中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)

時間:2024-06-17 17:59:32 知識點(diǎn)總結(jié) 我要投稿

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)

  總結(jié)是對某一特定時間段內(nèi)的學(xué)習(xí)和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,他能夠提升我們的書面表達(dá)能力,我想我們需要寫一份總結(jié)了吧。總結(jié)一般是怎么寫的呢?下面是小編收集整理的初一上冊數(shù)學(xué)知識點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)1

  1、都是數(shù)或字母的積的式子叫做單項(xiàng)式,單獨(dú)的一個數(shù)或一個字母也是單項(xiàng)式。

  2、單項(xiàng)式中的數(shù)字因數(shù)叫做這個單項(xiàng)式的系數(shù)。

  3、一個單項(xiàng)式中,所有字母的指數(shù)的和叫做這個單項(xiàng)式的次數(shù)。

  4、幾個單項(xiàng)的和叫做多項(xiàng)式,其中,每個單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

  5、多項(xiàng)式里次數(shù)項(xiàng)的次數(shù),叫做這個多項(xiàng)式的次數(shù)。

  6、把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。

  合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變。

  7、如果括號外的`因數(shù)是正數(shù),去括號后原括號內(nèi)各項(xiàng)的符號與原來的符號相同。

  8、如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項(xiàng)的符號與原來的符號相反。

  9、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項(xiàng)。

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)2

  1、有理數(shù):

 。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

 。2)有理數(shù)的分類:①②

 。3)注意:有理數(shù)中,1、0、—1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù)2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。

  3、相反數(shù):

 。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)注意:a—b+c的相反數(shù)是—a+b—c;a—b的相反數(shù)是b—a;a+b的相反數(shù)是—a—b;

 。3)相反數(shù)的和為0a+b=0a、b互為相反數(shù)。

  4、絕對值:

 。1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

 。2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

 。3)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a||b|=|ab|。

  5、有理數(shù)比大。

  (1)正數(shù)的絕對值越大,這個數(shù)越大;

 。2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;

 。3)正數(shù)大于一切負(fù)數(shù);

  (4)兩個負(fù)數(shù)比大小,絕對值大的反而。

 。5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

 。6)大數(shù)—小數(shù)>0,小數(shù)—大數(shù)<0。

  6、互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù)。

  注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1a、b互為倒數(shù);若ab=—1a、b互為負(fù)倒數(shù)。

  7、有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數(shù)與0相加,仍得這個數(shù)。

  8、有理數(shù)加法的運(yùn)算律:

 。1)加法的交換律:a+b=b+a;

 。2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

  9、有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

  10、有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

 。2)任何數(shù)同零相乘都得零;

 。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。

  11、有理數(shù)乘法的運(yùn)算律:

  (1)乘法的交換律:ab=ba;

 。2)乘法的結(jié)合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac。

  12、有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù)。

  13、有理數(shù)乘方的法則:

 。1)正數(shù)的任何次冪都是正數(shù);

 。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(—a)n=—an或(a—b)n=—(b—a)n,當(dāng)n為正偶數(shù)時:(—a)n=an或(a—b)n=(b—a).乘方的定義:

  (1)求相同因式積的運(yùn)算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

 。3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0a=0,b=0;(4)據(jù)規(guī)律底數(shù)的小數(shù)點(diǎn)移動一位,平方數(shù)的小數(shù)點(diǎn)移動二位。

  15、科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

  16、近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  17、有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  18、混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計(jì)算的最重要的原則。

  19、特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明。

  第二章整式的加減

  1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式。

  2.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);系數(shù)不為零時,單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)。

  3.多項(xiàng)式:幾個單項(xiàng)式的和叫多項(xiàng)式。

  4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項(xiàng)式。

  5.整式:凡不含有除法運(yùn)算,或雖含有除法運(yùn)算但除式中不含字母的代數(shù)式叫整式。

  6.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)。7.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變。

  8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項(xiàng)都不變號;若括號前邊是“—”號,括號里的各項(xiàng)都要變號。

  9.整式的加減:整式的加減,實(shí)際上是在去括號的基礎(chǔ)上,把多項(xiàng)式的`同類項(xiàng)合并。

  10。多項(xiàng)式的升冪和降冪排列:把一個多項(xiàng)式的各項(xiàng)按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列)。注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列。

  第三章一元一次方程

  1.等式與等量:用“=”號連接而成的式子叫等式。注意:“等量就能代入”!

  2.等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;

  等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式。

  3.方程:含未知數(shù)的等式,叫方程。

  4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!

