發(fā)出口令,口令為數(shù)字時,該數(shù)對應(yīng)的同學(xué)要回答“到”;口令為該同學(xué)的名字時,該同學(xué)要報出他對應(yīng)的“數(shù)字”,如果規(guī)定第3個同學(xué)為原點,游戲還能進(jìn)行嗎? 學(xué)生游戲體驗,對數(shù)軸概念的理解

  尋找規(guī)律

  歸納結(jié)論

  問題3:

  1, 你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?

  2, 如果給你一些數(shù),你能相應(yīng)地在數(shù)軸上找出它們的準(zhǔn)確位置嗎?如果給你數(shù)軸上的點,你能讀出它所表示的數(shù)嗎?

  3, 哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?

  4, 每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?

  (小組討論,交流歸納)

  歸納出一般結(jié)論,教科書第12的歸納。 這些問題是本節(jié)課要求學(xué)會的技能,教學(xué)中要以學(xué)生探究學(xué)習(xí)為主來完成,教師可結(jié)合教科書給學(xué)生適當(dāng)指導(dǎo)。

  鞏固練習(xí)

  教科書第12頁練習(xí)

  小結(jié)與作業(yè)

  課堂小結(jié)

  請學(xué)生總結(jié):

  1, 數(shù)軸的三個要素;

  2, 數(shù)軸的作以及數(shù)與點的轉(zhuǎn)化方法。

  本課作業(yè)

  1, 必做題:教科書第18頁習(xí)題1.2第2題

  2,選做題:教師自行安排

  本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)

  1, 數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識,到理性認(rèn)識,到抽象概括的認(rèn)識規(guī)律。

  2, 教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。

  3, 注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。

  七年級數(shù)學(xué)教案 篇13

  一、教學(xué)內(nèi)容分析

  1。2有理數(shù)1。2。2數(shù)軸。這一節(jié)是初中數(shù)學(xué)中非常重要的內(nèi)容,從知識上講,數(shù)軸是數(shù)學(xué)學(xué)習(xí)和研究的重要工具,它主要應(yīng)用于絕對值概念的理解,有理數(shù)運算法則的推導(dǎo),及不等式的求解。同時,也是學(xué)習(xí)直角坐標(biāo)系的基礎(chǔ),從思想方法上講,數(shù)軸是數(shù)形結(jié)合的起點,而數(shù)形結(jié)合是學(xué)生理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的方法。日常生活中帶見的用溫度計度量溫度,已為學(xué)習(xí)數(shù)軸概念打下了一定的基礎(chǔ)。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學(xué)習(xí)方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學(xué)生領(lǐng)悟分類思想的基礎(chǔ)。

  二、學(xué)生學(xué)習(xí)情況分析

 。1)知識掌握上,七年級的學(xué)生剛剛學(xué)習(xí)有理數(shù)中的正負(fù)數(shù),對正負(fù)數(shù)的概念理解不一定很深刻,許多學(xué)生容易造成知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;

  (2)學(xué)生學(xué)習(xí)本節(jié)課的知識障礙。學(xué)生對數(shù)軸概念和數(shù)軸的三要素,學(xué)生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學(xué)中教師應(yīng)予以簡單明白、深入淺出的分析;

 。3)由于七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生的主動性。

  三、設(shè)計思想

  從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的一個重要原則。小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進(jìn)就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的`概念。教學(xué)中,數(shù)軸的三要素中的每一要素都要認(rèn)真分析它的作用,使學(xué)生從直觀認(rèn)識上升到理性認(rèn)識。直線、數(shù)軸都是非常抽象的數(shù)學(xué)概念,當(dāng)然對初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進(jìn)行抽象的思維活動還是可行的。例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等。

  四、教學(xué)目標(biāo)

 。ㄒ唬┲R與技能

  1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

  2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。

 。ǘ┻^程與方法

  1、使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識。

  2、對學(xué)生滲透數(shù)形結(jié)合的思想方法。

 。ㄈ┣楦小B(tài)度與價值觀

  1、使學(xué)生初步了解數(shù)學(xué)來源于實踐,反過來又服務(wù)于實踐的辯證唯物主義觀點。

  2、通過畫數(shù)軸,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受。

  五、教學(xué)重點及難點

  1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。

  2、難點:有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系。

  六、教學(xué)建議

  1、重點、難點分析

  本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小。難點是正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。數(shù)軸的概念包含兩個內(nèi)容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎(chǔ)。

