初中數(shù)學(xué)知識點總結(jié)
總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)等方面情況進行評價與描述的一種書面材料,通過它可以正確認識以往學(xué)習(xí)和工作中的優(yōu)缺點,是時候?qū)懸环菘偨Y(jié)了。如何把總結(jié)做到重點突出呢?下面是小編精心整理的初中數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。
初中數(shù)學(xué)知識點總結(jié) 1
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱中心的中心對稱圖形
4、圓是定點的距離等于定長的點的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6、圓的外部可以看作是圓心的距離大于半徑的點的集合
7、同圓或等圓的半徑相等
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
12、①直線L和⊙O相交d
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角
19、如果兩個圓相切,那么切點一定在連心線上
20、
①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
④兩圓內(nèi)切d=R-r(R>r)
、輧蓤A內(nèi)含dr)
初中數(shù)學(xué)知識點總結(jié) 2
1.有理數(shù):
。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
。2)有理數(shù)的分類:① ②
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。
3.相反數(shù):
。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對值:
。1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;
5.有理數(shù)比大。海1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0。唬3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。
6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負倒數(shù)。
7.有理數(shù)加法法則:
。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
。3)一個數(shù)與0相加,仍得這個數(shù)。
8.有理數(shù)加法的運算律:
。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
。2)任何數(shù)同零相乘都得零;
。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。
11.有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
。3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù)。
13.有理數(shù)乘方的法則:
。1)正數(shù)的任何次冪都是正數(shù);
。2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。
16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。
17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。
18.混合運算法則:先乘方,后乘除,最后加減。
本章內(nèi)容要求學(xué)生正確認識有理數(shù)的概念,在實際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題。
體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。
初中數(shù)學(xué)知識點總結(jié) 3
1、圓是定點的距離等于定長的點的集合
2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
3、圓的外部可以看作是圓心的距離大于半徑的點的集合
4、同圓或等圓的半徑相等
5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
11、推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
20、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點25、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
34、如果兩個圓相切,那么切點一定在連心線上
35、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦
37、定理:把圓分成n(n≥3):⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
38、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
39、正n邊形的每個內(nèi)角都等于(n—2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長42、正三角形面積√3a/4a表示邊長
43、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長=d—(R—r)外公切線長=d—(R+r)
初中數(shù)學(xué)知識點總結(jié) 4
一.圓的定義
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點為圓心。
2.定義2中繞的那一端的端點為圓心。
3.圓任意兩條對稱軸的交點為圓心。
4.垂直于圓內(nèi)任意一條弦且兩個端點在圓上的線段的二分點為圓心。
注:圓心一般用字母O表示
5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
三.圓的基本性質(zhì)
1.圓的對稱性
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉(zhuǎn)對稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
6.直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。
四.圓和圓
1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。
2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。
3.兩個圓有兩個交點,叫做兩個圓的相交。
4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內(nèi)部,叫做兩個圓的內(nèi)切。
5.兩個圓沒有公共點且每個圓的點都在另一個圓的內(nèi)部時,叫做這兩個圓的內(nèi)含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關(guān)系:
(1)將一個圓n(n≥3)等分(可以借助量角器),依次連結(jié)各等分點所得的多邊形是這個圓的內(nèi)接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
初中數(shù)學(xué)知識點總結(jié) 5
誘導(dǎo)公式的本質(zhì)
所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。
常用的誘導(dǎo)公式
公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數(shù)學(xué)知識點總結(jié) 6
一、圓
1、圓的有關(guān)性質(zhì)
在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點到定點(圓心O)的距離等于定長的點都在圓上。
就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。
圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)。恍∮诎雸A的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個圓叫同心圓。
能夠重合的兩個圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點的圓
l、過三點的圓
過三點的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個點確定一個圓。
經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個步驟:
①假設(shè)命題的結(jié)論不成立;
、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個角是鈍角。
證明:設(shè)有兩個以上是鈍角
則兩個鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個以上是鈍角。
即最多只能有一個是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱中心的中心對稱圖形。
實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。
頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
五、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
相關(guān)的角:
1、對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
2、互為補角:如果兩個角的和是一個平角,這兩個角做互為補角。
3、互為余角:如果兩個角的和是一個直角,這兩個角叫做互為余角。
4、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補角則要求兩個角有特殊的位置關(guān)系。
角的性質(zhì)
1、對頂角相等。
2、同角或等角的余角相等。
3、同角或等角的補角相等。
其實角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。
角的靜態(tài)定義
具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
角的動態(tài)定義
一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號
角的符號:∠
角的種類
在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
角周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
特殊角
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚角相等。
鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個角,互為鄰補角。
內(nèi)錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的
內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5
同旁內(nèi)角:兩個角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6
同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7
外錯角:兩條直線被第三條直線所截,構(gòu)成了八個角。如果兩個角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。
同旁外角:兩個角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7
終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:
A{bb=k_360+a,k∈Z}表示角度制;
B{bb=2kπ+a,k∈Z}表示弧度制
、僦本和圓無公共點,稱相離。 AB與圓O相離,d>r。
、谥本和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
、壑本和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時,直線與圓相離;
初中數(shù)學(xué)知識點總結(jié) 7
關(guān)于初中數(shù)學(xué)幾何知識點總結(jié)
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
推論1直角三角形的兩個銳角互余
推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和
推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的性質(zhì)
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;
(3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識點、概念總結(jié)
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線互相垂直,并且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等于兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個角都是直角,四條邊都相等
(2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
(4)正方形的對角線與邊的夾角是45°
(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形
3、判定:
(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個四邊形是菱形,再判定出有一個角是直角
4、對稱性:正方形是軸對稱圖形也是中心對稱圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形