  5.移項(xiàng):改變符號后,把方程的項(xiàng)從一邊移到另一邊叫移項(xiàng)。移項(xiàng)的依據(jù)是等式性質(zhì)1。

  6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

  7.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1……(檢驗(yàn)方程的解)。

  10.列一元一次方程解應(yīng)用題:

  (1)讀題分析法:…………多用于“和,差,倍,分問題”

  仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。(2)畫圖分析法:…………多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

  11.列方程解應(yīng)用題的常用公式:

 。1)行程問題:距離=速度時間;

 。2)工程問題:工作量=工效工時;

 。3)比率問題:部分=全體比率;

 。4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

 。5)商品價(jià)格問題:售價(jià)=定價(jià)折,利潤=售價(jià)—成本,;

 。6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。

 、儆脭(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨(dú)的一個角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋大寫英文字母表示一個獨(dú)立(在一個頂點(diǎn)處只有一個角)的角,如∠B,∠C等。

 、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫英文字母表示角時,一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。

  12、角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。把1°的角60等分,每一份叫做1分的角,1分記作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。1°=60’,1’=60”

  13、角的性質(zhì)

 。1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。(2)角的大小可以度量,可以比較(3)角可以參與運(yùn)算。

  14、角的平分線

  從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  15、平行線:

  在同一個平面內(nèi),不相交的兩條直線叫做平行線。平行用符號“‖”表示,如“AB‖CD”,讀作“AB平行于CD”。

  注意:

 。1)平行線是無限延伸的,無論怎樣延伸也不相交。

 。2)當(dāng)遇到線段、射線平行時,指的是線段、射線所在的直線平行。

  16、平行線公理及其推論

  平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。

  推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補(bǔ)充平行線的判定方法:

 。1)平行于同一條直線的兩直線平行。

 。2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。

 。3)平行線的定義。

  17、垂直:

  兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。

  直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。

  18、垂線的性質(zhì):

  性質(zhì)1:平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

  性質(zhì)2:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短。簡稱:垂線段最短。

  19、點(diǎn)到直線的距離:過A點(diǎn)作l的垂線,垂足為B點(diǎn),線段AB的長度叫做點(diǎn)A到直線l的距離。

  20、同一平面內(nèi),兩條直線的位置關(guān)系:相交或平行。

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)3

  第一章:豐富的圖形世界

  1、幾何圖形

  從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  2、點(diǎn)、線、面、體

  ①幾何圖形的組成

  點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。

 、邳c(diǎn)動成線,線動成面,面動成體。

  3、生活中的立體圖形

  生活中的立體圖形(按名稱分)

  柱:

 、賵A柱

 、诶庵喝庵⑺睦庵ㄩL方體、正方體)、五棱柱、……

  錐:

 、賵A錐

 、诶忮F

  球

  4、棱柱及其有關(guān)概念:

  棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。

  側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。

  n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點(diǎn)。

  5、正方體的平面展開圖:

  11種(經(jīng)?迹嚎荚囆问剑赫归_的圖形能否圍成正方體;正方體對面圖案)

  6、截一個正方體:

  用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

  7、三視圖:

  物體的三視圖指主視圖、俯視圖、左視圖。

  主視圖:從正面看到的圖,叫做主視圖。

  左視圖:從左面看到的圖,叫做左視圖。

  俯視圖:從上面看到的圖,叫做俯視圖。

  第二章:有理數(shù)及其運(yùn)算

  1、有理數(shù)的分類

  ①正有理數(shù)

  有理數(shù){ ②零

 、圬(fù)有理數(shù)

  有理數(shù){ ①整數(shù)

 、诜?jǐn)?shù)

  2、相反數(shù):

  只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

  3、數(shù)軸:

  規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示。

  4、倒數(shù):

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和—1。零沒有倒數(shù)。

  5、絕對值:

  在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值,(|a|≥0)。

  若|a|=a,則a≥0;

  若|a|=-a,則a≤0。

  正數(shù)的絕對值是它本身;

  負(fù)數(shù)的絕對值是它的相反數(shù);

  0的絕對值是0。

  互為相反數(shù)的兩個數(shù)的絕對值相等。

  6、有理數(shù)比較大。

  正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);

  數(shù)軸上的兩個點(diǎn)所表示的數(shù),右邊的總比左邊的大;

  兩個負(fù)數(shù),絕對值大的反而小。

  7、有理數(shù)的運(yùn)算:

 、傥宸N運(yùn)算:加、減、乘、除、乘方

  多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。

  有理數(shù)加法法則:

  同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  異號兩數(shù)相加,絕對值值相等時和為0;

  絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  一個數(shù)同0相加,仍得這個數(shù)。

  互為相反數(shù)的兩個數(shù)相加和為0。

  有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)!

