定義域x>0定義域x>0
值域為R值域為R
在R上遞增在R上遞減
函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0)
。ㄈ﹥绾瘮(shù)
1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);
(2) 時,冪函數(shù)的圖象通過原點,并且在區(qū)間 上是增函數(shù).特別地,當 時,冪函數(shù)的圖象下凸;當 時,冪函數(shù)的圖象上凸;
(3) 時,冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.
第四章 函數(shù)的應用
一、方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù) ,把使 成立的實數(shù) 叫做函數(shù) 的零點。
2、函數(shù)零點的意義:函數(shù) 的零點就是方程 實數(shù)根,亦即函數(shù) 的圖象與 軸交點的橫坐標。
即:方程 有實數(shù)根 函數(shù) 的圖象與 軸有交點 函數(shù) 有零點.
3、函數(shù)零點的求法:
○1 (代數(shù)法)求方程 的實數(shù)根;
○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
二次函數(shù) .
(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點.
。2)△=0,方程 有兩相等實根,二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點.
5.函數(shù)的模型
高一數(shù)學必修一知識點總結(jié)6
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的'圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).
高一數(shù)學必修一知識點總結(jié)7
、殴顬閐的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.
⑵公差為d的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.
、侨魗a}、為等差數(shù)列,則{a±b}與{ka+b}(k、b為非零常數(shù))也是等差數(shù)列.
、葘θ魏蝝、n,在等差數(shù)列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數(shù)列的通項公式,此式較等差數(shù)列的`通項公式更具有一般性.
、、一般地,如果l,k,p,…,m,n,r,…皆為自然數(shù),且l+k+p+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當{a}為等差數(shù)列時,有:a+a+a+…=a+a+a+….
⑹公差為d的等差數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項數(shù)之差).
、巳绻鹻a}是等差數(shù)列,公差為d,那么,a,a,…,a、a也是等差數(shù)列,其公差為-d;在等差數(shù)列{a}中,a-a=a-a=md.(其中m、k、)
、淘诘炔顢(shù)列中,從第一項起,每一項(有窮數(shù)列末項除外)都是它前后兩項的等差中項.
⑼當公差d>0時,等差數(shù)列中的數(shù)隨項數(shù)的增大而增大;當d
、卧Oa,a,a為等差數(shù)列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.
、艛(shù)列{a}為等差數(shù)列的充要條件是:數(shù)列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數(shù)).
、圃诘炔顢(shù)列{a}中,當項數(shù)為2n(nN)時,S-S=nd,=;當項數(shù)為(2n-1)(n)時,S-S=a,=.
、侨魯(shù)列{a}為等差數(shù)列,則S,S-S,S-S,…仍然成等差數(shù)列,公差為.
、热魞蓚等差數(shù)列{a}、的前n項和分別是S、T(n為奇數(shù)),則=.
、稍诘炔顢(shù)列{a}中,S=a,S=b(n>m),則S=(a-b).
⑹等差數(shù)列{a}中,是n的一次函數(shù),且點(n,)均在直線y=x+(a-)上.
、擞浀炔顢(shù)列{a}的前n項和為S.①若a>0,公差d0,則當a≤0且a≥0時,S小.
高一數(shù)學必修一知識點總結(jié)8
第一章:解三角形
1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsina2RcsinC2R.
2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin,sinb2R,sinCc2R;(正弦定理的變形經(jīng)常用在有三角函數(shù)的等式中)③a:b:csin:sin:sinC;④abcsinsinsinCsinsinsinC111bcsinabsinCacsin.222abc.
3、三角形面積公式:SC
4、余定理:在C中,有a2b2c22bccos,b2a2c22accos,cab2abcosC.222
5、余弦定理的推論:cosbca2bc222,cosacb2ac222,cosCabc2ab222.
6、設a、b、c是C的角、、C的對邊,則:①若a2b2c2,則C90為直角三角形;②若a2b2c2,則C90為銳角三角形;③若a2b2c2,則C90為鈍角三角形.
第二章:數(shù)列
1、數(shù)列:按照一定順序排列著的一列數(shù).
2、數(shù)列的項:數(shù)列中的每一個數(shù).
3、有窮數(shù)列:項數(shù)有限的數(shù)列.
4、無窮數(shù)列:項數(shù)無限的數(shù)列.
5、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列.
6、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列.
7、常數(shù)列:各項相等的數(shù)列.
8、擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列.
9、數(shù)列的通項公式:表示數(shù)列an的第n項與序號n之間的關系的公式.
10、數(shù)列的遞推公式:表示任一項an與它的前一項an1(或前幾項)間的關系的公式.