4、對稱性:等腰梯形是軸對稱圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。
八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。
九、多邊形
初中數(shù)學(xué)知識點總結(jié) 8
1、重心的定義:
平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。
2、幾種幾何圖形的重心:
⑴線段的重心就是線段的中點;
、破叫兴倪呅渭疤厥馄叫兴倪呅蔚闹匦氖撬膬蓷l對角線的交點;
、侨切蔚娜龡l中線交于一點,這一點就是三角形的重心;
、热我舛噙呅味加兄匦模远噙呅蔚娜我鈨蓚頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。
提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個;
、茝奈锢韺W(xué)角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。
3、常見圖形重心的性質(zhì):
、啪段的重心把線段分為兩等份;
⑵平行四邊形的重心把對角線分為兩等份;
、侨切蔚闹匦陌阎芯分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。
上面對重心知識點的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識。
、僦本和圓無公共點,稱相離。 AB與圓O相離,d>r。
②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
、壑本和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時,直線與圓相離;
初中數(shù)學(xué)知識點總結(jié) 9
一、初中數(shù)學(xué)基本概念
1.方程:含有未知數(shù)的等式叫做方程。
2.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
3.方程的解:使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
4.解方程:求方程的解的過程叫做解方程。
5.恒等式:兩個含有相同的未知數(shù),并且含未知數(shù)項的系數(shù)都是零的整式方程是一元一次方程。
二、初中數(shù)學(xué)基本公式
1.三角形面積的公式:三角形面積=底×高÷2,用字母表示為“S=ah÷2”。
2.平行四邊形面積的公式:平行四邊形面積=底×高,用字母表示為“S=ah”。
3.梯形面積的公式:梯形面積=(上底+下底)×高÷2,用字母表示為“S=(a+b)h÷2”。
4.圓的面積公式:圓面積=半徑×半徑×π,用字母表示為“S=πr2”。
5.菱形的面積公式:菱形面積=底×高,用字母表示為“S=ab”。
6.正方形面積公式:正方形面積=邊長×邊長,用字母表示為“S=a2”。
7.一元一次方程求解公式:ax=b,其中a和b為方程的系數(shù),x為未知數(shù)。當(dāng)a≠0時,有唯一解;當(dāng)a=0且b≠0時,無解;當(dāng)a=0且b=0時,有無數(shù)解。
三、初中數(shù)學(xué)基本定理
1.等式的性質(zhì):等式兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式;等式兩邊同時乘以(或除以)同一個不為0的數(shù)或代數(shù)式,所得結(jié)果仍是等式。
2.方程的解法:通過移項、合并同類項、去括號、去分母等方式,將一元一次方程轉(zhuǎn)化為ax=b的形式,求解得到方程的解。
3.一元一次不等式的解法:將一元一次不等式轉(zhuǎn)化為ax>b或ax
4.二元一次方程組的解法:通過代入消元法或加減消元法,將二元一次方程組轉(zhuǎn)化為一個一元一次方程,然后求解得到方程組的解。
5.菱形的性質(zhì):菱形的四條邊相等,對角線互相垂直平分,并且每一組對角線平分一組對角。
6.正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì),并且四條邊相等,四個角都是直角。
7.相似三角形的判定定理:兩個三角形對應(yīng)邊成比例且對應(yīng)角相等,則這兩個三角形相似。
8.全等三角形的判定定理:兩個三角形三邊相等、兩邊夾角相等、兩角夾邊相等、兩角和一邊相等,則這兩個三角形全等。
9.垂徑定理:在圓中,直徑平分弦(不是直徑的弦)所對的兩條弧,平分弦所對的圓周弧的弦垂直平分弦。
10.圓的切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;經(jīng)過圓的半徑外端且垂直于切線的直線是圓的切線;圓的割線定理:一條直線與一個圓有兩個不同的交點,則這條直線被圓截得的線段長的平方等于這個圓上兩點所對應(yīng)的弦長的平方差。
11.相交弦定理:圓內(nèi)的兩條相交弦被交點分成的兩條線段長的積相等。
12.切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的積相等。
13.圓心角、弧、弦的關(guān)系定理:在同圓或等圓中,相等的圓心角所對的弧相等;相等的弧所對的弦也相等;相等的弦所對的弧也相等;在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等;弧的度數(shù)等于它所對的圓心角度數(shù);一個圓心角等于它所對的弧的度數(shù);半圓(或直徑)所對的圓周角是直角;90°的圓周
初中數(shù)學(xué)知識點總結(jié) 10
第一章:勾股定理
1.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。
2.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。
3.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么兩條直角邊長的平方和等于斜邊長的平方。
4.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a、b、c三者之間的關(guān)系是a的平方加上b的平方等于c的平方。
第二章:四邊形
1.平行四邊形:兩組對邊分別平行的四邊形叫做平行四邊形。
2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。
3.矩形:有一個角是直角的平行四邊形叫做矩形。
4.正方形:有一組鄰邊相等的矩形叫做正方形。
5.平行四邊形的性質(zhì):對邊平行且相等;對角相等,且互補;對角線互相平分。
6.菱形的性質(zhì):四邊相等;對角線互相垂直,且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半。
7.矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線相等。
8.正方形的性質(zhì):四個角都是直角,四條邊都相等;對角線相等,且互相垂直平分,每條對角線平分一組對角;正方形被兩條對角線分成四個全等的直角三角形;正方形是特殊的長方形,所以正方形具有矩形的一切性質(zhì)。
第三章:一次函數(shù)
1.一次函數(shù):如果所給函數(shù)表達式是正比例函數(shù),那么它經(jīng)過原點(0,0);如果所給函數(shù)表達式是一次函數(shù)(斜截式),那么它經(jīng)過原點(0,0)。
2.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