  有理數(shù)乘法法則:

  兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

  任何數(shù)與0相乘,積仍為0。

  有理數(shù)除法法則:

  兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。

  0除以任何非0的數(shù)都得0。

  注意:0不能作除數(shù)。

  有理數(shù)的乘方:求n個相同因數(shù)a的積的運(yùn)算叫做乘方。

  正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。

  ②有理數(shù)的運(yùn)算順序

  先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

 、圻\(yùn)算律(5種)

  加法交換律

  加法結(jié)合律

  乘法交換律

  乘法結(jié)合律

  乘法對加法的分配律

  8、科學(xué)記數(shù)法

  一般地,一個大于10的數(shù)可以表示成a×

  10n的形式,其中1≦n<10,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)—1)

  第三章:整式及其加減

  1、代數(shù)式

  用運(yùn)算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個數(shù)或一個字母也是代數(shù)式。

  注意:

 、俅鷶(shù)式中除了含有數(shù)、字母和運(yùn)算符號外,還可以有括號;

 、诖鷶(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

 、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。

  代數(shù)式的書寫格式:

 、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

 、跀(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;

 、蹘Х?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù)。

 、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

 、菰诖鷶(shù)式中出現(xiàn)除法運(yùn)算時,一般寫成分?jǐn)?shù)的形式;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。

 、拊诒硎竞停ɑ颍┎畹拇鷶(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面。

  2、整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

  ①單項(xiàng)式:

  都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項(xiàng)式。單項(xiàng)式中,所有字母的指數(shù)之和叫做這個單項(xiàng)式的次數(shù);數(shù)字因數(shù)叫做這個單項(xiàng)式的系數(shù)。

  注意:

  單獨(dú)的一個數(shù)或一個字母也是單項(xiàng)式;

  單獨(dú)一個非零數(shù)的次數(shù)是0;

  當(dāng)單項(xiàng)式的系數(shù)為1或—1時,這個“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。

 、诙囗(xiàng)式:

  幾個單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中,每個單項(xiàng)式叫做多項(xiàng)式的項(xiàng);次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù)。

 、弁愴(xiàng):

  所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。

  注意:

  ①同類項(xiàng)有兩個條件:a。所含字母相同;b。相同字母的指數(shù)也相同。

 、谕愴(xiàng)與系數(shù)無關(guān),與字母的排列順序無關(guān);

  ③幾個常數(shù)項(xiàng)也是同類項(xiàng)。

  4、合并同類項(xiàng)法則:

  把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

  5、去括號法則

  ①根據(jù)去括號法則去括號:

  括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項(xiàng)都不改變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項(xiàng)都改變符號。

  ②根據(jù)分配律去括號:

  括號前面是“+”號看成+1,括號前面是“—”號看成—1,根據(jù)乘法的.分配律用+1或—1去乘括號里的每一項(xiàng)以達(dá)到去括號的目的。

  6、添括號法則

  添“+”號和括號,添到括號里的各項(xiàng)符號都不改變;添“—”號和括號,添到括號里的各項(xiàng)符號都要改變。

  7、整式的運(yùn)算:

  整式的加減法:(1)去括號;(2)合并同類項(xiàng)。

  第四章基本平面圖形

  1、線段、射線、直線

  名稱

  表示方法

  端點(diǎn)

  長度

  直線

  直線AB(或BA)

  直線l

  無端點(diǎn)

  無法度量

  射線

  射線OM

  1個

  無法度量

  線段

  線段AB(或BA)

  線段l

  2個

  可度量長度

  2、直線的性質(zhì)

 、僦本公理:經(jīng)過兩個點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。)

 、谶^一點(diǎn)的直線有無數(shù)條。

 、壑本是是向兩方面無限延伸的,無端點(diǎn),不可度量,不能比較大小。

  3、線段的性質(zhì)

  ①線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。)

 、趦牲c(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。

 、劬段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

  4、線段的中點(diǎn):

  點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個角的頂點(diǎn),這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。

  6、角的表示

  角的表示方法有以下四種:

 、儆脭(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨(dú)的一個角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋大寫英文字母表示一個獨(dú)立(在一個頂點(diǎn)處只有一個角)的角,如∠B,∠C等。

 、苡萌齻大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫字母表示角時,一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。

  7、角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

  1°=60’,1’=60”

  8、角的平分線

  從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  9、角的性質(zhì)

 、俳堑拇笮∨c邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

 、诮堑拇笮】梢远攘,可以比較,角可以參與運(yùn)算。

  10、平角和周角:

  一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。

  終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。

  11、多邊形:

  由若干條不在同一條直線上的線段首尾順次相連組成的'封閉平面圖形叫做多邊形。

  連接不相鄰兩個頂點(diǎn)的線段叫做多邊形的對角線。

  從一個n邊形的同一個頂點(diǎn)出發(fā),分別連接這個頂點(diǎn)與其余各頂點(diǎn),可以畫(n—3)條對角線,把這個n邊形分割成(n—2)個三角形。

  12、圓:

  平面上,一條線段繞著一個端點(diǎn)旋轉(zhuǎn)一周,另一個端點(diǎn)形成的圖形叫做圓。

  固定的端點(diǎn)O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

  圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;