11、如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),則這個數(shù)列稱為等差數(shù)列,這個常數(shù)稱為等差數(shù)列的公差.
12、由三個數(shù)a,,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,則稱為a與b的等差中項.若bac2,則稱b為a與c的等差中項.
13、若等差數(shù)列an的首項是a1,公差是d,則ana1n1d.通項公式的變形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;
14、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq;下角標成等差數(shù)列的項仍是等差數(shù)列;連續(xù)m項和構(gòu)成的數(shù)列成等差數(shù)列。
15、等差數(shù)列的前n項和的公式:①Snna1an2;②Snna1nn12d.
16、等差數(shù)列的前n項和的性質(zhì):①若項數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.②若項數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S奇S偶nn1(其中S奇nan,S偶n1an).
17、如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),則這個數(shù)列稱為等比數(shù)列,這個常數(shù)稱為等比數(shù)列的公比.
18、在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項.若G2ab,則稱G為a與b的等比中項.
19、若等比數(shù)列an的首項是a1,公比是q,則ana1q.
20、通項公式的變形:①anamq;②a1anqn1;③qn1ana1;④qnmanam.
21、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq;下角標成等差數(shù)列的項仍是等比數(shù)列;連續(xù)m2項和構(gòu)成的數(shù)列成等比數(shù)列。
22、等比數(shù)列an的前n項和的公式:Sna11qnaaq.1nq11q1qq1時,Sna11qa11qq,即常數(shù)項與q項系數(shù)互為相反數(shù)。
23、等比數(shù)列的前n項和的性質(zhì):①若項數(shù)為2nn,則SS偶奇q.n②SnmSnqSm.③Sn,S2nSn,S3nS2n成等比數(shù)列.
24、an與Sn的關系:anSnSn1S1n2n1
一些方法:
一、求通項公式的方法:
1、由數(shù)列的前幾項求通項公式:待定系數(shù)法
、偃粝噜弮身椣鄿p后為同一個常數(shù)設為anknb,列兩個方程求解;
、谌粝噜弮身椣鄿p兩次后為同一個常數(shù)設為anan2bnc,列三個方程求解;③若相鄰兩項相減后相除后為同一個常數(shù)設為anaq
2、由遞推公式求通項公式:
①若化簡后為an1and形式,可用等差數(shù)列的通項公式代入求解;②若化簡后為an1anf(n),形式,可用疊加法求解;
、廴艋喓鬄閍n1anq形式,可用等比數(shù)列的通項公式代入求解;
④若化簡后為an1kanb形式,則可化為(an1x)k(anx),從而新數(shù)列{anx}是等比數(shù)列,用等比數(shù)列求解{anx}的通項公式,再反過來求原來那個。(其中x是用待定系數(shù)法來求得)3、由求和公式求通項公式:
、賏1S1②anSnSn1③檢驗a1是否滿足an,若滿足則為an,不滿足用分段函數(shù)寫。
4、其他
。1)anan1fn形式,fn便于求和,方法:迭加;
例如:anan1n1有:anan1n1a2a13a3a24anan1n1各式相加得ana134n1a1nb,q為相除后的常數(shù),列兩個方程求解;
n4n1(2)anan12anan1形式,同除以anan1,構(gòu)造倒數(shù)為等差數(shù)列;
anan1anan121an1例如:anan12anan1,則1,即為以-2為公差的等差數(shù)列。anan1(3)anqan1m形式,q1,方法:構(gòu)造:anxqan1x為等比數(shù)列;
例如:an2an12,通過待定系數(shù)法求得:an22an12,即an2等比,公比為2。(4)anqan1pnr形式:構(gòu)造:anxnyqan1xn1y為等比數(shù)列;(5)anqan1p形式,同除p,轉(zhuǎn)化為上面的幾種情況進行構(gòu)造;因為anqan1pn,則anpnqan1ppn11,若qp1轉(zhuǎn)化為(1)的方法,若不為1,轉(zhuǎn)化為(3)的方法
二、等差數(shù)列的求和最值問題:(二次函數(shù)的配方法;通項公式求臨界項法)
、偃簪谌鬭k0,則Sn有最大值,當n=k時取到的最大值k滿足d0a0k1a10a10ak0,則Sn有最小值,當n=k時取到的最大值k滿足d0a0k1
三、數(shù)列求和的方法:
、侬B加法:倒序相加,具備等差數(shù)列的相關特點的,倒序之后和為定值;
、阱e位相減法:適用于通項公式為等差的一次函數(shù)乘以等比的數(shù)列形式,如:an2n13;n③分式時拆項累加相約法:適用于分式形式的通項公式,把一項拆成兩個或多個的差的形式。如:an1nn11n1n1,an12n12n1111等;22n12n1④一項內(nèi)含有多部分的拆開分別求和法:適用于通項中能分成兩個或幾個可以方便求和的部分,如:an2n1等;
四、綜合性問題中
、俚炔顢(shù)列中一些在加法和乘法中設一些數(shù)為ad和ad類型,這樣可以相加約掉,相乘為平方差;②等比數(shù)列中一些在加法和乘法中設一些數(shù)為aq和aq類型,這樣可以相乘約掉。
第三章:不等式
1、ab0ab;ab0ab;ab0ab.比較兩個數(shù)的大小可以用相減法;相除法;平方法;開方法;倒數(shù)法等等。
2、不等式的.性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;⑥ab0,cd0acbd;⑦ab0ab⑧ab0nnnn,n1;anbn,n1.