  2、知識結(jié)構(gòu)

  有了數(shù)軸,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的方法,本課知識要點如下:

  定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸

  三要素原點正方向單位長度

  應(yīng)用數(shù)形結(jié)合

  七、學(xué)法引導(dǎo)

  1、教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法。

  2、學(xué)生學(xué)法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習(xí)。

  八、課時安排

  1課時

  九、教具學(xué)具準(zhǔn)備

  電腦、投影儀、三角板

  十、師生互動活動設(shè)計

  講授新課

 。ǔ鍪就队1)

  問題1:三個溫度計。其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。

  師:三個溫度計所表示的溫度是多少?

  生:2℃,—5℃,0℃。

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7。5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4。8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(小組討論,交流合作,動手操作)

  師:我們能否用類似的圖形表示有理數(shù)呢?

  師:這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題)。

  師:與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀

  數(shù),用直線上的點表示正數(shù)、負(fù)數(shù)和零。具體方法如下

 。ㄟ呎f邊畫):

  1。畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);

  2。規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負(fù)方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負(fù));

  3。選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為—1,—2,—3,…

  師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

  讓學(xué)生觀察畫好的直線,思考以下問題:

 。ǔ鍪就队2)

  (1)原點表示什么數(shù)?

 。2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?

 。3)表示+2的點在什么位置?表示—1的點在什么位置?

 。4)原點向右0。5個單位長度的A點表示什么數(shù)?

  原點向左1。5個單位長度的B點表示什么數(shù)?

  根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義。

  師:在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單

  位長度的直線叫做數(shù)軸。

  進(jìn)而提問學(xué)生:在數(shù)軸上,已知一點P表示數(shù)—5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是—5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可。

  【教法說明】通過“觀察—類比—思考—概括—表達(dá)”展現(xiàn)知識的形成是從感性認(rèn)識上升到理性認(rèn)識的過程,讓學(xué)生在獲取知識的過程中,領(lǐng)會數(shù)學(xué)思想和思維方法,并有意識地訓(xùn)練學(xué)生歸納概括和口頭表達(dá)能力。

  師生同步畫數(shù)軸,學(xué)生概括數(shù)軸三要素,師出示投影,生動手動腦練習(xí)

  嘗試反饋,鞏固練習(xí)

  (出示投影3)。畫出數(shù)軸并表示下列有理數(shù):

  1、1。5,—2。2,—2。5,,,0。

  2。寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):

  請大家回答下列問題:

 。ǔ鍪就队4)

  (1)有人說一條直線是一條數(shù)軸,對不對?為什么?

 。2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?

  【教法說明】此組練習(xí)的目的是鞏固數(shù)軸的概念。

  十一、小結(jié)

  本節(jié)課要求同學(xué)們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學(xué)們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究。

  十二、課后練習(xí)習(xí)題1。2第2題

  十三、教學(xué)反思

  1、數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識,到理性認(rèn)識,到抽象概括的認(rèn)識規(guī)律。

  2、教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。

  3、注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。

  七年級數(shù)學(xué)教案 篇14

  我今天說課的課題是人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書七年級數(shù)學(xué)上冊第二章第1節(jié)《整式》第一課時“單項式”。下面我從:教材的分析、教法與學(xué)法及教學(xué)手段、教學(xué)過程、板書設(shè)計四部分來說這一節(jié)課,其中,教學(xué)過程分為:創(chuàng)設(shè)情境導(dǎo)入新課、新課講解、小結(jié)作業(yè)三部分;整個過程是先由實際問題引入新課,讓學(xué)生自然走入文本.合作交流去感受知識獲取的過程,并且運用所學(xué)的知識解決相關(guān)的問題.