  由一條弧AB和經(jīng)過這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。

  頂點(diǎn)在圓心的角叫做圓心角。

  第五章一元一次方程

  1、方程

  含有未知數(shù)的等式叫做方程。

  2、方程的解

  能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

  3、等式的性質(zhì)

 、俚仁降膬蛇呁瑫r加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。

 、诘仁降膬蛇呁瑫r乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。

  4、一元一次方程

  只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

  5、移項(xiàng):

  把方程中的某一項(xiàng),改變符號后,從方程的一邊移到另一邊,這種變形叫做移項(xiàng)。

  6、解一元一次方程的一般步驟:

 、偃シ帜

 、谌ダㄌ

 、垡祈(xiàng)(把方程中的某一項(xiàng)改變符號后,從方程的一邊移到另一邊,這種變形叫移項(xiàng)。)

  ④合并同類項(xiàng)

 、輰⑽粗獢(shù)的系數(shù)化為1

  第六章數(shù)據(jù)的收集與整理

  1、普查與抽樣調(diào)查

  為了特定目的對全部考察對象進(jìn)行的全面調(diào)查,叫做普查。

  其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

  從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。

  2、扇形統(tǒng)計(jì)圖

  扇形統(tǒng)計(jì)圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖。(各個扇形所占的百分比之和為1)

  圓心角度數(shù)=360°×該項(xiàng)所占的百分比。(各個部分的圓心角度數(shù)之和為360°)

  3、頻數(shù)直方圖

  頻數(shù)直方圖是一種特殊的條形統(tǒng)計(jì)圖,它將統(tǒng)計(jì)對象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

  4、各種統(tǒng)計(jì)圖的特點(diǎn)

  條形統(tǒng)計(jì)圖:能清楚地表示出每個項(xiàng)目的具體數(shù)目。

  折線統(tǒng)計(jì)圖:能清楚地反映事物的變化情況。

  扇形統(tǒng)計(jì)圖:能清楚地表示出各部分在總體中所占的百分比。

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)4

  第一章有理數(shù)

  1.有理數(shù):

  (1)凡能寫成

  q(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).p注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);正整數(shù)正整數(shù)正有理數(shù)正分?jǐn)?shù)整數(shù)零

  (2)有理數(shù)的分類:

 、儆欣頂(shù)零

 、谟欣頂(shù)負(fù)整數(shù)負(fù)整數(shù)正分?jǐn)?shù)負(fù)有理數(shù)分?jǐn)?shù)負(fù)分?jǐn)?shù)負(fù)分?jǐn)?shù)

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);

  a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).

  2.?dāng)?shù)軸:

  數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度(數(shù)軸的三要素)的一條直線.

  3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)注意:a-b+c的相反數(shù)是-(a-b+c)=-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;

  (3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).(4)相反數(shù)的商為-1.

 。5)相反數(shù)的絕對值相等

  4.絕對值:

  (1)正數(shù)的絕對值等于它本身,0的絕對值是0,負(fù)數(shù)的絕對值等于它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

  a(a0)a(a0)a(2)絕對值可表示為:a0(a0)或;a(a0)a(a0)(3)

  aa1a0;

  aa1a0;

  (4)|a|是重要的非負(fù)數(shù),即|a|≥0,非負(fù)性;

  5.有理數(shù)比大。

 。1)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;

 。2)正數(shù)大于一切負(fù)數(shù);

 。3)兩個負(fù)數(shù)比較,絕對值大的反而小;

 。4)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

 。5)-1,-2,+1,+4,-0.5,以上數(shù)據(jù)表示與標(biāo)準(zhǔn)質(zhì)量的差,絕對值越小,越接近標(biāo)準(zhǔn)。

  6.倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);

  注意:0沒有倒數(shù);若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).

  等于本身的數(shù)匯總:

  相反數(shù)等于本身的數(shù):0倒數(shù)等于本身的數(shù):1,-1絕對值等于本身的數(shù):正數(shù)和0平方等于本身的數(shù):0,1立方等于本身的數(shù):0,1,-1.

  7.有理數(shù)加法法則:X|k|b|1.c|o|m

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數(shù)與0相加,仍得這個數(shù).

  8.有理數(shù)加法的運(yùn)算律:

 。1)加法的交換律:a+b=b+a;

 。2)加法的結(jié)合律:(a+b)+c=a+(b+c).

  9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).10有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;

 。2)任何數(shù)與零相乘都得零;

 。3)幾個因式都不為零,積的符號由負(fù)因式的個數(shù)決定.奇數(shù)個負(fù)數(shù)為負(fù),偶數(shù)個負(fù)數(shù)為正。11有理數(shù)乘法的運(yùn)算律:

  (1)乘法的交換律:ab=ba;

  (2)乘法的結(jié)合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.(簡便運(yùn)算)

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即無意義.

