高一數(shù)學(xué)教學(xué)計劃(15篇)
時光飛逝,時間在慢慢推演,又將迎來新的工作,新的挑戰(zhàn),一起對今后的學(xué)習(xí)做個計劃吧。什么樣的計劃才是好的計劃呢?下面是小編精心整理的高一數(shù)學(xué)教學(xué)計劃,歡迎閱讀,希望大家能夠喜歡。
高一數(shù)學(xué)教學(xué)計劃1
本學(xué)期我擔(dān)任高一(3)、(4)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有138人。大部分學(xué)生初中的基礎(chǔ)較差,整體水平不高。從上課兩周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還比較高,愛問問題的學(xué)生比較多;但由于基礎(chǔ)知識不太牢固,沒有良好的學(xué)習(xí)習(xí)慣,自控本事較差,不能正確地定位自我;所以上課效率一般,教學(xué)工作有必須的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計劃。
一、教學(xué)質(zhì)量目標(biāo)
。1)獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。
。2)培養(yǎng)學(xué)生的邏輯思維本事、運算本事、空間想象本事,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的本事。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的本事;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的本事。
。3)根據(jù)數(shù)學(xué)的學(xué)科特點,加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。
。4)使學(xué)生具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會經(jīng)過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
。6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重職責(zé),既要不斷夯實基礎(chǔ),加強(qiáng)綜合本事的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、教學(xué)目標(biāo)、
。ㄒ唬┣楦心繕(biāo)
。1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
。2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
。3)在探究基本函數(shù)的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識。
。4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。
。5)還時間和空間給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會,在發(fā)展他們思維本事的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
。6)讓學(xué)生體驗發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學(xué)發(fā)現(xiàn)歷程法。
。ǘ┍臼乱
1、培養(yǎng)學(xué)生記憶本事。
。1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(2)經(jīng)過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶本事。
2、培養(yǎng)學(xué)生的運算本事。
。1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算本事。
。2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算本事。
。3)經(jīng)過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性本事。
。4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算本事。
三、學(xué)情分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
四、促進(jìn)目標(biāo)達(dá)成的重點工作及措施
重點工作:
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以雙基教學(xué)為主要資料,堅持抓兩頭、帶中間、整體推進(jìn),使每個學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。
分層推進(jìn)措施
1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。
4、讓學(xué)生經(jīng)過單元考試,檢測自我的實際應(yīng)用本事,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
5、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。
6、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事和解決實際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育;同時重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。
7、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動理解知識轉(zhuǎn)化主動學(xué)習(xí)知識。
8、注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。集中精力打好基礎(chǔ),分項突破難點、所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點資料,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。
高一數(shù)學(xué)教學(xué)計劃2
一、教學(xué)目標(biāo)
1.知識與技能目標(biāo)
(1). 掌握集合的兩種表示方法;能夠按照指定的方法表示一些集合.
(2).發(fā)展學(xué)生運用數(shù)學(xué)語言的能力;培養(yǎng)學(xué)生分析、比較、歸納的邏輯思維能力.
2.過程與方法目標(biāo)
、偻ㄟ^實例抽象概括集合的共同特征,從而引出集合的概念是本節(jié)課的重要任務(wù)之一。因此教學(xué)時不僅要關(guān)注集合的基本知識的學(xué)習(xí),同時還要關(guān)注學(xué)生抽象概括能力的培養(yǎng)。
、诮虒W(xué)過程中應(yīng)努力創(chuàng)造培養(yǎng)學(xué)生的思維能力,提高學(xué)生理解掌握概念的能力,訓(xùn)練學(xué)生分析問題和處理問題的能力
情感態(tài)度與價值觀目標(biāo) 感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴(yán)密謹(jǐn)慎的集合語言描述問題的習(xí)慣;學(xué)習(xí)從數(shù)學(xué)的角度認(rèn)識世界;通過合作學(xué)習(xí)增強(qiáng)合作意識;培養(yǎng)數(shù)學(xué)的特有文化——簡潔精煉,體會從感性到理性的思維過程。
2、教材分析 本節(jié)課位于我校現(xiàn)行教材≤中等職業(yè)教育國家規(guī)劃教材≥數(shù)學(xué)第一章第一節(jié)≤集合≥的第二課時,這節(jié)課主要學(xué)習(xí)集合的表示方法。
集合語言是現(xiàn)代數(shù)學(xué)的基本語言。通過集合語言的學(xué)習(xí),有利于學(xué)生簡明準(zhǔn)確地表達(dá)學(xué)習(xí)的數(shù)學(xué)內(nèi)容。集合的初步知識是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是中職數(shù)學(xué)學(xué)習(xí)的出發(fā)點。
在中職數(shù)學(xué)中,這部分知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)。例如,在后續(xù)學(xué)習(xí)的集合的相關(guān)內(nèi)容和第二章≤不等式≥、
第三章≤函數(shù)≥,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集,都離不開集合。也是研究數(shù)學(xué)問題不可缺少的工具。這一課在本章的學(xué)習(xí)有很重要的意義,也是本章后續(xù)學(xué)習(xí)和后續(xù)學(xué)習(xí)的基礎(chǔ),起到承上啟下的作用。
3、學(xué)情分析
學(xué)生在初中階段的學(xué)習(xí)中,雖然已經(jīng)有了對集合的初步認(rèn)知,由于中職學(xué)生的現(xiàn)狀,學(xué)生基礎(chǔ)比較弱,學(xué)習(xí)習(xí)慣比較差,根據(jù)我校的現(xiàn)行教材結(jié)合學(xué)生的實際情況,為了培養(yǎng)學(xué)
生良好的學(xué)習(xí)習(xí)慣,打好基礎(chǔ),對集合的兩種表示方法:列舉法和描述法通過講練結(jié)合、不斷地鞏固練習(xí)、提高練習(xí)來達(dá)到標(biāo)準(zhǔn)要求,鼓勵學(xué)生理解的基礎(chǔ)上記憶的學(xué)習(xí)方法來學(xué)習(xí)。
二、方法與手段
本節(jié)課采用新知識講授課的教學(xué)模式,教學(xué)策略為先熟悉再深入,采用啟發(fā)式、講練結(jié)合等教學(xué)方法,并采用多媒體教學(xué)手段輔助教學(xué)。
3、教學(xué)重難點
重點:列舉法、描述法。
難點:運用集合的三種常用表示方法正確表示一些簡單的集合
4、教學(xué)方法:實例歸納、學(xué)生的自主探究、主動參與與教師的引導(dǎo)相結(jié)合,充分體現(xiàn)學(xué)生在課堂中的主體作用和教師的主導(dǎo)作用。
5、教學(xué)手段:多媒體輔助教學(xué)——主要是利用多媒體展示圖片來增加學(xué)生的學(xué)習(xí)興趣和對集合知識的直觀理解。
6、教學(xué)思路:
7、教學(xué)過程
7.1創(chuàng)設(shè)情境,引入課題
【活動】多媒體展示:1、草原一群大象在緩步走來。
2、藍(lán)藍(lán)的天空中,一群鳥在飛翔
3、一群學(xué)生在一起玩。
引導(dǎo)學(xué)生舉出一些類似的例子問題
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是一群大象、一群鳥、一群學(xué)生)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合,即是一些研究對象的總體。
【設(shè)計意圖】通過多媒體展示,極大地調(diào)動起了學(xué)生的積極性,吸引學(xué)生的注意力,設(shè)置輕松的學(xué)習(xí)氣氛。
7.2步步探索,形成概念
【活動1】觀察下列對象:
、1~20以內(nèi)的所有質(zhì)數(shù);
、谖覈鴱1991—20xx年的13年內(nèi)所發(fā)射的所有人造衛(wèi)星
、劢鹦瞧噺S20xx年生產(chǎn)的所有汽車;
④20xx年1月1日之前與我國建立外交關(guān)系的所有國家;
、菟械恼叫;
、薜街本l的距離等于定長d的所有的點;
⑦方程x2+3x—2=0的所有實數(shù)根;
、嘈氯A中學(xué)20xx年9月入學(xué)的所有的高一學(xué)生。
師生共同概括8個例子的特征,得出結(jié)論,給出集合的含義:把研究對象統(tǒng)稱為元素,常用小寫字母啊a,b,c….表示,把一些元素組成的總體叫做集合,常用大寫字母A,B,C….來表示。
【設(shè)計意圖】使學(xué)生自己明確集合的含義,培養(yǎng)學(xué)生的概括能力。
【活動2】要求每個學(xué)生舉出一些集合的例子,選出具有代表性的幾個問題,比
如:
1)A={1,3},3、5哪個是A的元素?