3、一元二次不等式:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.
4、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關系:判別式b4ac201二次函數(shù)yaxbxc2a0的圖象有兩個相異實數(shù)根一元二次方程axbxc02有兩個相等實數(shù)根a0的根axbxc0一元二次不等式的解集2x1,2b2ax1x2b2a沒有實數(shù)根x1x2a0axbxc02xxx1或xx2bxx2aRa0xx1xx2
5、二元一次不等式:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.
6、二元一次不等式組:由幾個二元一次不等式組成的不等式組.
7、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對x,y,所有這樣的有序數(shù)對x,y構(gòu)成的集合.
8、在平面直角坐標系中,已知直線xyC0,坐標平面內(nèi)的點x0,y0.①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.
9、在平面直角坐標系中,已知直線xyC0.①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.②若0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線xyC0上方的區(qū)域.
10、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.目標函數(shù):欲達到最大值或最小值所涉及的變量x,y的解析式.線性目標函數(shù):目標函數(shù)為x,y的一次解析式.線性規(guī)劃問題:求線性目標函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標函數(shù)取得最大值或最小值的可行解.
11、設a、b是兩個正數(shù),則ab稱為正數(shù)a、b的算術平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).
12、均值不等式定理:若a0,b0,則ab2ab,即ab2ab.
13、常用的基本不等式:①a2b22aba,bR;22②abab2a,bR;③abab2a2b2ab22a0,b0;④22a,bR.
14、極值定理:設x、y都為正數(shù),則有s(和為定值),則當xy時,積xy取得最大值s2⑴若xy.4⑵若xyp(積為定值),則當xy時,和xy取得最小值2p.
高一數(shù)學必修一知識點總結(jié)9
不等式
不等關系
了解現(xiàn)實世界和日常生活中的不等關系,了解不等式(組)的實際背景.
(2)一元二次不等式
、贂䦶膶嶋H情境中抽象出一元二次不等式模型.
、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應的.二次函數(shù)、一元二次方程的聯(lián)系.
、蹠庖辉尾坏仁,對給定的一元二次不等式,會設計求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題
、贂䦶膶嶋H情境中抽象出二元一次不等式組.
、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組.
、蹠䦶膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
、倭私饣静坏仁降淖C明過程.
、跁没静坏仁浇鉀Q簡單的(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點
高一數(shù)學必修一知識點總結(jié)10
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α
理解:
(1)注意“兩個方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。
意義:
、僦本的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;
、谠谄矫嬷苯亲鴺讼抵校恳粭l直線都有一個確定的傾斜角;
、蹆A斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時α∈(0°,90°)
k
k=0時α=0°
當α=90°時k不存在
ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,A=arctan(-a/b)
當a≠0時,傾斜角為90度,即與X軸垂直
兩角和與差的三角函數(shù):
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中
sint=B/(A2+B2)^(1/2)
cost=A/(A2+B2)^(1/2)
tant=B/A
Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
tan(2α)=2tanα/[1-tan2(α)]
三倍角公式:
sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)
cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)
tan(3α)=tana·tan(π/3+a)·tan(π/3-a)
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin2(α)=(1-cos(2α))/2=versin(2α)/2
cos2(α)=(1+cos(2α))/2=covers(2α)/2
tan2(α)=(1-cos(2α))/(1+cos(2α))
萬能公式:
sinα=2tan(α/2)/[1+tan2(α/2)]
cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
tanα=2tan(α/2)/[1-tan2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
二面角
(1)半平面:平面內(nèi)的'一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
高一數(shù)學必修一知識點總結(jié)11
指數(shù)函數(shù)——信息技術應用 借助信息技術探究指數(shù)函數(shù)的性質(zhì)
對數(shù)函數(shù)——閱讀與思考 對數(shù)的發(fā)明
探究與發(fā)現(xiàn) 互為反函數(shù)的兩個函數(shù)圖像之間的關系
冪函數(shù)
復習參考題
第三章 函數(shù)的應用
函數(shù)與方程——閱讀與思考 中外歷史上的方程求解
信息技術應用 借助信息技術求方程的近似解
函數(shù)模型及其應用——信息技術應用 收集數(shù)據(jù)并建立函數(shù)模型
實習作業(yè)
復習參考題
關于數(shù)學:
課本上講的定理,你可以自己 試著自己去推理。這樣不但提高自己的證明能力,也加深對公式的理解。還有就 是大量練習題目;旧厦空n之后都要做課余練習的題目(不包括老師的作業(yè))。
數(shù)學成績的提高,數(shù)學方法的掌握都和同學們良好的學習習慣分不開 的,因此。良好的數(shù)學學習習慣包括:聽講、閱讀、探究、作業(yè)。聽講:應抓住 聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好 筆記。每堂課結(jié)束以后應深思一下進行歸納,做到一課一得。
閱讀:閱讀時應 仔細推敲,弄懂弄通每一個概念、定理和法則,對于例題應與同類參考書聯(lián)系起 來一同學習,博采眾長,增長知識,發(fā)展思維。
探究:要學會思考,在問題解 決之后再探求一些新的方法,學會從不同角度去思考問題,甚至改變條件或結(jié)論 去發(fā)現(xiàn)新問題,經(jīng)過一段學習,應當將自己的思路整理一下,以形成自己的思維 規(guī)律。作業(yè):要先復習后作業(yè),先思考再動筆,做會一類題領會一大片,作業(yè)要 認真、書寫要規(guī)范,只有這樣腳踏實地,一步一個腳印,才能學好數(shù)學。
總之,在學習數(shù)學的過程中,要認識到數(shù)學的重要性,充分發(fā)揮自己 的主觀能動性,從小的細節(jié)注意起,養(yǎng)成良好的數(shù)學學習習慣,進而培養(yǎng)思考問 題、分析問題和解決問題的能力,最終把數(shù)學學好。
到了高中,數(shù)學跟初中數(shù) 學是有很多的不同,對知識的理解能力要求高了,對數(shù)學思維的要求也高了,憑 以前的方法是不行了。
高中數(shù)學學習方法一般來講還是以上課認真聽講為主, 抓住課本典型例題理解透了掌握透了才是王道,千萬別只顧著看參考書了,那是 本末倒置的方法;另外與老師交朋友經(jīng)常與老師溝通,問問題、請教學習方法都 很重要。建立自己的錯題檔案是殺手锏的一招。
總之,是個積累的過程,你了 解的越多,學習就越好,所以多記憶,選擇自己的方法。
有關數(shù)學知識點拓展 數(shù)學(mathematics),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念 的一門學科,從某種角度看屬于形式科學的一種。借用《數(shù)學簡史》的話,數(shù)學就是研究集合上各種結(jié)構(gòu)(關系)的科學, 可見,數(shù)學是一門抽象的學科,而嚴謹?shù)倪^程是數(shù)學抽象的關鍵。
數(shù)學在人類歷史發(fā)展和社會生活中發(fā)揮著不可替代的作用,也是學習和研究現(xiàn)代科學技術必不可少的基本工具。
數(shù)學起源于人類早期的生產(chǎn)活動,古巴比倫人從遠古時代開始已經(jīng)積 累了一定的數(shù)學知識,并能應用實際問題。從數(shù)學本身看,他們的數(shù)學知識也只 是觀察和經(jīng)驗所得,沒有綜合結(jié)論和證明,但也要充分肯定他們對數(shù)學所做出的 貢獻。
基礎數(shù)學的知識與運用是個人與團體生活中不可或缺的一部分。其基 本概念的精煉早在古埃及、美索不達米亞及古印度內(nèi)的古代數(shù)學文本內(nèi)便可觀見。
從那時開始,其發(fā)展便持續(xù)不斷地有小幅度的進展。但當時的代數(shù)學和幾何學長 久以來仍處于獨立的狀態(tài)。代數(shù)學可以說是最為人們廣泛接受的“數(shù)學”。
可以說每一個人從小時候開始學數(shù)數(shù)起,最先接觸到的數(shù)學就是代數(shù) 學。而數(shù)學作為一個研究“數(shù)”的學科,代數(shù)學也是數(shù)學最重要的`組成部分之一。
幾何學則是最早開始被人們研究的數(shù)學分支。直到16世紀的文藝復興時期,笛卡 爾創(chuàng)立了解析幾何,將當時完全分開的代數(shù)和幾何學聯(lián)系到了一起。從那以后, 我們終于可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的 代數(shù)方程。而其后更發(fā)展出更加精微的微積分。
西方最原始math(數(shù)學)應用之一,奇普現(xiàn)時數(shù)學已包括多個分支。創(chuàng) 立于二十世紀三十年代的法國的布爾巴基學派則認為:數(shù)學,至少純數(shù)學,是研 究抽象結(jié)構(gòu)的理論。結(jié)構(gòu),就是以初始概念和公理出發(fā)的演繹系統(tǒng)。他們認為, 數(shù)學有三種基本的母結(jié)構(gòu):代數(shù)結(jié)構(gòu)(群,環(huán),域,格……)、序結(jié)構(gòu)(偏序,全序 ……)、拓撲結(jié)構(gòu)(鄰域,極限,連通性,維數(shù)……)。