  13.有理數(shù)乘方的法則:

  (1)正數(shù)的任何次冪都是正數(shù);

 。2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);

  14.乘方的定義:

 。1)求相同因式積的運(yùn)算,叫做乘方;

 。2)乘方中,相同的.因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

 。3)a是重要的非負(fù)數(shù),即a≥0;若a+|b|=0a=0,b=0;

 。4)正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0;負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。

  0.120.01211

  (5)據(jù)規(guī)律2底數(shù)的小數(shù)點(diǎn)移動一位,平方數(shù)的小數(shù)點(diǎn)移動二位.10100222a0

  15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10的形式,其中a是整數(shù)數(shù)位只有一位的數(shù)即1≤a

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到哪一位,就說這個近似數(shù)精確到那一位.

  17.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:不省過程,不跳步驟。

  18.特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.常用于填空,選擇。

  第二章整式的加減

  1.單項(xiàng)式:表示數(shù)字或字母乘積的式子,單獨(dú)的一個數(shù)字或字母也叫單項(xiàng)式。

  2.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中的數(shù)字因數(shù),稱單項(xiàng)式的系數(shù)(要包括前面的符號);單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)(只與字母有關(guān))。

  3.多項(xiàng)式:幾個單項(xiàng)式的和叫多項(xiàng)式。

  4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);

  5.整式單項(xiàng)式多項(xiàng)式(整式是代數(shù)式,但是代數(shù)式不一定是整式)。

  6.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)(與系數(shù)無關(guān),與字母的排列順序無關(guān))。

  7.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變.

  8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項(xiàng)都不變號;若括號前邊是“-”號,括號里的各項(xiàng)都要變號.

  9.整式的加減:一找:(標(biāo)記);二“+”(務(wù)必用+號開始合并)三合:(合并)

  10.多項(xiàng)式的升冪和降冪排列:把一個多項(xiàng)式的各項(xiàng)按某個字母的指數(shù)從小到大(或從大到。┡帕衅饋恚凶霭催@個字母的升冪排列(或降冪排列)。

  第三章一元一次方程

  1.等式:用“=”號連接而成的式子叫等式.2.等式的性質(zhì):

  等式性質(zhì)

  1:等式兩邊都加上(或減去)同一個數(shù)(或式子),結(jié)果仍相等;等式性質(zhì)

  2:等式兩邊都乘以(或除以)同一個不為零的數(shù),結(jié)果仍相等.

  3.方程:含未知數(shù)的等式,叫方程(方程是含有未知數(shù)的等式,但等式不一定是方程).

  4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”。

  5.移項(xiàng):把等式一邊的某項(xiàng)變號后移到另一邊叫移項(xiàng).移項(xiàng)的依據(jù)是等式性質(zhì)1(移項(xiàng)變號).

  6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程.

  7.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).

  8.一元一次方程解法的一般步驟:化簡方程----------分?jǐn)?shù)基本性質(zhì)

  去分母----------同乘(不漏乘)最簡公分母去括號----------注意符號變化移項(xiàng)----------變號(留下靠前)

  合并同類項(xiàng)--------合并后符號系數(shù)化為1---------除前面

  9.列一元一次方程解應(yīng)用題:

  (1)讀題分析法:多用于“和,差,倍,分問題”

  仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

  (2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  10.列方程解應(yīng)用題的常用公式:

 。1)行程問題:路程=速度時間速度路程路程時間;時間速度工作量工作量工時;工時工效

  (2)工程問題:工作量=工作效率工作時間工效工程問題常用等量關(guān)系:先做的+后做的=完成量

 。3)順?biāo)嫠畣栴}:

  順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;順?biāo)嫠畣栴}常用等量關(guān)系:順?biāo)烦?逆水路程

  (4)商品利潤問題:售價(jià)=定價(jià)幾折售價(jià)成本,利潤率100%;成本10利潤問題常用等量關(guān)系:售價(jià)-進(jìn)價(jià)=利潤

 。5)配套問題:

  (6)分配問題

  第四章圖形初步認(rèn)識

 。ㄒ唬┒嘧硕嗖实膱D形

  立體圖形:棱柱、棱錐、圓柱、圓錐、球等.

  1、幾何圖形平面圖形:三角形、四邊形、圓、多邊形等.

  主視圖---------從正面看

  2、幾何體的三視圖左視圖---------從左邊看俯視圖---------從上面看

 。1)會判斷簡單物體(棱柱、圓柱、圓錐、球)的三視圖.

 。2)能根據(jù)三視圖描述基本幾何體或?qū)嵨镌?/p>

  3、立體圖形的平面展開圖

 。1)同一個立體圖形按不同的方式展開,得到的平現(xiàn)圖形不一樣的

 。2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據(jù)展開圖判斷和制作立體模型.