2)B={身材較高的人},能否表示成集合?
3)C={1,1,3}表示是否準(zhǔn)確?
4)D={中國的直轄市},E={北京,上海,天津,重慶}是否表示同一集合?
5)F={a,b,c}與G={c,b,a}這兩個集合是否一樣?
【分析】1)1,3是A的元素,5不是
2)我們不能準(zhǔn)確的規(guī)定多少高算是身材較高,即不能確定集合的元素,
所以B不能表示集合
3)C中有二個1,因此表達(dá)不準(zhǔn)確
4)我們知道E中各元素都是屬于中國的直轄市,但中國的直轄市并不 只有這幾個,因此不相等。
5)F和G的元素相同,只不過順序不同,但還是表示同一個集合
通過上述分析引導(dǎo)學(xué)生自由討論、探究概括出集合中各種元素的特點,并讓學(xué)生再舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,要求說明理由。師生一起得出集合的特征:
1)確定性:某一個具體對象,它或者是一個給定的集合的元素,或者不是該集合的元素,兩種情況必有一種且只有一種成立.
2)互異性:同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素.
3)無序性:集合中的元素沒有順序
4)集合相等:構(gòu)成兩個集合的元素完全一樣
【設(shè)計意圖】引導(dǎo)學(xué)生自主探究得出集合的特征:確定性、互異性、無序性,集合相等,培養(yǎng)學(xué)生的抽象概括能力,同時使學(xué)生能更好的了解集合。
7.3集合與元素的關(guān)系
【問題】高一(4)班里所有學(xué)生組成集合A,a是高一(4)班里的同學(xué),b是
高一(5)班的同學(xué),a、b與A分別有什么關(guān)系?
引導(dǎo)學(xué)生閱讀教科書中的相關(guān)內(nèi)容,思考上述問題,發(fā)表學(xué)生自己的看法。 得出結(jié)論:①如果a是集合A的元素,就說a屬于集合A,記作a∈A。
、谌绻鸼不是集合A的元素,就說b不屬于集合A,記作b?A。
再讓學(xué)生舉一些例子說明這種關(guān)系。
【設(shè)計意圖】使學(xué)生發(fā)揮想象,明確元素與集合的關(guān)系。
【活動】熟記數(shù)學(xué)中一些常用的數(shù)集及其記法
引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,閱讀教科書第3頁表格中的內(nèi)容,認(rèn)識常用數(shù)集記號。
【設(shè)計意圖】使學(xué)生熟記常用數(shù)集的記號,以免日后做題時混淆。
7.4集合的表示方法
【問題】由以上內(nèi)容我們可以知道用自然語言可以描述一個集合,那么有沒有其他方式表示集合呢?
7.4.1集合的列舉法表示
【活動】嘗試用列舉法第4頁例1中的集合:
1)小于10的所有自然數(shù)組成的集合;
2)方程x2?x的所有實數(shù)根組成的集合;
3)由1到20以內(nèi)的所有素數(shù)組成的集合;
并思考列舉法的特點。
引導(dǎo)學(xué)生閱讀教科書,自主學(xué)習(xí)列舉法,得出答案:
1)A={0,1,2,3,4,5,6,7,8,9}
2)A={0,1}
3)A={2,3,5,7,11,13,17,19}
通過上述講解請同學(xué)說說列舉法的特點:
1)用花括號{}把元素括起來
2)集合的元素可以具體一一列出
【設(shè)計意圖】使學(xué)生學(xué)習(xí)基本了解用列舉法表示集合的方法,并了解列舉法的特點。
7.4.2集合的描述法表示
【活動1】提出教科書中的思考題:
1)你能用自然語言描述集合{2,4,6,8}嗎?
2)你能用列舉法表示不等式x—7<3的解集嗎?
學(xué)生討論,師生總結(jié):
1)從2開始到8的所有偶數(shù)組成的集合
2)這個集合中的元素不能一一列出,因此不可以用列舉法表示
引導(dǎo)學(xué)生思考、討論用列舉法表示相應(yīng)集合的困難,激發(fā)學(xué)生學(xué)習(xí)描述法的積極性。
引導(dǎo)學(xué)生閱讀教科書中描述法的相關(guān)內(nèi)容,讓學(xué)生討論交流,歸納描述法的特點。
例如2)可以用描述法表示為:A={x?R|x<10}
【設(shè)計意圖】使學(xué)生體會用描述法表示集合的必要性,會用描述法表示集合。
【活動2】引導(dǎo)學(xué)生完成第5頁例2
1) 方程x2?2?0的所有實數(shù)根組成的集合
2) 由大于10小于20的所有整數(shù)組成的集合
討論應(yīng)當(dāng)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉。學(xué)生回答,老師進(jìn)行總結(jié):
1)描述法:A={ x?R|x2?2?0}
列舉法:
2)描述法:A={ x?Z|10
列舉法:A={11,12,13,14,15,16,17,18,19}
【設(shè)計意圖】使學(xué)生掌握好兩種表示法各自的特點,根據(jù)題目靈活選擇。
7.5課堂小結(jié),學(xué)習(xí)反思
【問題】1)集合與元素的含義?
2)集合的特點?
3)集合的不同表示方法
引導(dǎo)學(xué)生整理概括這一節(jié)課所學(xué)的知識
【設(shè)計意圖】歸納整理知識,形成知識網(wǎng)絡(luò),并培養(yǎng)學(xué)生自主對所學(xué)知識進(jìn)行總結(jié)的能力。
8、作業(yè)布置,鞏固新知
課后作業(yè):習(xí)題1.1A組第4題
課后思考作業(yè): ①結(jié)合實例,試比較用自然語言、列舉法和描述法表示集合時各自的特點和適用的對象。
②自己舉出幾個集合的例子,并分別用自然語言、列舉法和描述法表示出來。
9、板書設(shè)計
1.1.1集合的含義與表示
1、元素的含義:把研究對象統(tǒng)稱為元素
2、集合的含義:一些元素組成的總體。
3、集合元素的三個特性:確定性,互異性,無序性,集合相等
4、元素與集合的關(guān)系:a?A,a?A
5、常用數(shù)集與記法
6、列舉法
7、描述法
8、課堂小結(jié)
高一數(shù)學(xué)教學(xué)計劃3
一、基本情況分析
任教153班與154班兩個班,其中153班是文化班有男生51人,女生22人;154班是美術(shù)班有男生23人,女生21人,并且有音樂生8人。兩個班基礎(chǔ)差,學(xué)習(xí)數(shù)學(xué)的興趣都不高。
二、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
三、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、加強(qiáng)課堂教學(xué)研究,科學(xué)設(shè)計教學(xué)方法。根據(jù)教材的內(nèi)容和特征,實行啟發(fā)式和討論式教學(xué)。發(fā)揚教學(xué)民主,師生雙方密切合作,交流互動,讓學(xué)生感受、理解知識的產(chǎn)生和發(fā)展的過程。教研組要根據(jù)教材各章節(jié)的重難點制定教學(xué)專題,每人每學(xué)期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學(xué)經(jīng)驗。
6、落實課外活動的內(nèi)容。組織和加強(qiáng)數(shù)學(xué)興趣小組的活動內(nèi)容,加強(qiáng)對高層次學(xué)生的競賽輔導(dǎo),培養(yǎng)拔尖人才。
四、教研課題
高中數(shù)學(xué)新課程新教法
五。教學(xué)進(jìn)度
第一周 集 合
第二周 函數(shù)及其表示
第三周 函數(shù)的基本性質(zhì)
第四周 指數(shù)函數(shù)
第五周 對數(shù)函數(shù)
第六周 冪函數(shù)
第七周 函數(shù)與方程
第八周 函數(shù)的應(yīng)用
第九周 期中考試
第十十一周 空間幾何體
第十二周 點,直線,面之間的位置關(guān)系
第十三十四周 直線與平面平行與垂直的判定與性質(zhì)
第十五十六周 直線與方程
第十八十九周 圓與方程
第二十周 期末考試
高一數(shù)學(xué)教學(xué)計劃4
一、學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在的主要問題
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:
1、進(jìn)一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等?陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
2、被動學(xué)習(xí)。許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán)。表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、對自己學(xué)習(xí)數(shù)學(xué)的好差(或成。┎涣私,更不會去進(jìn)行反思總結(jié),甚至根本不關(guān)心自己的成敗。
4、不能計劃學(xué)習(xí)行動,不會安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時監(jiān)控每一步驟,對學(xué)習(xí)結(jié)果不會正確地自我評價。