數(shù)學被應用在很多不同的領域上,包括科學、工程、醫(yī)學和經(jīng)濟學等。
數(shù)學在這些領域的應用一般被稱為應用數(shù)學,有時亦會激起新的數(shù)學發(fā)現(xiàn),并促 成全新數(shù)學學科的發(fā)展。數(shù)學家也研究純數(shù)學,也就是數(shù)學本身,而不以任何實 際應用為目標。雖然有許多工作以研究純數(shù)學為開端,但之后也許會發(fā)現(xiàn)合適的 應用。
具體的,有用來探索由數(shù)學核心至其他領域上之間的連結(jié)的子領域:由邏輯、集合論(數(shù)學基礎)、至不同科學的經(jīng)驗上的數(shù)學(應用數(shù)學)、以較近代 的對于不確定性的研究(混沌、模糊數(shù)學)。就縱度而言,在數(shù)學各自領域上的探 索亦越發(fā)深入。
如何學好數(shù)學
1、重視課本知識
對于高一學生來說,大部分數(shù)學知識的來源都是課本,只有很少的一部分知識是課外拓展。所以高一學生想要學好數(shù)學,就要先把課本知識理解透徹。平時做題的時候,也要以課本為重,把課本上的練習做會了,再做其他題。
2、課前預習
對很多高一學生來說,還沒有養(yǎng)成良好的學習習慣,完全沒有課前預習的習慣。但是如果想要學好高一數(shù)學,一定要進行適當?shù)念A習,如果時間不多,可以瀏覽一下老師要講的主要內(nèi)容,有一個大概的印象。這樣在上課的時候,可以更好的跟上老師的思路。
最牛高考勵志書,淘寶搜索《高考蝶變》購買!
3、記好筆記
對于高一學生來說,想要學好數(shù)學,記好課堂筆記也是一件很重要的事情。不要以為記筆記是文科生該做的事情,理科同樣需要。高一學生要清楚,在這45分鐘內(nèi),并不是所有的知識點都能掌握的,這個時候要把自己沒有理解的知識點記下來,然后課下再去鉆研。另外筆記也可以作為考試復習時的參考!
4、及時復習
想要學好高一數(shù)學,及時復習是其中重要的一環(huán)。高一學生可以通過反復閱讀教材和查找相關資料,來加深自己對基本概念和知識體系的理解和記憶,把自己學到的新知識和舊知識聯(lián)系起來,進行比較和分析。
高一數(shù)學必修一知識點總結(jié)12
數(shù)學是利用符號語言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學科。小編準備了高一數(shù)學必修1期末考知識點,希望你喜歡。
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素.
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素.
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的.對象歸入一個集合時,僅算一個元素.
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.
(4)集合元素的三個特性使集合本身具有了確定性和整體性.
3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法.
注意啊:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R
關于屬于的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上.
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法.
、僬Z言描述法:例:{不是直角三角形的三角形}
、跀(shù)學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.包含關系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.相等關系(55,且55,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} 元素相同
結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
① 任何一個集合是它本身的子集.AA
、谡孀蛹:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)
、廴绻 AB, BC ,那么 AC
、 如果AB 同時 BA 那么A=B
3. 不含任何元素的集合叫做空集,記為
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作AB(讀作A交B),即AB={x|xA,且xB}.
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.
3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示.
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
高一數(shù)學必修一知識點總結(jié)13
棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
棱錐的的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的'等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
esp:
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高一數(shù)學必修一知識點總結(jié)14
1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsincsinC2R.