  4、點(diǎn)、線、面、體

  (1)幾何圖形的組成點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形最基本的圖形.線:面和面相交的地方是線,分為直線和曲線.面:包圍著體的是面,分為平面和曲面.體:幾何體也簡稱體.

 。2)點(diǎn)動成線,線動成面,面動成體.

  (二)直線、射線、線段

  1、基本概念名稱直線射線線段aaa圖形ABBBAA端點(diǎn)個數(shù)表示法作法敘述延長無直線a直線AB(BA)作直線a作直線AB;向兩端無限延長一個射線a射線AB作射線a作射線AB向一端無限延長兩個線段a線段AB(BA)作線段a;作線段AB;連接AB不可延長

  2、直線的性質(zhì)經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線.簡單地:兩點(diǎn)確定一條直線.

  3、畫一條線段等于已知線段

 。1)度量法

 。2)用尺規(guī)作圖法

  4、線段的長短比較方法

 。1)度量法

 。2)疊合法

  (3)圓規(guī)截取法

  5、線段的中點(diǎn)(二等分點(diǎn))、三等分點(diǎn)、四等分點(diǎn)等定義:把一條線段平均分成兩條相等線段的點(diǎn).圖形:

  AMB

  符號:若點(diǎn)M是線段AB的中點(diǎn),則AM=BM=

  6、線段的性質(zhì)

  1AB,AB=2AM=2BM.

  兩點(diǎn)的所有連線中,線段最短.簡單地:兩點(diǎn)之間,線段最短.

  7、兩點(diǎn)的距離

  連接兩點(diǎn)的線段的長度叫做兩點(diǎn)的距離(距離是線段的長度,而不是線段本身)

  8、點(diǎn)與直線的位置關(guān)系

  (1)點(diǎn)在直線上(或者直線經(jīng)過點(diǎn))

 。2)點(diǎn)在直線外(或者直線不經(jīng)過點(diǎn)).

  (三)角

  1、角:有公共端點(diǎn)的兩條射線所組成的圖形叫做角.

  2、角的表示法(四種):表示方法圖例記法適用范圍A任何情況下都適應(yīng)。表示端O用三個大寫字母表示AOB或BOAB點(diǎn)的字母必須寫在中間。以這個點(diǎn)為頂點(diǎn)的角只有用一個大寫字母表示AA一個。任何情況下都適用。但必須用數(shù)字表示11在靠近頂點(diǎn)處加上弧線表示角的范圍,并注上數(shù)字或用希臘字母表示希臘字母。

  3、角的度量單位及換算(度””、分””、秒””)60進(jìn)制1=60=3600,1=60;1=(4、角的分類∠β范圍銳角直角鈍角0<∠β<90°∠β=90°90°

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)5

  (1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類: ① 整數(shù) ②分?jǐn)?shù)

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的'特性;

  (4)自然數(shù) 0和正整數(shù);a0 a是正數(shù);a0 a是負(fù)數(shù);

  a≥0 a是正數(shù)或0 a是非負(fù)數(shù);a≤ 0 ? a是負(fù)數(shù)或0 a是非正數(shù).

  有理數(shù)比大。

  (1)正數(shù)的絕對值越大,這個數(shù)越大;

  (2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;

  (3)正數(shù)大于一切負(fù)數(shù);

  (4)兩個負(fù)數(shù)比大小,絕對值大的反而小;

  (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

  (6)大數(shù)-小數(shù) 0,小數(shù)-大數(shù) 0.

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)6

  相反數(shù)

  1.相反數(shù)

  只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。

  注意:

  ⑴相反數(shù)是成對出現(xiàn)的;

 、葡喾磾(shù)只有符號不同,若一個為正,則另一個為負(fù);

 、0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。

  2.相反數(shù)的性質(zhì)與判定

 、湃魏螖(shù)都有相反數(shù),且只有一個;

 、0的相反數(shù)是0;

 、腔橄喾磾(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0

  3.相反數(shù)的幾何意義

  在數(shù)軸上與原點(diǎn)距離相等的兩點(diǎn)表示的兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的對應(yīng)點(diǎn)(0除外)在原點(diǎn)兩旁,并且與原點(diǎn)的距離相等。0的相反數(shù)對應(yīng)原點(diǎn);原點(diǎn)表示0的相反數(shù)。說明:在數(shù)軸上,表示互為相反數(shù)的兩個點(diǎn)關(guān)于原點(diǎn)對稱。

  4.相反數(shù)的求法

 、徘笠粋數(shù)的相反數(shù),只要在它的前面添上負(fù)號“—”即可求得(如:5的相反數(shù)是—5);

 、魄蠖鄠數(shù)的和或差的.相反數(shù)時,要用括號括起來再添“—”,然后化簡(如;5a+b的相反數(shù)是—(5a+b);喌谩5a—b);