5、不重視基礎(chǔ)。一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識和能力,對數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運用數(shù)學(xué)語言來分析問題和表達(dá)思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴(yán)重制約著學(xué)生數(shù)學(xué)成績的提高。
二、教學(xué)策略思考與實踐
針對我校高一學(xué)生的具體情況,我在高一數(shù)學(xué)新教材教學(xué)實踐與探究中,貫徹“因人施教,因材施教”原則。以學(xué)法指導(dǎo)為突破口;著重在“讀、講、練、輔、作業(yè)”等方面下功夫,取得一定效果。
加強(qiáng)學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。
制定計劃使學(xué)習(xí)目的明確,時間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力。但計劃一定要切實可行,既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。
課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動權(quán)。自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)!皩W(xué)然后知不足”,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細(xì)刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
及時復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強(qiáng)化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進(jìn)行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對所學(xué)的新知識由“懂”到“會”。
獨立作業(yè)是學(xué)生通過自己的獨立思考,靈活地分析問題、解決問題,進(jìn)一步加深對所學(xué)新知識的理解和對新技能的掌握過程。這一過程是對學(xué)生意志毅力的考驗,通過運用使學(xué)生對所學(xué)知識由“會”到“熟”。
解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補(bǔ)遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考,實在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯的地方拿出來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅持使對所學(xué)知識由“熟”到“活”。
系統(tǒng)小結(jié)是學(xué)生通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識和發(fā)展認(rèn)識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系。以達(dá)到對所學(xué)知識融會貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對所學(xué)知識由“活”到“悟”。
課外學(xué)習(xí)包括閱讀課外書籍與報刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情。
1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內(nèi)涵和外延及辨析概念。例如,集合是數(shù)學(xué)中的一個原始概念,是不加定義的。它從常見的“我校高一年級學(xué)生”、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數(shù)”等事物中抽象出來,但集合的概念又不同于特殊具體的實物集合,集合的確定及性質(zhì)特征是由一組公理來界定的。“確定性、無序性、互異性”常常是“集合”的代名詞。
再如象限角的概念,要向?qū)W生解釋清楚,角的始邊與x軸的非負(fù)半軸重合和與x軸的正半軸重合的細(xì)微差別;根據(jù)定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導(dǎo)學(xué)生從多層次,多角度去認(rèn)識和掌握數(shù)學(xué)概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結(jié)論。如高一新教材(上)等比數(shù)列的前n項和Sn。有q≠1和q=1兩種情形;對數(shù)計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規(guī)范。如在解對數(shù)函數(shù)題時,要注意“真數(shù)大于0”的隱含條件;解有關(guān)二次函數(shù)題時要注意二次項系數(shù)不為零的隱含條件等。讀書要鼓勵學(xué)生相互議論。俗語說“議一議知是非,爭一爭明道理”。例如,讓學(xué)生議論數(shù)列與數(shù)集的聯(lián)系與區(qū)別。數(shù)列與數(shù)的集合都是具有某種共同屬性的全體。數(shù)列中的數(shù)是有順序的,而數(shù)集中的元素是沒有順序的;同一個數(shù)可以在數(shù)列中重復(fù)出現(xiàn),而數(shù)集中的元素是沒有重復(fù)的(相同的數(shù)在數(shù)集中算作同一個元素)。在引導(dǎo)學(xué)生閱讀時,教師要經(jīng)常幫助學(xué)生歸類、總結(jié),盡可能把相關(guān)知識表格化。如一元二次不等式的解情況列表,三角函數(shù)的圖象與性質(zhì)列表等,便于學(xué)生記憶掌握。
2、講。外國有一位教育家曾經(jīng)說過:教師的作用在于將“冰冷”的知識加溫后傳授給學(xué)生。講是實踐這種傳授的最直接和最有效的教學(xué)手段。首先講要注意循序漸進(jìn)的原則。循序漸進(jìn),防止急躁。由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達(dá)到了自動化或半自動化的熟練程度。
每堂新授課中,在復(fù)習(xí)必要知識和展示教學(xué)目標(biāo)的基礎(chǔ)上,老師著重揭示知識的產(chǎn)生、形成、發(fā)展過程,解決學(xué)生疑惑。比如在學(xué)習(xí)兩角和差公式之前,學(xué)生已經(jīng)掌握五套誘導(dǎo)公式,可以將求任意角三角函數(shù)值問題轉(zhuǎn)化為求某一個銳角三角函數(shù)值的問題。此時教師應(yīng)進(jìn)一步引導(dǎo)學(xué)生:對于一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函數(shù)就呼之欲出了,極大激發(fā)了學(xué)生的學(xué)習(xí)興趣。講課要注意從簡單到復(fù)雜的過程,要讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。鼓勵學(xué)生應(yīng)積極、主動參與課堂活動的全過程,教、學(xué)同步。讓學(xué)生自己真正做學(xué)習(xí)的主人。
例如,講解函數(shù)的圖象應(yīng)從振幅、周期、相位依次各自進(jìn)行變化,然后再綜合,并盡可能利用多媒體輔助教學(xué),使學(xué)生容易接受。其次講要注重突出數(shù)學(xué)思想方法的教學(xué),注重學(xué)生數(shù)學(xué)能力的培養(yǎng)。例如講到等比數(shù)列的概念、通項公式、等比中項、等比數(shù)列的性質(zhì)、等比數(shù)列的前n項和?梢砸龑(dǎo)學(xué)生對照等差數(shù)列的相應(yīng)的內(nèi)容,比較聯(lián)系。讓學(xué)生更清楚等差數(shù)列和等比數(shù)列是兩個對偶概念。
3、練。數(shù)學(xué)是以問題為中心。學(xué)生怎么應(yīng)用所學(xué)知識和方法去分析問題和解決問題,必須進(jìn)行練習(xí)。首先練習(xí)要重視基礎(chǔ)知識和基本技能,切忌過早地進(jìn)行“高、深、難”練習(xí)。鑒于目前我校高一的生源現(xiàn)狀,基礎(chǔ)訓(xùn)練是很有必要的。課本的例題、練習(xí)題和習(xí)題要求學(xué)生要題題過關(guān);補(bǔ)充的練習(xí),應(yīng)先是課本中練習(xí)及習(xí)題的簡單改造題,這有利于學(xué)生鞏固基礎(chǔ)知識和基本技能。讓學(xué)生通過認(rèn)真思考可以完成。即讓學(xué)生“跳一跳可以摸得著”。一定要讓學(xué)生在練習(xí)中強(qiáng)化知識、應(yīng)用方法,在練習(xí)中分步達(dá)到教學(xué)目標(biāo)要求并獲得再練習(xí)的興趣和信心。例如根據(jù)數(shù)列前幾項求通項公式練習(xí),在新教材高一(上)P111例題2上簡單地做一些改造,便可以變化出各種求解通項公式方法的題目;再如數(shù)列復(fù)習(xí)參考題第12題;就是一個改造性很強(qiáng)的數(shù)學(xué)題,教師可以在上面做很多文章。其次要講練結(jié)合。學(xué)生要練習(xí),老師要評講。多講解題思路和解題方法,其中包括成功的與錯誤的。特別是注意要充分暴露錯誤的思維發(fā)生過程,在課堂造就民主氣氛,充分傾聽學(xué)生意見,哪怕走點“彎路”,吃點“苦頭”;另一方面,則引導(dǎo)學(xué)生各抒己見,評判各方面之優(yōu)劣,最后選出大家公認(rèn)的最佳方法。還可適當(dāng)讓學(xué)生涉及一些一題多解的題目,拓展思維空間,培養(yǎng)學(xué)生思維的多面性和深刻性。