2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin④a2R,sinb2R,sinCabsinc2R;③a:b:csin:sin:sinC;csinCabcsinsinsinCsin.(正弦定理主要用來解決兩類問題:1、已知兩邊和其中一邊所對的角,求其余的量。2、已知兩角和一邊,求其余的量。)⑤對于已知兩邊和其中一邊所對的角的題型要注意解的情況。(一解、兩解、無解三中情況)如:在三角形ABC中,已知a、b、A(A為銳角)求B。具體的做法是:數(shù)形結(jié)合思想畫出圖:法一:把a擾著C點旋轉(zhuǎn),看所得軌跡以AD有無交點:當無交點則B無解、當有一個交點則B有一解、當有兩個交點則B有兩個解。法二:是算出CD=bsinA,看a的情況:當a但不能到達,在岸邊選取相距3千米的C、D兩點,并測得∠ACB=75O,∠BCD=45O,∠ADC=30O,∠ADB=45(A、B、C、D在同一平面內(nèi)),求兩目標A、B之間的距離。本題解答過程略附:三角形的五個“心”;重心:三角形三條中線交點.外心:三角形三邊垂直平分線相交于一點.內(nèi)心:三角形三內(nèi)角的平分線相交于一點.垂心:三角形三邊上的高相交于一點.
7、數(shù)列:按照一定順序排列著的一列數(shù).
8、數(shù)列的項:數(shù)列中的每一個數(shù).
9、有窮數(shù)列:項數(shù)有限的數(shù)列.
10、無窮數(shù)列:項數(shù)無限的數(shù)列.
11、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列(即:an+1>an).
12、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列(即:an+1④nana1d1;⑤danamnm.
21、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq.
22、等差數(shù)列的前n項和的公式:①Snna1an2;②Snna1nn12d.③sna1a2an
23、等差數(shù)列的前n項和的性質(zhì):①若項數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.S奇S偶nn1②若項數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S偶n1an)(其中S奇nan,
24、如果一個數(shù)列從第2項起,每一項與它的前一項的.比等于同一個常數(shù),則這個數(shù)列稱為等比數(shù)列,這個常數(shù)稱為等比數(shù)列的公比.符號表示:an1anq(注:①等比數(shù)列中不會出現(xiàn)值為0的項;②同號位上的值同號)注:看數(shù)列是不是等比數(shù)列有以下四種方法: 2①anan1q(n2,q為常數(shù),且0)②anan1an1(n2,anan1an10)③ancqn(c,q為非零常數(shù)).④正數(shù)列{an}成等比的充要條件是數(shù)列{logxan}(x1)成等比數(shù)列.
25、在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項.若Gab,22則稱G為a與b的等比中項.(注:由Gab不能得出a,G,b成等比,由a,G,bGab)2n1
26、若等比數(shù)列an的首項是a1,公比是q,則ana1q.
27、通項公式的變形:①anamqnm;②a1anqn1;③qn1ana1;④qnmanam.
28、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq.na1q1
29、等比數(shù)列an的前n項和的公式:①Sna1qnaaq.②sn1n1q11q1q2a1a2an
30、對任意的數(shù)列{an}的前n項和Sn與通項an的關系:ans1a1(n1)snsn1(n2)
[注]:①ana1n1dnda1d(d可為零也可不為零→為等差數(shù)列充要條件(即常數(shù)列也是等差數(shù)列)→若d不為0,則是等差數(shù)列充分條件).②等差{an}前n項和Sndddd22AnBnna1n→222可以為零也可不為零→為等差的充要條件→若為零,則是等差數(shù)列的充分條件;若d不為零,則是等差數(shù)列的充分條件.
③非零常數(shù)列既可為等比數(shù)列,也可為等差數(shù)列.(不是非零,即不可能有等比數(shù)列)..附:幾種常見的數(shù)列的思想方法:⑴等差數(shù)列的前n項和為Sn,在d0時,有最大值.如何確定使Sn取最大值時的n值,有兩種方法:
d2n2一是求使an0,an10,成立的n值;二是由Sn數(shù)列通項公式、求和公式與函數(shù)對應關系如下:數(shù)列等差數(shù)列等比數(shù)列數(shù)列等差數(shù)列前n項和公式通項公式(a1d2)n利用二次函數(shù)的性質(zhì)求n的值.