3.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
4.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
5.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
6.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
7.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
8.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
9.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
10.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。
初中數(shù)學(xué)知識點總結(jié) 11
一、初中數(shù)學(xué)基本概念
1.方程:含有未知數(shù)的等式叫做方程。
2.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
3.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。
4.二元一次方程組:由兩個二元一次方程組成的方程組。
5.一元二次方程:含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。
6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判別式:當(dāng)a是正數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個不相等的實數(shù)根;當(dāng)a是負數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程沒有實數(shù)根;當(dāng)a是零時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個相等的實數(shù)根。
9.函數(shù):在某變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的函數(shù),x叫做自變量。
10.一次函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的一次函數(shù)。
11.正比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成正比,那么稱y是x的比例函數(shù)。
12.反比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成反比,那么稱y是x的反比例函數(shù)。
13.平行四邊形:在同一個平面內(nèi)兩組對角分別平行的四邊形叫做平行四邊形。
14.矩形:有一個內(nèi)角是直角的平行四邊形叫做矩形。
15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。
16.正方形:四邊相等的矩形叫做正方形。
17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。
18.三角形:在同一個平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
19.中線:連接一個頂點和它對邊的中點的線段叫做中線。
20.高線:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做高線。
21.角平分線:三角形的一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做角平分線。
22.中位線:連接三角形兩邊中點的線段叫做中位線。
23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。
24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常數(shù)項移到方程的右邊,兩邊加上一次項系數(shù)的一半的平方,再用右邊的式子除以左邊的式子,得到一個平方的形式,再用直接開平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:將一元二次方程分解成兩個一次因式的積等于0的一元二次方程,然后將各個因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。
二、初中數(shù)學(xué)基本運算
1.整式:單項式和多項式的統(tǒng)稱。
2.單項式:由數(shù)字和字母的積組成的代數(shù)式叫做單項式。單獨的一個數(shù)字或字母也叫做單項式。
3.多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項。其中不含字母的項叫做常數(shù)
初中數(shù)學(xué)知識點總結(jié) 12
第一章圖形的認識初步
一、知識框架
本章的主要內(nèi)容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形。通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯(lián)系。在此基礎(chǔ)上,認識一些簡單的平面圖形——直線、射線、線段和角。
二、本章書涉及的數(shù)學(xué)思想:
分類討論思想。在過平面上若干個點畫直線時,應(yīng)注意對這些點分情況討論;在畫圖形時,應(yīng)注意圖形的各種可能性。
方程思想。在處理有關(guān)角的大小,線段大小的計算時,常需要通過列方程來解決。
圖形變換思想。在研究角的概念時,要充分體會對射線旋轉(zhuǎn)的認識。在處理圖形時應(yīng)注意轉(zhuǎn)化思想的應(yīng)用,如立體圖形與平面圖形的互相轉(zhuǎn)化。
化歸思想。在進行直線、線段、角以及相關(guān)圖形的計數(shù)時,總要劃歸到公式n(n—1)/2的具體運用上來。
人教版七年級數(shù)學(xué)下冊主要包括相交線與平行線、平面直角坐標(biāo)系、三角形、二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述六章內(nèi)容。
第二章相交線與平行線
一、知識框架
二、知識概念
鄰補角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
同位角、內(nèi)錯角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。
同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。
命題:判斷一件事情的語句叫命題。
平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。
初中數(shù)學(xué)知識點總結(jié) 13
統(tǒng)計
科學(xué)記數(shù)法:一個大于10的數(shù)可以表示成A_10N的形式,其中1小于等于A小于10,N是正整數(shù)。
扇形統(tǒng)計圖:①用圓表示總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。②扇形統(tǒng)計圖中,每部分占總體的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360度的比。