例如,高一(下)P26例5求證?梢詮囊贿呑C到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元法,將無理不等式化為關(guān)于t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標(biāo)系中作出它們的圖像。求兩圖在x軸上方的交點的橫坐標(biāo)為2,最終得解。要求學(xué)生掌握通解通法同時,也要講究特殊解法。最后練習(xí)要增強(qiáng)應(yīng)用性。例如用函數(shù)、不等式、數(shù)列、三角、向量等相關(guān)知識解實際應(yīng)用題。引導(dǎo)學(xué)生學(xué)會建立數(shù)學(xué)模型,并應(yīng)用所學(xué)知識,研究此數(shù)學(xué)模型。
4、作業(yè)。鑒于學(xué)生現(xiàn)有的知識、能力水平差異較大,為了使每一位學(xué)生都能在自己的“最近發(fā)展區(qū)”更好地學(xué)習(xí)數(shù)學(xué),得到最好的發(fā)展,制定“分層次作業(yè)”。即將作業(yè)難度和作業(yè)量由易到難分成A、B、C三檔,由學(xué)生根據(jù)自身學(xué)習(xí)情況自主選擇,然后在充分尊重學(xué)生意見的基礎(chǔ)上再進(jìn)行協(xié)調(diào)。以后的時間里,根據(jù)學(xué)生實際學(xué)習(xí)情況,隨時進(jìn)行調(diào)整。
5、輔導(dǎo)。輔導(dǎo)指兩方面,培優(yōu)和補(bǔ)差。對于數(shù)學(xué)尖子生,主要培養(yǎng)其自學(xué)能力、獨立鉆研精神和集體協(xié)作能力。具體做法:成立由三至六名學(xué)生組成的討論組,教師負(fù)責(zé)為他們介紹高考、競賽參考書,并定期提供學(xué)習(xí)資料和咨詢、指導(dǎo)。下面著重談?wù)勓a(bǔ)差工作。輔導(dǎo)要鼓勵學(xué)生多提出問題,對于不能提高的同學(xué)要從平時作業(yè)及練習(xí)考試中發(fā)現(xiàn)問題,跟蹤到人,跟蹤到具體知識。要有計劃,有針對性和目的性地輔導(dǎo),切忌冷飯重抄和無目標(biāo)性。要及時檢查輔導(dǎo)效果,做到學(xué)生人人知道自己存在問題(越具體越好),老師對輔導(dǎo)學(xué)生情況要了如指掌。對學(xué)有困難的同學(xué),要耐心細(xì)致輔導(dǎo),還要注意鼓勵學(xué)生戰(zhàn)勝自己,提高自已的分析和解決問題的能力。
高一數(shù)學(xué)教學(xué)計劃5
一.基本情況分析:
1.學(xué)生情況分析:4個重點班的學(xué)生,基礎(chǔ)比較好,學(xué)習(xí)積極性高.普通班學(xué)生在基礎(chǔ)、學(xué)習(xí)習(xí)慣、學(xué)習(xí)自覺性等方面都有一定差距,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。學(xué)生存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于強(qiáng)化基礎(chǔ)知識,培養(yǎng)學(xué)生的計算能力,提高思維能力,爭取每堂課教學(xué)一個知識點,掌握一個知識點。
2.教材分析:本學(xué)期時間短,教學(xué)任務(wù)是必修4第二章,必修5,必修2涉及平面向量,解三角形,數(shù)列,空間幾何體,點,線面的位置關(guān)系,直線與方程,圓與方程。
二.工作要點及措施
1、教案學(xué)案一體化繼續(xù)探索適合我校學(xué)生實際的課堂教學(xué)模式,為發(fā)揮學(xué)生的主體作用,切實提高課堂效率,本學(xué)期推行三圖四化的使用,基本操作辦法是,提前一天把學(xué)案發(fā)給學(xué)生,讓學(xué)生課前預(yù)習(xí),即先自主學(xué)習(xí),在課堂上,讓學(xué)生充分活動,在教師的問題引導(dǎo)下,積極思考,同學(xué)之間認(rèn)真討論,確定問題的解決的方法途徑和結(jié)論,教師在課堂上做好問題的引導(dǎo)和問題的變式,想方設(shè)法的激勵學(xué)生思考問題,在學(xué)生回答問題后對學(xué)生進(jìn)行肯定和鼓勵。
三圖四化工廠的設(shè)計
組內(nèi)成員先自行設(shè)計出學(xué)案初稿,然后經(jīng)備課組全體成員集體教研、討論,確定學(xué)案的定稿。由于課型不同,學(xué)案的環(huán)節(jié)也相應(yīng)存在著不同,但每個學(xué)案都應(yīng)包括學(xué)習(xí)目標(biāo)、學(xué)習(xí)重點、導(dǎo)學(xué)問題、學(xué)法指導(dǎo)、達(dá)標(biāo)訓(xùn)練等環(huán)節(jié),在設(shè)計中要把握問題的難度,在操作中低重心運行,為保證高考升學(xué)取得大面積豐收,教學(xué)要面向全體學(xué)生,教學(xué)要求要低一些,讓后進(jìn)生能接受,調(diào)動他們的學(xué)習(xí)積極性,促進(jìn)后進(jìn)生的轉(zhuǎn)變,由此來督促中上等學(xué)生的學(xué)習(xí)。
(1)學(xué)習(xí)目標(biāo)的制定。學(xué)習(xí)目標(biāo)要明確,學(xué)生能一目了然,切忌學(xué)習(xí)目標(biāo)過多,讓學(xué)生在課堂的開始就引起消極情緒。
(2)導(dǎo)學(xué)問題的設(shè)計。導(dǎo)學(xué)問題的設(shè)計不是把課本所學(xué)知識變成問題然后簡單邏列,而是根據(jù)教材的特點,學(xué)生的實際水平能力,聯(lián)系社會現(xiàn)實問題,設(shè)計成不同層次的問題。問題的設(shè)計和問題的形式靈活多樣,可以是問題式、簡答式等等,根據(jù)學(xué)習(xí)內(nèi)容的不同采用不同的形式。
(3)學(xué)法指導(dǎo)。
學(xué)法指導(dǎo)也就是學(xué)習(xí)方法、活動方式的指導(dǎo)及疑難問題的提示等。學(xué)生對每節(jié)課知識掌握的如何,學(xué)習(xí)方法的指導(dǎo)起到了關(guān)鍵作用。本環(huán)節(jié)的目的是讓學(xué)生在平時的學(xué)習(xí)過程中隨時掌握解決問題的方法,逐步由學(xué)會變?yōu)闀䦟W(xué)。
(4)達(dá)標(biāo)訓(xùn)練的設(shè)計。為了使學(xué)到的知識及時得到鞏固、消化和吸收,進(jìn)而轉(zhuǎn)化為能力,要精心設(shè)計有階梯性、層次性的達(dá)標(biāo)訓(xùn)練,要注意此環(huán)節(jié)應(yīng)面向全體學(xué)生,發(fā)展各類學(xué)生的潛能,讓每個學(xué)生在每節(jié)課后都有收獲,都有成就感。
2、集體備課我們要克服以往集體備課中存在的問題,真正提高說課質(zhì)量,使集體備課對每位教師尤其是新教師起到有效的指導(dǎo)和幫助作用,將集體備課落到實處。具體做法如下:
(1)提前確定教學(xué)進(jìn)度、中心發(fā)言人(詳情見附表)及說課時間(每周五下午6、7節(jié))。
(2)中心發(fā)言人針對本年級學(xué)生實際情況,精心設(shè)計課堂結(jié)構(gòu),精選例題和作業(yè),設(shè)計好學(xué)案,可以適當(dāng)多選些題目,文科生在此基礎(chǔ)上可進(jìn)行適當(dāng)刪改(本學(xué)期在教學(xué)內(nèi)容上文理沒有什么差別),要注意低起點、多重復(fù)。說課時,要說透教材、教法、教學(xué)重點和難點,例題要說明選題意圖,要有詳細(xì)的解題過程、注意事項等,特別要在教學(xué)方法的改進(jìn)上多下功夫,要從學(xué)生現(xiàn)有的認(rèn)知水平出發(fā),設(shè)想學(xué)生可能出現(xiàn)的種種問題及應(yīng)對措施。作業(yè)要有針對性,層次性,既鞏固課上的知識點、題型,又要有一定的思維延展性,使文理科的學(xué)生在作業(yè)上有一定的區(qū)分度,使學(xué)有余力的學(xué)生有一個鍛煉、培養(yǎng)思維能力的平臺。