對應函數(shù)(時為一次函數(shù))(指數(shù)型函數(shù))對應函數(shù)(時為二次函數(shù))等比數(shù)列(指數(shù)型函數(shù))我們用函數(shù)的觀點揭開了數(shù)列神秘的“面紗”,將數(shù)列的通項公式以及前n項和看成是關于n的函數(shù),為我們解決數(shù)列有關問題提供了非常有益的啟示。
例題:1、等差數(shù)列分析:因為中,,則.是等差數(shù)列,所以是關于n的一次函數(shù),一次函數(shù)圖像是一條直線,則(n,m),(m,n),(m+n,)三點共線,所以利用每兩點形成直線斜率相等,即,得=0(圖像如上),這里利用等差數(shù)列通項公式與一次函數(shù)的對應關系,并結(jié)合圖像,直觀、簡潔。
例題:2、等差數(shù)列中,,前n項和為,若,n為何值時最大?
分析:等差數(shù)列前n項和可以看成關于n的二次函數(shù)=,是拋物線=上的離散點,根據(jù)題意,,則因為欲求最大。最大值,故其對應二次函數(shù)圖像開口向下,并且對稱軸為,即當時,
例題:3遞增數(shù)列,對任意正整數(shù)n,遞增得到:恒成立,設恒成立,求恒成立,即,則只需求出。,因為是遞的最大值即
分析:構(gòu)造一次函數(shù),由數(shù)列恒成立,所以可,顯然有最大值對一切對于一切,所以看成函數(shù)的取值范圍是:構(gòu)造二次函數(shù),,它的定義域是增數(shù)列,即函數(shù)為遞增函數(shù),單調(diào)增區(qū)間為,拋物線對稱軸,因為函數(shù)f(x)為離散函數(shù),要函數(shù)單調(diào)遞增,就看動軸與已知區(qū)間的位置。從對應圖像上看,對稱軸的左側(cè)在也可以(如圖),因為此時B點比A點高。于是,,得⑵如果數(shù)列可以看作是一個等差數(shù)列與一個等比數(shù)列的對應項乘積,求此數(shù)列前n項和可依照等比數(shù)列前n項和的推倒導方法:錯位相減求和.例如:112,314,...(2n1)12n,...⑶兩個等差數(shù)列的相同項亦組成一個新的等差數(shù)列,此等差數(shù)列的首項就是原兩個數(shù)列的第一個相同項,公差是兩個數(shù)列公差d1,d2的最小公倍數(shù).
2.判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法:(1)定義法:對于n≥2的任意自然數(shù),驗證anan1(anan1)為同一常數(shù)。(2)通項公式法。(3)中項公式法:驗證
2an1anan2(an1anan2)nN都成立。2am03.在等差數(shù)列{an}中,有關Sn的最值問題:(1)當a1>0,d把①式兩邊同乘2后得2sn=122232n2234n1②
用①-②,即:123nsn=122232n2①2sn=122232n2234n1②得sn12222n22(12)12n1n23nn1n2n122n2n1n1(1n)22∴sn(n1)2n12
4.倒序相加法:類似于等差數(shù)列前n項和公式的推導方法.5.常用結(jié)論1):1+2+3+...+n=n(n1)2212)1+3+5+...+(2n-1)=n3)12nn(n1)2223334)123n22216n(n1)(2n1)5)
1n(n1)1n1n11n(n2)1pq111()2nn21qp1p1q6)()(pq)
31、ab0ab;ab0ab;ab0ab.
32、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;nd0acabdb0a⑥;⑦⑧ab0nnbn,n1;anbn,n1.
33、一元二次不等式:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.
34、含絕對值不等式、一元二次不等式的解法及延伸1.整式不等式(高次不等式)的解法
穿根法(零點分段法)求解不等式:a0xa1xnn1a2xn2an0(0)(a00)
解法:①將不等式化為a0(x-x1)(x-x2)(x-xm)>0(0”,則找“線”在x軸上方的區(qū)間;若不等式是“
由圖可看出不等式x23x26x80的解集為:
x|2x1,或x4
(x1)(x2)(x5)(x6)(x4)0的解集。
例題:求解不等式
解:略
一元二次不等式的求解:
特例①一元一次不等式ax>b解的討論;
②一元二次不等式ax+bx+c>0(a>0)解的討論.