  教材分析

  1、教材地位與作用。

  就本節(jié)課而言,著重闡述了兩個方面,一是因式分解的概念,二是與整式乘法的互逆關(guān)系。它是繼整式乘法的基礎(chǔ)上來討論因式分解概念,繼而,通過探究與整式乘法的關(guān)系,來尋求因式分解的原理。這一思想實質(zhì)貫穿后繼學(xué)習(xí)的各種因式分解方法。通過本節(jié)課的學(xué)習(xí),不僅使學(xué)生掌握因式分解的概念和原理,而且又為后面學(xué)習(xí)因式分解作好了充分的準(zhǔn)備。因此,它起到了承上啟下作用。

  2、教學(xué)目標(biāo)。

  根據(jù)單項式這一節(jié)課的內(nèi)容,對于掌握各種單項式的系數(shù)和次數(shù)方法,乃至整個代數(shù)教學(xué)中的地位和作用,我制定了以下教學(xué)目標(biāo):

 。ㄒ唬┲R目標(biāo):

  1.理解單項式及單項式系數(shù)、次數(shù)的概念。

  2.會準(zhǔn)確迅速地確定一個單項式的系數(shù)和次數(shù)。

 。ǘ┠芰δ繕(biāo):

  3.初步培養(yǎng)學(xué)生觀察、分析、抽象、概括等思維能力和應(yīng)用意識。

  4.通過小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,培養(yǎng)學(xué)生自主探索知識和合作交流能力。

 。ㄈ┣楦心繕(biāo):

  1.通過參與對單項式概念的探究活動,提高學(xué)習(xí)數(shù)學(xué)的興趣。

  2.培養(yǎng)學(xué)生積極主動參與的意識,使學(xué)生形成自主學(xué)習(xí)、合作學(xué)習(xí)的良好的學(xué)習(xí)習(xí)慣。

  3、教學(xué)重點與難點。

  本節(jié)課理解單項式的概念及組成是學(xué)習(xí)本節(jié)單項式的關(guān)鍵,而學(xué)生由數(shù)到式的變形是一個由質(zhì)到量變化的抽向思維。學(xué)生對新概念的形成有一定的障礙。因此我將本課的學(xué)習(xí)重點、難點確定為:

  重點:掌握單項式及單項式的系數(shù)、次數(shù)的概念,并會準(zhǔn)確迅速地確定一個單項式的系數(shù)和次數(shù)。

  難點:單項式概念的建立。

  2/教法與學(xué)法及教學(xué)手段。

  教法:為讓學(xué)生體驗單項式概念產(chǎn)生的過程;以及概念的形成和同化相結(jié)合,促進(jìn)學(xué)生對單項式概念的理解;同時讓學(xué)生主動暴露思維過程,及時得到信息的反饋。我采用先學(xué)后導(dǎo)-自主合作-問題評價教學(xué)。

  學(xué)法:針對教法,在教學(xué)的過程中引導(dǎo)學(xué)生自主的學(xué)習(xí):讓學(xué)生去親身體驗單向式形成的過程,使學(xué)生的認(rèn)識知識、感受知識,學(xué)生在活動的過程中積極參與,主動獲取知識,體現(xiàn)了以學(xué)生為主體的新教學(xué)理念,結(jié)合教材內(nèi)容,讓學(xué)生“自主探索、合作交流”。通過同學(xué)之間相互講解、演示、操作等方法讓學(xué)生開動腦筋,互相討論,找出解決問題的方法。使學(xué)生逐步地形成技能技巧,從而獲得能力。

  教學(xué)手段:利用多媒體輔助教學(xué),可以加大一堂課的信息容量,極大提高學(xué)生的學(xué)習(xí)興趣,電腦軟件的交互性,可以很好地體現(xiàn)教師在教學(xué)過程中的思路和策略。

  教學(xué)過程

  本節(jié)課,一共設(shè)以下幾個環(huán)節(jié)

  第一環(huán)節(jié),設(shè)置實際問題,激發(fā)學(xué)習(xí)興趣:

  興趣是最好的老師,可以激發(fā)情感,喚起某種動機(jī),從而引導(dǎo)學(xué)生成為學(xué)習(xí)的主人。若能利用短短幾分鐘時間,在剛開始就激發(fā)學(xué)生的興趣,這正是老師追求的一個目標(biāo)。所以這個環(huán)節(jié)我設(shè)置以下的問題:青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達(dá)到120千米/時,請根據(jù)這些數(shù)據(jù)回答問題:

  列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?