(3)每位教師在說課前都要做好準(zhǔn)備,認(rèn)真研究教材教法知道要說的是什么內(nèi)容,包括哪些基礎(chǔ)知識和基本題型,了解本部分內(nèi)容涉及的數(shù)學(xué)思想方法,做完說課稿上的例題、習(xí)題、作業(yè),對例題的講解和其中蘊含的數(shù)學(xué)思想和解題技巧、計算技巧形成一個明確的認(rèn)識,并寫好初備提綱,以備說課時作出必要的補(bǔ)充和自己的見解。每位教師可以對說課稿進(jìn)行補(bǔ)充,也可就初備中發(fā)現(xiàn)的問題提問,然后全組教師進(jìn)行交流,以改進(jìn)教法、增刪例題和作業(yè),使說課稿更加完善和實用。
3、集體聽評課為提高每位教師的教育教學(xué)水平,依據(jù)學(xué)校教學(xué)計劃,青年教師每周聽課1節(jié),其他教師月至少2節(jié)。每周進(jìn)行一次集體聽評課活動(詳情見附表)。評課時不僅要說優(yōu)點,更要說不足和遺憾,提出意見和建議。當(dāng)局者迷,這樣做有利于授課教師認(rèn)清自身存在的問題,以改進(jìn)教學(xué),這也是對授課教師負(fù)責(zé)任的一種表現(xiàn)。通過評他人的課,對比查找自己存在的問題,有利于改進(jìn)教學(xué)。
4、教案:要寫明教學(xué)時間、課題、教學(xué)重點難點、教學(xué)方法、教學(xué)過程等。集體說課后,每位教師都要結(jié)合本班學(xué)生實際情況,精心設(shè)計課堂45分鐘應(yīng)如何分配到各個教學(xué)環(huán)節(jié),要提問什么問題,提問誰,例題怎樣分析,滲透什么思想方法。教學(xué)過程要有復(fù)習(xí)回顧、導(dǎo)入設(shè)計、師生活動、例題的分析、作業(yè)設(shè)計與小結(jié)等。每位教師上完課之后都要思考兩個問題:我這節(jié)課上得如何?怎樣上這節(jié)課更好、最好?并結(jié)合課堂上出現(xiàn)的各種情況,認(rèn)真寫好教學(xué)反思,或總結(jié)經(jīng)驗,或反思失誤,或記錄靈感,為今后教學(xué)和科研工作積累最實用的資料。
5、上課要重視三圖四化的應(yīng)用,要用好學(xué)案,設(shè)計整個課堂的教學(xué)環(huán)節(jié);
(1)我們要率先遵守課堂常規(guī),及時到位候課,提醒學(xué)生做好上課的準(zhǔn)備。上課過程中,語言要簡潔生動,板書、解題、作圖要規(guī)范嚴(yán)謹(jǐn),不要出現(xiàn)知識性錯誤。身教勝于言教,我們怎樣要求學(xué)生,就應(yīng)比他們做地更好,用自身的行動為學(xué)生作好示范。
(2)把主動權(quán)交給學(xué)生,多作主持人,少當(dāng)播音員。學(xué)生能做的事,就交給學(xué)生做,不要好心辦壞事。但必須指出,對于學(xué)生理解有困難、易混、易錯的知識和題目,一定要多講、講透,千萬不要為了形式上的留時間、留空間造成學(xué)生在知識和方法上出現(xiàn)漏洞。
(3)針對學(xué)生存在的問題,繼續(xù)加強(qiáng)對學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),包括如何記筆記,記什么;培養(yǎng)先復(fù)習(xí)再做作業(yè)的習(xí)慣;獨立思考的習(xí)慣;遇到困難查教材、查筆記的習(xí)慣等。
6、作業(yè)批改批改作業(yè)前,全組成員要校對答案,匯總解題方法。批改作業(yè)的基本要求是全批全改、及時準(zhǔn)確。對錯誤較多的題目,認(rèn)真分析原因,集中講評,并督促他們改正;對學(xué)生書寫、計算、作業(yè)整理方面存在的問題,要進(jìn)行學(xué)法指導(dǎo);認(rèn)真書寫評語,既要指出問題,又要多些鼓勵
7、坐班:全組教師嚴(yán)格遵守學(xué)校的坐班紀(jì)律,保持辦公室的安靜,搞好辦公室的衛(wèi)生,責(zé)任到人,全組教師共同努力,創(chuàng)設(shè)良好的辦公環(huán)境,提高干事的效率。
高一數(shù)學(xué)教學(xué)計劃6
一、基本情況分析:
1、學(xué)生情況分析:4個重點班的學(xué)生,基礎(chǔ)比較好,學(xué)習(xí)積極性高。普通班學(xué)生在基礎(chǔ)、學(xué)習(xí)習(xí)慣、學(xué)習(xí)自覺性等方面都有一定差距,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。學(xué)生存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于強(qiáng)化基礎(chǔ)知識,培養(yǎng)學(xué)生的計算能力,提高思維能力,爭取每堂課教學(xué)一個知識點,掌握一個知識點。
2、教材分析:本學(xué)期時間短,教學(xué)任務(wù)是必修4第二章,必修5,必修2涉及平面向量,解三角形,數(shù)列,空間幾何體,點,線面的位置關(guān)系,直線與方程,圓與方程。
二、教學(xué)內(nèi)容:
本學(xué)期的數(shù)學(xué)教學(xué)內(nèi)容是高一數(shù)學(xué)下冊,包括第四章《三角函數(shù)》和第五章《平面向量》。按照數(shù)學(xué)教學(xué)大綱的要求,第四章教學(xué)需要36個課時(不包含考試與測驗的時間);第五章的教學(xué)需要22個課時,共計需要58個課時。本學(xué)期有兩次月考和五一長假,實際授課時間為18周,按每周6課時計算,數(shù)學(xué)課時達(dá)到110課時左右,時間相當(dāng)充足。這為我們數(shù)學(xué)組全面貫徹“低切入、慢節(jié)奏”的教學(xué)方針提供了保障,也是我們提高學(xué)生數(shù)學(xué)水平的又一次極好的機(jī)會。
三、本學(xué)期教學(xué)目標(biāo)
在基礎(chǔ)知識方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其內(nèi)容反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照一定的程序與步驟進(jìn)行運算、處理數(shù)據(jù)、能使用計數(shù)器及簡單的推理、畫圖。
能運用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì);會根據(jù)法則、公式正確的進(jìn)行運算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,形成數(shù)學(xué)的意思;從而通過獨立思考,會從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。
培養(yǎng)學(xué)生,學(xué)習(xí)數(shù)學(xué)的興趣、信心和毅力及實事求是的科學(xué)態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學(xué)的美學(xué)價值,并懂的數(shù)學(xué)來源于實踐又反作用于實踐的觀點;數(shù)學(xué)中普遍存在的對立統(tǒng)一、運動變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點。
四、教學(xué)計劃:
本學(xué)期的期中考試(預(yù)計在4月14號至4月17號進(jìn)行)涵蓋的內(nèi)容為第四章的前9節(jié),由于課時量充足,第10節(jié)“正切函數(shù)的圖像和性質(zhì)”以及第11節(jié)“已知三角函數(shù)值求角”將在上半學(xué)期講授,這樣下半個學(xué)期的教學(xué)任務(wù)為30個課時。
我們備課組經(jīng)過認(rèn)真的思索、充分的討論,將期中考試前的教學(xué)進(jìn)度安排如下:
。ㄒ粏卧┤我饨堑娜呛瘮(shù)
§4.1角的概念的推廣3課時
§4.2弧度制3課時
§4.3任意角的三角函數(shù)3~4課時
§4.4同角三角函數(shù)的基本關(guān)系4課時
§4.5正弦、余弦的誘導(dǎo)公式4課時
復(fù)習(xí)課(習(xí)題課)4課時
單元測試及講評2課時
。ǘ䥺卧﹥山呛团c差的三角函數(shù)
§4.6兩角和與差的正弦、余弦、正切7課時
習(xí)題課3課時
§4.7兩倍角的正弦、余弦、正切4課時
習(xí)題課2課時
單元測試及講評2課時
。ㄈ龁卧┤呛瘮(shù)的圖象及性質(zhì)
§4.8正弦、余弦函數(shù)的圖象和性質(zhì)5課時
習(xí)題課2課時
§4.9函數(shù)的圖象4課時總計授課53課時,余下課時可安排期中復(fù)習(xí)。
期中考試后的授課計劃:
§4.10正切函數(shù)的圖象和性質(zhì)3課時
§4.11已知三角函數(shù)值求角4課時
習(xí)題課2課時
第四章復(fù)習(xí)4課時
第五章
。ㄒ粏卧┫蛄考捌溥\算
§5.1向量1課時
§5.2向量的加減法2課時
§5.3實數(shù)與向量的積3課時
§5.4平面向量的坐標(biāo)計算3課時
§5.5線段的定比分點2課時
§5.6平面向量的數(shù)量積及運算律3課時
§5.7平面向量數(shù)量積的坐標(biāo)表示2課時
§5.8平移2課時
習(xí)題課3課時
單元測試與講評(隨堂)2課時
§5.9正弦、余弦定理5課時
§5.10解斜三角形應(yīng)用舉例2課時
實習(xí)與研究性課題4課時
習(xí)題課3課時
單元測試與講評2課時
總結(jié):以上就是本學(xué)期的數(shù)學(xué)教學(xué)計劃,希望能對你有所幫助,如有不足之處,請批評指正!