 、乔笄懊鎺А啊钡膯蝹數(shù),也應(yīng)先用括號括起來再添“—”,然后化簡(如:—5的相反數(shù)是—(—5),化簡得5)

  5.相反數(shù)的表示方法

  一般地,數(shù)a的相反數(shù)是—a,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。

  當(dāng)a>0時,—a

  當(dāng)a0(負(fù)數(shù)的相反數(shù)是正數(shù))

  當(dāng)a=0時,—a=0,(0的相反數(shù)是0)

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)7

 。ㄒ唬┯欣頂(shù)及其運(yùn)算

  一、有理數(shù)的基礎(chǔ)知識

  1、三個重要的定義:

 。1)正數(shù):像1、2.5、這樣大于0的數(shù)叫做正數(shù);

 。2)負(fù)數(shù):在正數(shù)前面加上“-”號,表示比0小的數(shù)叫做負(fù)數(shù);

 。3)0即不是正數(shù)也不是負(fù)數(shù).

  2、有理數(shù)的分類:

 。1)按定義分類:

  正整數(shù)整數(shù)0負(fù)整數(shù)有理數(shù)正分?jǐn)?shù)分?jǐn)?shù)負(fù)分?jǐn)?shù)

 。2)按性質(zhì)符號分類:

  正整數(shù)正有理數(shù)正分?jǐn)?shù)有理數(shù)0

  負(fù)整數(shù)負(fù)有理數(shù)負(fù)分?jǐn)?shù)3、數(shù)軸

  數(shù)軸有三要素:原點(diǎn)、正方向、單位長度.畫一條水平直線,在直線上取一點(diǎn)表示0(叫做原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸.在數(shù)軸上的所表示的數(shù),右邊的數(shù)總比左邊的數(shù)大,所以正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù).

  4、相反數(shù)

  如果兩個數(shù)只有符號不同,那么其中一個數(shù)就叫另一個數(shù)的相反數(shù).0的相反數(shù)是0,互為相反的兩上數(shù),在數(shù)軸上位于原點(diǎn)的兩則,并且與原點(diǎn)的距離相等.

  5、絕對值

 。1)絕對值的幾何意義:一個數(shù)的絕對值就是數(shù)軸上表示該數(shù)的點(diǎn)與原點(diǎn)的距離

  (2)絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身;0的絕對值是0;一個負(fù)數(shù)的絕對值是它的相反數(shù),可用字母a表示如下:

  (a0)aa0(a0)

  a(a0)

 。3)兩個負(fù)數(shù)比較大小,絕對值大的反而小

  二、有理數(shù)的運(yùn)算

  1、有理數(shù)的加法

  (1)有理數(shù)的加法法則:同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不等的異號兩數(shù)相加,取絕對值較大數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).

 。2)有理數(shù)加法的運(yùn)算律:

  加法的交換律:a+b=b+a;加法的結(jié)合律:(a+b)+c=a+(b+c)

  用加法的運(yùn)算律進(jìn)行簡便運(yùn)算的基本思路是:先把互為相反數(shù)的數(shù)相加;把同分母的分?jǐn)?shù)先相加;把符號相同的數(shù)先相加;把相加得整數(shù)的數(shù)先相加。

  2、有理數(shù)的減法

  (1)有理數(shù)減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).

 。2)有理數(shù)減法常見的錯誤:顧此失彼,沒有顧到結(jié)果的'符號;仍用小學(xué)計(jì)算的習(xí)慣,不把減法變加法;只改變運(yùn)算符號,不改變減數(shù)的符號,沒有把減數(shù)變成相反數(shù).

 。3)有理數(shù)加減混合運(yùn)算步驟:先把減法變成加法,再按有理數(shù)加法法則進(jìn)行運(yùn)算;

  3、有理數(shù)的乘法

 。1)有理數(shù)乘法的法則:兩個有理數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;任何數(shù)與0相乘都得0

  (2)有理數(shù)乘法的運(yùn)算律:交換律:ab=ba;結(jié)合律:(ab)c=a(bc);交換律:a(b+c)=ab+ac

 。3)倒數(shù)的定義:乘積是1的兩個有理數(shù)互為倒數(shù),即ab=1,那么a和b互為倒數(shù);倒數(shù)也可以看成是把分子分母的位置顛倒過來.

  4、有理數(shù)的除法

  有理數(shù)的除法法則:除以一個數(shù),等于乘上這個數(shù)的倒數(shù),0不能做除數(shù).這個法則可以把除法轉(zhuǎn)化為乘法;除法法則也可以看成是:兩個數(shù)相除,同號得正,異號得負(fù),并把絕對值相除,0除以任何一個不等于0的數(shù)都等于0.