各類統(tǒng)計圖的優(yōu)劣:條形統(tǒng)計圖:能清楚表示出每個項目的具體數(shù)目;折線統(tǒng)計圖:能清楚反映事物的變化情況;扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。
近似數(shù)字和有效數(shù)字:①測量的結(jié)果都是近似的。②利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。③對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個數(shù)的有效數(shù)字。
平均數(shù):對于N個數(shù)X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數(shù)的算術(shù)平均數(shù),記為X(上邊一橫)。
加權(quán)平均數(shù):一組數(shù)據(jù)里各個數(shù)據(jù)的重要程度未必相同,因而,在計算這組數(shù)據(jù)的平均數(shù)時往往給每個數(shù)據(jù)加一個權(quán),這就是加權(quán)平均數(shù)。
中位數(shù)與眾數(shù):①N個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。②一組數(shù)據(jù)中出現(xiàn)次數(shù)最大的那個數(shù)據(jù)叫做這個組數(shù)據(jù)的眾數(shù)。③優(yōu)劣:平均數(shù):所有數(shù)據(jù)參加運算,能充分利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中常用,但容易受極端值影響;中位數(shù):計算簡單,受極端值影響少,但不能充分利用所有數(shù)據(jù)的信息;眾數(shù):各個數(shù)據(jù)如果重復(fù)次數(shù)大致相等時,眾數(shù)往往沒有特別的意義。
調(diào)查:①為了一定的目的而對考察對象進行的全面調(diào)查,稱為普查,其中所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。②從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。③抽樣調(diào)查只考察總體中的一小部分個體,因此他的優(yōu)點是調(diào)查范圍小,節(jié)省時間,人力,物力和財力,但其調(diào)查結(jié)果往往不如普查得到的結(jié)果準確。為了獲得較為準確的調(diào)查結(jié)果,抽樣時要主要樣本的代表性和廣泛性。
頻數(shù)與頻率:①每個對象出現(xiàn)的次數(shù)為頻數(shù),而每個對象出現(xiàn)的次數(shù)與總次數(shù)的比值為頻率。②當(dāng)收集的數(shù)據(jù)連續(xù)取值時,我們通常先將數(shù)據(jù)適當(dāng)分組,然后再繪制頻數(shù)分布直方圖。
概率
可能性:①有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;必然事件和不可能事件都是確定的。②有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。③一般來說,不確定事件發(fā)生的可能性是有大小的。
概率:①人們通常用1(或100%)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。②游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。③必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0〈P(A)〈1。
對于概率類問題特別要注意以下幾點
01 注意概率、機會、頻率的共同點和不同點。
02 注意題目中隱含求概率的問題。
03 畫樹狀圖及其它方法求概率。
04 摸球模型題注意放回和不放回。
05 注意在求概率的問題中尋找替代物,常見的替代物有:球,撲克牌,骰子等。
統(tǒng)計與概率會在中考中以客觀題的形式進行考查,選擇題、填空題較多,同時考查多個考點的綜合性題目一般以解答題的形式進行考查。
解決統(tǒng)計與概率問題常用的數(shù)學(xué)思想是方程思想和分類討論思想;常用的數(shù)學(xué)方法有分類討論法,整體代入法等。
初中數(shù)學(xué)知識點總結(jié) 14
平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系:
在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。
點的坐標(biāo)的性質(zhì)
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認真學(xué)習(xí)。
因式分解定義:
把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
①結(jié)果必須是整式
、诮Y(jié)果必須是積的形式
、劢Y(jié)果是等式
④因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:
一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
②不準丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識點總結(jié) 15
一、數(shù)與代數(shù)
1.有理數(shù)
有理數(shù):包括正整數(shù)、0和負整數(shù)。
數(shù)軸:包括原點、正方向和單位長度。
相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。
絕對值:正數(shù)的絕對值是其本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。
2.整式與分式
整式:包括單項式和多項式。
分式:包括一般形式和特殊形式。
代數(shù)式:包括單字母、單項式和多項式。
二、空間與圖形
1.點、線、面
點:沒有大小,沒有長度。
線:沒有寬度,只有長度。
面:有長度和寬度,沒有高度。
2.基本圖形
直線:包括直線、射線、線段。
角:包括平角、周角和一般的角。
三角形:包括等邊三角形、等腰三角形和一般三角形。
四邊形:包括矩形、正方形、梯形和平行四邊形。
圓:包括圓的性質(zhì)和圓的定理。
三、統(tǒng)計與概率
1.統(tǒng)計
統(tǒng)計圖:包括扇形統(tǒng)計圖、折線統(tǒng)計圖和條形統(tǒng)計圖。
統(tǒng)計表:包括簡單統(tǒng)計表和復(fù)合統(tǒng)計表。
數(shù)據(jù)的收集與整理:包括抽樣調(diào)查、全面調(diào)查和自主調(diào)查。
2.概率
隨機事件:包括必然事件、不可能事件和隨機事件。
概率:包括計算事件發(fā)生的概率和隨機事件的概率。
【初中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:
初中數(shù)學(xué)的知識點總結(jié)03-11
初中數(shù)學(xué)的知識點總結(jié)09-19
初中數(shù)學(xué)的知識點總結(jié)06-21
初中數(shù)學(xué)幾何知識點總結(jié)03-01
初中數(shù)學(xué)必學(xué)的知識點總結(jié)01-14