高一數(shù)學(xué)教學(xué)計劃7
一、具體目標(biāo):
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)
二、本學(xué)期要達(dá)到的教學(xué)目標(biāo)
1.雙基要求:
在基礎(chǔ)知識方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其內(nèi)容反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照一定的程序與步驟進(jìn)行運算、處理數(shù)據(jù)、能使用計數(shù)器及簡單的推理、畫圖。
2.能力培養(yǎng):
能運用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì);會根據(jù)法則、公式正確的進(jìn)行運算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,形成數(shù)學(xué)的意思;從而通過獨立思考,會從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。
3. 思想教育:
三、進(jìn)度授課計劃及進(jìn)度表(略)
高中是人生中的關(guān)鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級上學(xué)期數(shù)學(xué)教學(xué)計劃,希望大家喜歡。
高一數(shù)學(xué)教學(xué)計劃8
本學(xué)期擔(dān)任高一(9)(10)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有120人,初中的基礎(chǔ)參差不齊,但兩個班的學(xué)生整體水平不高;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計劃。
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學(xué)目標(biāo).
(一)情意目標(biāo)
(1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
(6)讓學(xué)生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
(二)能力要求培養(yǎng)學(xué)生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運算能力。
(1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算能力。
(2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算能力。
(3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算能力。
三、學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在的主要問題
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:
1、進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
2、被動學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
高一數(shù)學(xué)教學(xué)計劃9
一.指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《新課程標(biāo)準(zhǔn)》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機(jī)的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點,加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二.學(xué)情分析:
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面: 1、進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、
廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
2、被動學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的`內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、對自己學(xué)習(xí)數(shù)學(xué)的好差(或成敗)不了解,更不會去進(jìn)行反思總結(jié),甚至根本不關(guān)心自己的成敗。
4、不能計劃學(xué)習(xí)行動,不會安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時監(jiān)控每一步驟,對學(xué)習(xí)結(jié)果不會正確地自我評價。
5、不重視基礎(chǔ).一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。 此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識和能力,對數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運用數(shù)學(xué)語言來分析問題和表達(dá)思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴(yán)重制約著學(xué)生數(shù)學(xué)成績的提高
三、教學(xué)目標(biāo)與要求
必修1,主要涉及兩章內(nèi)容:
第一章:集合
通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時的簡潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會用集合語言表示數(shù)學(xué)對象,為以后的學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補(bǔ)集的含義,會求在給定集合中某個集合的補(bǔ)集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識的過程中,培養(yǎng)學(xué)生的思維能力。
第二章:函數(shù)的概念與基本初等函數(shù)Ⅰ
教學(xué)本章時應(yīng)立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實驗、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學(xué)會用函數(shù)的思想、變化的觀點分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
第三章:函數(shù)的應(yīng)用
函數(shù)的應(yīng)用是學(xué)習(xí)函數(shù)的一個重要方面,學(xué)生學(xué)習(xí)函數(shù)的應(yīng)用,目的就
是利用已有的函數(shù)知識分析問題和解決問題.通過函數(shù)的應(yīng)用,對完善函數(shù)思想,激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的意識,培養(yǎng)分析問題、解決問題的能力,增強(qiáng)進(jìn)行實踐的能力等,都有很大的幫助。
1.了解函數(shù)與方程之間的關(guān)系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;
2.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
必修4:主要涉及三章內(nèi)容:
第一章:三角函數(shù)
通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價值,學(xué)會用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章:平面向量
在本章中讓學(xué)生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運算;
4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。
第三章:三角恒等變換
通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦
高一數(shù)學(xué)教學(xué)計劃10
數(shù)學(xué)是利用符號語言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學(xué)科。數(shù)學(xué)網(wǎng)為大家推薦了高一數(shù)學(xué)教學(xué)計劃,請大家仔細(xì)閱讀,希望你喜歡。
一.學(xué)情分析
秋季起,湖南省高中新課程實驗工作全面啟動,我校選用的數(shù)學(xué)教材是由人民教育出版社、課程教材研究所、中學(xué)數(shù)學(xué)課程教材研究開發(fā)中心編著的A版教材。與舊教材作一比較,發(fā)現(xiàn)本套教材是在繼承我國高中數(shù)學(xué)教科書編寫優(yōu)良傳統(tǒng)和基礎(chǔ)上積極創(chuàng)新,充分體現(xiàn)了數(shù)學(xué)的美學(xué)價值和人文精神。我校是一所普通的高中,在重點高中和私立學(xué)校擴(kuò)招的影響下,我校新生的素質(zhì)可想而知了。學(xué)生基礎(chǔ)差,學(xué)習(xí)興趣不大,怎樣調(diào)動學(xué)生的學(xué)習(xí)興趣是本期在教學(xué)中要解決的重要問題。
二.教材分析
本教材有下列幾個特點:
1、更加注重強(qiáng)調(diào)數(shù)學(xué)知識的實際背景和應(yīng)用,使教材具有很強(qiáng)的親和力,即以生動活潑的呈現(xiàn)方式,激發(fā)學(xué)生的興趣和美感,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,使學(xué)生興趣盎然地投入學(xué)習(xí)。
2. 以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神,體現(xiàn)了問題性,本套教材的一個很大特點是每一章都可以看到觀察思考探索以及用問號性圖標(biāo)呈現(xiàn)的邊空等欄目,利用這些欄目,在知識形過過程的關(guān)鍵點上,在運用數(shù)學(xué)思想方法產(chǎn)生解決問題策略的關(guān)節(jié)點上,在數(shù)學(xué)知識之間聯(lián)系的聯(lián)結(jié)點上,在數(shù)學(xué)問題變式的發(fā)散點上,在學(xué)生思維的最近發(fā)展區(qū)內(nèi),提出恰當(dāng)?shù)、對學(xué)生數(shù)學(xué)思維有適度啟發(fā)的問題,以引導(dǎo)學(xué)生的數(shù)學(xué)探究活動,切實轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式。
3. 信息技術(shù)是一種強(qiáng)有力的認(rèn)識工具,在教材的編寫過程體現(xiàn)了積極探索數(shù)學(xué)課程與信息技術(shù)的整合,幫助學(xué)生利用信息技術(shù)的力量,對數(shù)學(xué)的本質(zhì)作進(jìn)一步的理解。
4.關(guān)注學(xué)生數(shù)學(xué)發(fā)展的不同需求,為不同學(xué)生提供不同的發(fā)展空間, 促進(jìn)學(xué)生個性和潛能的發(fā)展提供了很好的平臺。例如教材通過設(shè)置觀察與猜想、閱讀與思考、探究與發(fā)現(xiàn)等欄目,一方面為學(xué)生提供了一些關(guān)于探究性、拓展性、思想性、時代性和應(yīng)用性的選學(xué)材料,拓展學(xué)生的數(shù)學(xué)活動空間和擴(kuò)大學(xué)生的數(shù)學(xué)知識面,另一方面也體現(xiàn)了數(shù)學(xué)的科學(xué)價值,反映了數(shù)學(xué)在推動其他科學(xué)和整個文化進(jìn)步中的作用。
5. 新教材注重數(shù)學(xué)史滲透,特別是注重介紹我國對數(shù)學(xué)的貢獻(xiàn),充分體現(xiàn)數(shù)學(xué)的人文價值,科學(xué)價值和文化價值,激發(fā)了學(xué)生的愛國主義情感和民族自豪感。
三. 教學(xué)任務(wù)與目的
1.了解集合的含義與表示,理解集合間的關(guān)系和運算,感受集合語言的意義和作用。進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,會用集合與對應(yīng)的語言描述函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。了解函數(shù)的構(gòu)成要素,會求簡單函數(shù)定義域和值域,會根據(jù)實際情境的不同需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù)。通過已學(xué)過的具體函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義,了解奇偶性的含義,會用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。根據(jù)某個主題,收集17世紀(jì)前后發(fā)生的一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茲、歐拉等)的有關(guān)資料,了解函數(shù)概念的發(fā)展歷程。
2. 了解指數(shù)函數(shù)模型的實際背景。理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運算。理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機(jī)畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。在解決簡單實際問題的過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及對簡化運算的作用。通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機(jī)畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點。知道指數(shù)函數(shù)y=ax 與對數(shù)函數(shù)y=loga x互為反函數(shù)(a 0, a1)。通過實例,了解冪函數(shù)的概念;結(jié)合函數(shù)y=x, y=x2, y=x3, y=1/x, y=x1/2 的圖象,了解它們的變化情況。
3. 結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系.根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法.利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)間的增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義.收集一些社會生活中普遍使用的函數(shù)模型,了解函數(shù)模型的廣泛應(yīng)用。
4. 利用實物模型、計算機(jī)軟件觀察大量空間圖形,認(rèn)識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結(jié)構(gòu)。能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)制作模型,會用斜二側(cè)法畫出它們的直觀圖。通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。完成實習(xí)作業(yè),如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求)。了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。
5以長方體為載體,使學(xué)生在直觀感知的基礎(chǔ)上,認(rèn)識空間中點、直線、平面之間的位置關(guān)系。通過對大量圖形的觀察、實驗、操作和說理,使學(xué)生進(jìn)一步了解平行、垂直判定方法以及基本性質(zhì)。學(xué)會準(zhǔn)確地使用數(shù)學(xué)語言表述幾何對象的位置關(guān)系,體驗公理化思想,培養(yǎng)邏輯思維能力,并用來解決一些簡單的推理論證及應(yīng)用問題.