 。ㄗ寣W(xué)生思考、利用已有的學(xué)習(xí)經(jīng)驗輕松解答,對整節(jié)的學(xué)習(xí)也創(chuàng)設(shè)了良好的情緒狀態(tài)。)數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實際,這是新課程標(biāo)準(zhǔn)所賦予的任務(wù)。讓學(xué)生列代數(shù)式不僅復(fù)習(xí)前面的知識,更是為下面給出單項式埋下伏筆,同時使學(xué)生受到較好的思想品德教育。

  第二環(huán)節(jié),以舊探新,引出課題(分2部分)

  單項式的概念,借助于學(xué)生已有的能用字母表示是數(shù)的基礎(chǔ),給學(xué)生提供一些問題背景,同時給學(xué)生留有充分思考的空間,。這個環(huán)節(jié)圍繞幾個問題展開,在積極的狀態(tài)下,用觀察-猜想-驗證-自主學(xué)習(xí)的方法,找到新知生長點,把數(shù)的有關(guān)知識正遷移到式,由學(xué)生自己給出單項式的.名稱,引出課題,顯得順理成章。

  利用多媒體課件,依次出示,讓學(xué)生回答。

  1.(回顧舊知)計算:

 。1).邊長為a的正方體的表面積為(),體積為()。

 。2).鉛筆的單價是x元,圓珠筆的單價是鉛筆單價的2.5倍,圓珠筆的單價是()元。

 。3).一輛汽車的速度是v千米/時,它t小時行駛的路程為()。

 。4).數(shù)n的相反數(shù)是()。

  給學(xué)生一定的時間思考,在學(xué)生原有的知識結(jié)構(gòu)建成的基礎(chǔ)上,得出答案.符合學(xué)生的認(rèn)知規(guī)律.

  2.(走入文本,自主學(xué)習(xí))我們看看列出的式子有什么特點?對此大家都有一定的想法,也許一樣,也許不一樣.其實在我們的教材中給出了他們的說法,這樣大家可以借助教材55頁第二自然段-四自然段內(nèi)容來驗證一下.大家先獨立閱讀學(xué)習(xí),然后前后每4人為一組相互交流,體驗自己的收獲,認(rèn)識不足的地方大家可以相互彌補(bǔ).這一設(shè)計,主要目的是以教材為中心為學(xué)生營造自主合作學(xué)習(xí)的氛圍,形成新的學(xué)習(xí)方式.符合數(shù)學(xué)課程標(biāo)準(zhǔn)中指出:主動參與特定的數(shù)學(xué)活動,通過觀察,探索獲得數(shù)學(xué)的知識經(jīng)驗.”實現(xiàn)培養(yǎng)學(xué)生積極主動參與的意識,使學(xué)生形成自主學(xué)習(xí)、合作學(xué)習(xí)的良好的學(xué)習(xí)習(xí)慣。這個情感目標(biāo).同時對于學(xué)生的收獲及時地整理,使獲得成就感.

  第三環(huán)節(jié)初步應(yīng)用,鞏固新知:趁此時學(xué)生處在一個積極思維的狀態(tài),教師給出練習(xí)

  1.判斷下列各代數(shù)式哪些是單項式?

  (1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;

  (6)-xy2;(7)-5。

  △這安排是為通過嘗試教學(xué),引導(dǎo)學(xué)生主動探究,造求學(xué)生自主學(xué)習(xí)的積極勢態(tài),通過一定的練習(xí),達(dá)到知覺水平上的運用,加深學(xué)生對單項式概念的理解,從而突出本節(jié)課的重點,同時尋求認(rèn)識單項式的方法,為下一個環(huán)節(jié)例題的講解作了個鋪墊,降低了本節(jié)課的難點。

  第四環(huán)節(jié)范例教學(xué),練習(xí)反饋:

  范例學(xué)習(xí)

  用單項式填空,并指出它們的系數(shù)和次數(shù):

 。1)每包書有12冊,n包書有()冊;

 。2)底邊長為a,高為h的三角形的面積();

  (3)一個長方體的長和寬都是a,高是h,它的體積是();

  (4)一臺電視機(jī)原價a元,現(xiàn)按原價的9折出售,這臺電視機(jī)現(xiàn)在的售價為()元;

 。ǎ担┮粋長方形的長是0.9,寬是a,這個長方形的面積是().