二次函數(shù)yax22
000bxc有兩相異實根x1,x2(x1x2)(a0)的圖象一元二次方程ax2有兩相等實根x1x2b2abxc0a0的根2無實根Raxbxc0(a0)的解集axbxc0(a0)的解集2xxx或xx12bxx2axx1xx2對于a0(或
f(x)g(x)(2)轉(zhuǎn)化為整式不等式(組)
1xf(x)g(x)0f(x)g(x)0;f(x)g(x)00g(x)0g(x)
f(x)例題:求解不等式:解:略例題:求不等式
xx11
1的解集。
3.含絕對值不等式的解法:基本形式:
、傩腿纾簗x|<a(a>0)的不等式的解集為:x|axa②型如:|x|>a(a>0)的不等式的解集為:x|xa,或xa變型:
其中-c3x23x23x2(x2)(x3)10xR③當x2時,(去絕對值符號)原不等式化為:x2x292x9(x2)(x3)102x2由①②③得原不等式的解集為:x|112x9(注:是把①②③的解集并在一起)2y函數(shù)圖像法:
令f(x)|x2||x3|
2x1(x3)則有:f(x)5(3x2)
2x1(x2)f(x)=1051123o292x在直角坐標系中作出此分段函數(shù)及f(x)10的圖像如圖11292由圖像可知原不等式的解集為:x|x4.一元二次方程ax2+bx+c=0(a>0)的實根的分布常借助二次函數(shù)圖像來分析:y設ax2+bx+c=0的兩根為、,f(x)=ax2+bx+c,那么:0①若兩根都大于0,即0,0,則有0
0o對稱軸x=b2ax
0b0②若兩根都小于0,即0,0,則有2af(0)0y
11
對稱軸x=b2aox
、廴魞筛幸桓∮0一根大于0,即0,則有f(0)0
、苋魞筛趦蓪崝(shù)m,n之間,即mn,
0bnm則有2af(m)0of(n)0yoxymX=b2anx⑤若兩個根在三個實數(shù)之間,即mtn,
yf(m)0則有f(t)0
f(n)0
常由根的分布情況來求解出現(xiàn)在a、b、c位置上的參數(shù)
例如:若方程x2(m1)xm2m30有兩個正實數(shù)根,求m的取值范圍。
4(m1)24(m22m3)00m1m1m3解:由①型得02(m1)00m1,或m32m2m3022omX=tb2anx所以方程有兩個正實數(shù)根時,m3。
又如:方程xxm10的一根大于1,另一根小于1,求m的范圍。
55220m(1)4(m1)02解:因為有兩個不同的根,所以由21m122f(1)011m101m122
35、二元一次不等式:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.
36、二元一次不等式組:由幾個二元一次不等式組成的不等式組.
37、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對x,y,所有這樣的有序數(shù)對x,y構(gòu)成的集合.
38、在平面直角坐標系中,已知直線xyC0,坐標平面內(nèi)的點x0,y0.①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.
39、在平面直角坐標系中,已知直線xyC0.(一)由B確定:①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.
、谌0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線 xyC0上方的區(qū)域.
。ǘ┯葾的符號來確定:先把x的系數(shù)A化為正后,看不等號方向:①若是“>”號,則xyC0所表示的區(qū)域為直線l:xyC0的右邊部分。②若是“線性規(guī)劃問題:求線性目標函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標函數(shù)取得最大值或最小值的可行解.
41、設a、b是兩個正數(shù),則ab2稱為正數(shù)a、b的算術平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).a(chǎn)b2ab.
42、均值不等式定理:若a0,b0,則ab2ab,即
43、常用的基本不等式:①ab2aba,bR;②ab222ab222a,bR;③abab2a0,b0;2④ab222ab2a,bR.
44、極值定理:設x、y都為正數(shù),則有:
、湃魓ys(和為定值),則當xy時,積xy取得最大值s42.⑵若xyp(積為定值),則當xy時,和xy取得最小值2例題:已知x解:∵x5454p.14x5,求函數(shù)f(x)4x2的最大值。
,∴4x50由原式可以化為:f(x)4x55214x5(54x)154x3[(54x)154x]3(54x)154x3132當54x154x2,即(54x)1x1,或x32(舍去)時取到“=”號也就是說當x1時有f(x)max2
高一數(shù)學必修一知識點總結(jié)15
【公式一】
設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
【公式二】
設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
【公式三】
任意角α與-α的三角函數(shù)值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
【公式四】
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
【公式五】
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
【公式六】
π/2±α及3π/2±α與α的三角函數(shù)值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
【高一數(shù)學函數(shù)復習資料】
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當b=0時,y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))
當x=0時,b為函數(shù)在y軸上的`截距。
三、一次函數(shù)的圖像及性質(zhì):
作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
,b與函數(shù)圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k
四、確定一次函數(shù)的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。
(1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應用:
當時間t一定,距離s是速度v的一次函數(shù)。s=vt。
當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S。g=S-ft。
六、常用公式:(不全,希望有人補充)
求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
求與x軸平行線段的中點:|x1-x2|/2
求與y軸平行線段的中點:|y1-y2|/2
求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)