6. 在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素。理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。能根據(jù)斜率判定兩條直線平行或垂直。根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關(guān)系。能用解方程組的方法求兩直線的交點坐標(biāo)。探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
四.教學(xué)措施和活動
1. 加強(qiáng)集體備課與個人學(xué)習(xí),個人要加強(qiáng)自我學(xué)習(xí)和養(yǎng)成解數(shù)學(xué)題的習(xí)慣,提高個人專業(yè)素養(yǎng)和教學(xué)基本功。
2、注重培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,轉(zhuǎn)變學(xué)生學(xué)習(xí)數(shù)學(xué)的方式。學(xué)生是學(xué)習(xí)和發(fā)展的主人,教學(xué)中要體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生的自我學(xué)習(xí),自我教育與發(fā)展的意識和能力。改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)新課程追求的基本理念。
3、了解新課程教學(xué)基本程序,掌握新課程教學(xué)常規(guī)策略,立足于提高課堂教學(xué)效率。
4、與學(xué)生多溝通、多交流,真正成為學(xué)生的良師益友。
5、要深刻理解領(lǐng)悟新教材的立意進(jìn)行教學(xué),而不要盲目地加深難度。
五.教學(xué)時間大致安排
集合與函數(shù)概念 13
基本初等函數(shù) 15
函數(shù)的應(yīng)用 8
空間幾何體 8
點、直線、平面的位置關(guān)系 10
直線與方程 9
圓與方程 9
高一數(shù)學(xué)教學(xué)計劃11
教材教法分析
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課.該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化.教材通過一個實際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中.同時,通過對《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點間的距離》和選修2-1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系.
學(xué)情分析
一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的學(xué)習(xí),處理了空間中點、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識,因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想.這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ).
教學(xué)目標(biāo)
1.知識與技能
、偻ㄟ^具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性
、诹私饪臻g直角坐標(biāo)系,掌握空間點的坐標(biāo)的確定方法和過程
、鄹惺茴惐人枷朐谔骄啃轮R過程中的作用
2.過程與方法
①結(jié)合具體問題引入,誘導(dǎo)學(xué)生探究
、陬惐葘W(xué)習(xí),循序漸進(jìn)
3.情感態(tài)度與價值觀
通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法.通過實際問題的引入和解決,讓學(xué)生體會數(shù)學(xué)的實踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間.
教學(xué)重點
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點確立為空間直角坐標(biāo)系的理解.
教學(xué)難點
通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點的坐標(biāo)。
先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會用坐標(biāo)刻畫平面內(nèi)任意點的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出第三根軸的建立,進(jìn)而感受逐步發(fā)展得到空間直角坐標(biāo)系的建立,再逐步掌握利用坐標(biāo)表示空間任意點的位置.總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論.
高一數(shù)學(xué)教學(xué)計劃12
教材教法分析
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課。該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化。教材通過一個實際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中。同時,通過對《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點間的距離》和選修2—1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系。
學(xué)情分析
一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的學(xué)習(xí),處理了空間中點、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識,因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想。這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ)。
教學(xué)目標(biāo)
1、知識與技能
①通過具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性
、诹私饪臻g直角坐標(biāo)系,掌握空間點的坐標(biāo)的確定方法和過程
、鄹惺茴惐人枷朐谔骄啃轮R過程中的作用
2、過程與方法
、俳Y(jié)合具體問題引入,誘導(dǎo)學(xué)生探究
、陬惐葘W(xué)習(xí),循序漸進(jìn)
3、情感態(tài)度與價值觀
通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學(xué)生體會數(shù)學(xué)的實踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間。
教學(xué)重點
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點確立為“空間直角坐標(biāo)系的理解”。
教學(xué)難點
“通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點的坐標(biāo)”。
先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會用坐標(biāo)刻畫平面內(nèi)任意點的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出“第三根軸”的建立,進(jìn)而感受逐步發(fā)展得到“空間直角坐標(biāo)系”的建立,再逐步掌握利用坐標(biāo)表示空間任意點的位置?偟脕碚f,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論。
高一數(shù)學(xué)教學(xué)計劃13
本學(xué)期擔(dān)任高一5、6兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有110人,初中的基礎(chǔ)參差不齊,但兩個班的學(xué)生整體水平還能夠;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價自我,這給教學(xué)工作帶來了必須的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計劃。
一、教學(xué)目標(biāo)、
。ㄒ唬┣橐饽繕(biāo)
(1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
。2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
。3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。
。5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會,在發(fā)展他們思維本事的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
。6)讓學(xué)生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
。ǘ┍臼乱
1、培養(yǎng)學(xué)生記憶本事。
。1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
。3)經(jīng)過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶本事。
2、培養(yǎng)學(xué)生的運算本事。
(1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算本事。
。2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算本事。
。3)經(jīng)過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性本事。
。4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。
。5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算本事。
3、培養(yǎng)學(xué)生的思維本事。
。1)經(jīng)過對簡易邏輯的教學(xué),培養(yǎng)學(xué)生思維的周密性及思維的邏輯性。
(2)經(jīng)過不等式、函數(shù)的一題多解、多題一解,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維本事。
。3)經(jīng)過不等式、函數(shù)的引伸、推廣,培養(yǎng)學(xué)生的創(chuàng)造性思維。
。4)加強(qiáng)知識的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的本事。
。5)經(jīng)過典型例題不一樣思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。
。ㄈ┲R目標(biāo)
1、集合、簡易邏輯
。1)理解集合、子集、補(bǔ)訂、交集、交集的概念、了解空集和全集的意義、了解屬于、包含、相等關(guān)系的意義、掌握有關(guān)的術(shù)語和符號,并會用它們正確表示一些簡單的集合。
。2)理解邏輯聯(lián)結(jié)詞"或"、"且"、"非"的含義、理解四種命題及其相互關(guān)系、掌握充分條件、必要條件及充要條件的意義。
。3)掌握一元二次不等式、絕對值不等式的解法。
2、函數(shù)
(1)了解映射的概念,理解函數(shù)的概念。
(2)了解函數(shù)的單調(diào)性、奇偶性的概念,掌握確定一些簡單函數(shù)的單調(diào)性、奇偶性的方法。
。3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關(guān)系,會求一些簡單函數(shù)的反函數(shù)。
。4)理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì)。
。5)理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì)、掌握對數(shù)函數(shù)的概念、圖像和性質(zhì)。
(6)能夠運用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)解決某些簡單的實際問題。
3、數(shù)列
。1)理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。
。2)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題。
。3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題。
二、教學(xué)重點
1、集合、子集、補(bǔ)集、交集、并集、一元二次不等式的解法
四種命題、充分條件和必要條件、
2、映射、函數(shù)、函數(shù)的單調(diào)性、反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用。
3、等差數(shù)列及其通項公式、等差數(shù)列前n項和公式。
等比數(shù)列及其通項公式、等比數(shù)列前n項和公式。
三、教學(xué)難點
1、四種命題、充分條件和必要條件
2、反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)
3、等差、等比數(shù)列的性質(zhì)
四、工作措施
抓好課堂教學(xué),提高教學(xué)效益。課堂教學(xué)是教學(xué)的主要環(huán)節(jié),所以,抓好課堂教學(xué)是教學(xué)之根本,是大面積提高數(shù)學(xué)成績的主途徑。
。1)、扎實落實團(tuán)體備課,經(jīng)過團(tuán)體討論,抓住教學(xué)資料的實質(zhì),構(gòu)成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題、月考題。