 。ńo學(xué)生一定的時間思考討論,教師適當(dāng)引導(dǎo).)

  1.為了進(jìn)一步淡化難點,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過程,展現(xiàn)學(xué)生生動活潑、主動求知所富有的個性,使學(xué)生真正成為學(xué)習(xí)的主體,我馬上讓學(xué)生模仿解題嘗試練習(xí):

  例1:判斷下列各代數(shù)式是否是單項式。如不是,請說明理由;如是,請指出它的系數(shù)和次數(shù)。

  ①x+1;②;③πr2;④-a2b。

  下面各題的判斷是否正確?

 、伲7xy2的系數(shù)是7;②-x2y3與x3沒有系數(shù);③-ab3c2的次數(shù)是0+3+2;

  ④-a3的系數(shù)是-1;⑤-32x2y3的次數(shù)是7;⑥πr2h的系數(shù)是。

  3、填空:

  (1)單項式-5y的系數(shù)是_____,次數(shù)是_____

  (2)單項式a3b的系數(shù)是_____,次數(shù)是_____

  (3)單項式的系數(shù)是_____,次數(shù)是____

  (4)單項式-5πR2的系數(shù)是___,次數(shù)是___

  學(xué)生接受單項式的定義不是很難,但是做到判斷無誤卻很困難,需要通過練習(xí),反復(fù)強(qiáng)調(diào)單項式判斷標(biāo)準(zhǔn)及單項式中的系數(shù)和次數(shù)的不同和概念中要求,比如只有字母的系數(shù)的不是1就是-1,單獨一個字母的指數(shù)是1等知識出現(xiàn)的思維錯覺必須學(xué)生通過甄別、理解,逐步提高準(zhǔn)確度和熟練度.同時及時總結(jié)提升經(jīng)驗.

  第五環(huán)節(jié)知識整理,歸納小結(jié):

  讓學(xué)生形成善于歸納、總結(jié)的學(xué)習(xí)方式。當(dāng)學(xué)生把所獲得的數(shù)學(xué)內(nèi)容與原有的認(rèn)知結(jié)構(gòu)建立起密切的多方面的聯(lián)系時,才能更有效地掌握數(shù)學(xué)內(nèi)容。能夠提高學(xué)生的歸納總結(jié)能力和語言表達(dá)能力.因此,學(xué)生形成歸納總結(jié)的學(xué)習(xí)方式是必須的。

  本節(jié)課是研究整式的起始課,它是進(jìn)一步學(xué)習(xí)多項式的基礎(chǔ),因此對單項式有關(guān)概念的理解和掌握情況,將直接影響到后續(xù)學(xué)習(xí)。為突出重點,突破難點,教學(xué)中要加強(qiáng)直觀性,即為學(xué)生提供足夠的感知材料,豐富學(xué)生的感性認(rèn)識,幫助學(xué)生認(rèn)識概念,同時也要注重分析,亦即在剖析單項式結(jié)構(gòu)時,借助反例練習(xí),抓住概念易混淆處和判斷易出錯處,強(qiáng)化認(rèn)識,幫助學(xué)生理解單項式系數(shù)、次數(shù),為進(jìn)一步學(xué)習(xí)新知做好鋪墊。

  針對七年級學(xué)生學(xué)習(xí)熱情高,但觀察、分析、認(rèn)識問題能力較弱的特點,教學(xué)時將以啟發(fā)為主,同時輔之以討論、練習(xí)、合作交流等學(xué)習(xí)活動,達(dá)到掌握知識的目的,并逐步培養(yǎng)起學(xué)生觀察、分析、抽象、概括的能力,為進(jìn)一步學(xué)習(xí)同類項打下堅實的基礎(chǔ)。