。2)、加大課堂教改力度,培養(yǎng)學(xué)生的自主學(xué)習(xí)本事。最有效的學(xué)習(xí)是自主學(xué)習(xí),所以,課堂教學(xué)要大力培養(yǎng)學(xué)生自主探究的精神,經(jīng)過“知識的產(chǎn)生,發(fā)展”,逐步構(gòu)成知識體系;經(jīng)過“知識質(zhì)疑、展活”遷移知識、應(yīng)用知識,提高本事。同時要養(yǎng)成學(xué)生良好的學(xué)習(xí)習(xí)慣,不斷提高學(xué)生的數(shù)學(xué)素養(yǎng),從而提高數(shù)學(xué)素養(yǎng),并大面積提高數(shù)學(xué)成績。
高一數(shù)學(xué)教學(xué)計劃14
指導(dǎo)思想:
。1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機(jī)的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
。3)根據(jù)數(shù)學(xué)的學(xué)科特點,加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。
(4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
。5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
。6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
學(xué)情分析及相關(guān)措施:
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
。2)集中精力打好基礎(chǔ),分項突破難點。所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。
。3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
。4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
。6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
教學(xué)進(jìn)度安排:
周次
時
內(nèi)容
重點、難點
第1周
9.2~9.6
集合的含義與表示、
集合間的基本關(guān)系、
會求兩個簡單集合的并集與交集;會求給定子集的補(bǔ)集;
難點:理解概念
第2周
9.7~9.13
集合的基本運算
函數(shù)的概念、
函數(shù)的表示法
能使用Venn圖表達(dá)集合的關(guān)系及運算,會求一些簡單函數(shù)的定義域和值域;能簡單應(yīng)用
第3周
9.14~9.20
單調(diào)性與最值、
奇偶性、實習(xí)、小結(jié)
學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì),理解函數(shù)單調(diào)性、最大(小)值及幾何意義
第4周
9.21~9.27
指數(shù)與指數(shù)冪的運算、
指數(shù)函數(shù)及其性質(zhì)
掌握冪的運算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。難點:理解概念
第5周
9.28~10.4
(9月月考國慶放假)
第6周
10.5~10.11
對數(shù)與對數(shù)運算、
對數(shù)函數(shù)及其性質(zhì)
理解對數(shù)的概念及其運算性質(zhì),知道用換底公式;探索并了解對數(shù)函數(shù)單調(diào)性與特殊點;知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)
第7周
10.12~10.18
冪函數(shù)
從五個具體的冪函數(shù)(y=x,y=x2,y=x3,y=x—1,y=x1/2)圖象中認(rèn)識冪函數(shù)的一些性質(zhì)
第8周
10.19~10.25
方程的根與函數(shù)零點,
二分法求方程近似解,
能夠借助計算器用二分法求相應(yīng)方程的近似解;
第9周
10.26~11.1
幾類不同增長的模型、函數(shù)模型應(yīng)用舉例
對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義
第10周
11.2~11.8
期中復(fù)習(xí)及考試
分章歸納復(fù)習(xí)+1套模擬測試
第11周
11.9~11.15
任意角和弧度制
任意角的三角函數(shù)
了解任意角的概念和弧度制,能進(jìn)行弧度和度的互化;借助單位圓理解任意角三角函數(shù)的定義
第12周
11.16~11.22
三角函數(shù)的誘導(dǎo)公式
三角函數(shù)的圖像和性質(zhì)
借助三角函數(shù)線推導(dǎo)出誘導(dǎo)公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性
第13周
11.23~11.29
函數(shù)y=Asin(wx+q)的圖像
借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質(zhì),借助計算機(jī)畫出圖像觀察A w q對函數(shù)圖像變化的影響
第14周
11.30~12.6
三角函數(shù)模型的簡單應(yīng)用單元考試
會用三角函數(shù)解決一些簡單實際問題,體會三角函數(shù)是描述周期變化的重要函數(shù)模型
第15周
12.7~12.13
平面向量的實際背景及基本概念,平面向量的線性運算
掌握向量加、減法的運算,理解其幾何意義掌握數(shù)乘運算及兩個向量共線的含義了解平面向量的基本定理掌握正交分解及坐標(biāo)表示、會用坐標(biāo)表示平面向量的加減及數(shù)乘運算
第16周
12.14~12.20
平面向量的基本定理及坐標(biāo)表示,平面向量的數(shù)量積,
理解用坐標(biāo)表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義,體會平面向量數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面,向量數(shù)量積的運算、求夾角、及垂直關(guān)系
第17周
12.21~12.27
平面向量應(yīng)用舉例,
小結(jié)
用向量方法解決莫些簡單的平面幾何問題、力學(xué)問題與其他一些實際問題的過程,體會向量是一種幾何問題,物理問題的工具,發(fā)展運算能力和解決實際問題的能力
第18周
12.28~1.3
兩角和與差點正弦、余弦和正切公式
能以兩角差點余弦公式導(dǎo)出兩角和與差點正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內(nèi)在聯(lián)系
第19周
1.4~1.10
簡單的三角恒等變換
期末復(fù)習(xí)
高一數(shù)學(xué)教學(xué)計劃15
(一)教學(xué)目標(biāo)
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結(jié)果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關(guān)的術(shù)語和符號,并會用它們正確進(jìn)行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質(zhì)與內(nèi)涵,增強(qiáng)學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.
3.情感、態(tài)度與價值觀
通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強(qiáng)學(xué)生運用數(shù)學(xué)知識和數(shù)學(xué)思想認(rèn)識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學(xué)的應(yīng)用價值.
(二)教學(xué)重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認(rèn)識符號之間的區(qū)別與聯(lián)系
(三)教學(xué)方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結(jié)合.
(四)教學(xué)過程
教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動 設(shè)計意圖
提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進(jìn)行類似“加法”運算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數(shù)},
B = {x | x是無理數(shù)},
C = {x | x是實數(shù)}.
師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實數(shù)能進(jìn)行加減運算,探究集合是否有相應(yīng)運算.
生:集合A與B的元素合并構(gòu)成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,
導(dǎo)入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請同學(xué)們將上述兩組實例的共同規(guī)律用數(shù)學(xué)語言表達(dá)出來.
學(xué)生合作交流:歸納→回答→補(bǔ)充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設(shè)集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數(shù)軸,運用數(shù)形結(jié)合思想求解.
生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時注意集合元素的互異性. 學(xué)生嘗試求解,老師適時適當(dāng)指導(dǎo),評析.
固化概念
提升能力
探究性質(zhì) ①A∪A = A, ②A∪ = A,
、跘∪B = B∪A,
④ ∪B, ∪B.
老師要求學(xué)生對性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.
形成概念 自學(xué)提要:
、儆蓛杉系乃性睾喜⒖傻脙杉系牟⒓,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
、诮患\算具有的運算性質(zhì)呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識,自我體會交集運算的含義. 并總結(jié)交集的性質(zhì).
生:①A∩A = A;
、贏∩ = ;
、跘∩B = B∩A;
④A∩ ,A∩ .
師:適當(dāng)闡述上述性質(zhì).
自學(xué)輔導(dǎo),合作交流,探究交集運算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).
應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學(xué)開運動會,設(shè)
A = {x | x是新華中學(xué)高一年級參加百米賽跑的同學(xué)},
B = {x | x是新華中學(xué)高一年級參加跳高比賽的同學(xué)},求A∩B.
例2 設(shè)平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關(guān)系. 學(xué)生上臺板演,老師點評、總結(jié).
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學(xué)高一年級中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級既參加百米賽跑又參加跳高比賽的同學(xué)}.
例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學(xué)生的動手實踐能力.
歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質(zhì):①A∩A = A,A∪A = A,
②A∩ = ,A∪ = A,
、跘∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)
老師點評、闡述 歸納知識、構(gòu)建知識網(wǎng)絡(luò)
課后作業(yè) 1.1第三課時 習(xí)案 學(xué)生獨立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當(dāng)a = –3時,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當(dāng)a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范圍;
(2)若A∪B = {x | x<1},求a的取值范圍.
【解析】(1)如下圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = – 1左側(cè).
∴a≤–1.
(2)如右圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = –1和x = 1之間.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數(shù)時,A∩B 與A∩C = 同時成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
當(dāng)a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.
當(dāng)a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數(shù)a = –2.
例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
當(dāng)x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.
當(dāng)x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.
當(dāng)x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.
綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
【高一數(shù)學(xué)教學(xué)計劃】相關(guān)文章:
高一學(xué)生數(shù)學(xué)教學(xué)計劃03-30