  5、有理數(shù)的乘法

 。1)有理數(shù)的乘法的定義:求幾個相同因數(shù)a的運(yùn)算叫做乘方,乘方是一種運(yùn)算,是幾個相同的因數(shù)的特殊乘法運(yùn)算,記做“a”其中a叫做底數(shù),表示相同的因數(shù),n叫做指數(shù),表示相同因數(shù)的個數(shù),它所表示的意義是n個a相乘,不是n乘以a,乘方的結(jié)果叫做冪.

  (2)正數(shù)的任何次方都是正數(shù),負(fù)數(shù)的偶數(shù)次方是正數(shù),負(fù)數(shù)的奇數(shù)次方是負(fù)數(shù)6、有理數(shù)的混合運(yùn)算

 。1)進(jìn)行有理數(shù)混合運(yùn)算的關(guān)建是熟練掌握加、減、乘、除、乘方的運(yùn)算法則、運(yùn)算律及運(yùn)算順序.比較復(fù)雜的混合運(yùn)算,一般可先根據(jù)題中的加減運(yùn)算,把算式分成幾段,計(jì)算時,先從每段的乘方開始,按順序運(yùn)算,有括號先算括號里的,同時要注意靈活運(yùn)用運(yùn)算律簡化運(yùn)算.

  (2)進(jìn)行有理數(shù)的混合運(yùn)算時,應(yīng)注意:一是要注意運(yùn)算順序,先算高一級的運(yùn)算,再算低一級的運(yùn)算;二是要注意觀察,靈活運(yùn)用運(yùn)算律進(jìn)行簡便運(yùn)算,以提高運(yùn)算速度及運(yùn)算能力.(2)整式的加減

  1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式.

  2.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);系數(shù)不為零時,單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).3.多項(xiàng)式:幾個單項(xiàng)式的和叫多項(xiàng)式.

  n4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項(xiàng)式.

  5.整式:凡不含有除法運(yùn)算,或雖含有除法運(yùn)算但除式中不含字母的代數(shù)式叫整式.整式分類為:.

  6.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)

  7.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變.

  8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項(xiàng)都不變號;若括號前邊是“”號,括號里的各項(xiàng)都要變號.

  9.整式的加減:整式的加減,實(shí)際上是在去括號的基礎(chǔ)上,把多項(xiàng)式的同類項(xiàng)合并.10.多項(xiàng)式的升冪和降冪排列:把一個多項(xiàng)式的各項(xiàng)按某個字母的指數(shù)從小到大(或從大到。┡帕衅饋,叫做按這個字母的升冪排列(或降冪排列).注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列(3)一元一次方程

  一、方程的有關(guān)概念

  1、方程的概念:

 。1)含有未知數(shù)的等式叫方程.

 。2)在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,系數(shù)不為0,這樣的方程叫一元一次方程.

  2、等式的基本性質(zhì):

 。1)等式兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式.若a=b,則a+c=b+c或ac=bc

 。2)等式兩邊同時乘以(或除以)同一個數(shù)(除數(shù)不能為0),所得結(jié)果仍是等式.若a=b,則ac=bc或

  abcc

 。3)對稱性:等式的左右兩邊交換位置,結(jié)果仍是等式.若a=b,則b=a

  (4)傳遞性:如果a=b,且b=c,那么a=c,這一性質(zhì)叫等量代換

  二、解方程

  1、移項(xiàng)的有關(guān)概念:

  把方程中的某一項(xiàng)改變符號后,從方程的一邊移到另一邊,叫做移項(xiàng).這個法則是根據(jù)等式的性質(zhì)1推出來的,是解方程的依據(jù).要明白移項(xiàng)就是根據(jù)解方程變形的需要,把某一項(xiàng)從方程的左邊移到右邊或從右邊移到左邊,移動的項(xiàng)一定要變號.

  2、解一元一次方程的步驟:(1)去分母等式的性質(zhì)2

  注意拿這個最小公倍數(shù)乘遍方程的每一項(xiàng),切記不可漏乘某一項(xiàng),分母是小數(shù)的,要先利用分?jǐn)?shù)的性質(zhì),把分母化為整數(shù),若分子是代數(shù)式,則必加括號.

  (2)去括號去括號法則、乘法分配律

  嚴(yán)格執(zhí)行去括號的法則,若是數(shù)乘括號,切記不漏乘括號內(nèi)的項(xiàng),減號后去括號,括號內(nèi)各項(xiàng)的符號一定要變號.

  (3)移項(xiàng)等式的性質(zhì)1

  越過“=”的叫移項(xiàng),屬移項(xiàng)者必變號;未移項(xiàng)的項(xiàng)不變號,注意不遺漏,移項(xiàng)時把含未知數(shù)的項(xiàng)移在左邊,已知數(shù)移在右邊,書寫時,先寫不移動的項(xiàng),把移動過來的項(xiàng)改變符號寫在后面

  (4)合并同類項(xiàng)合并同類項(xiàng)法則注意在合并時,僅將系數(shù)加到了一起,而字母及其指數(shù)均不改變

  (5)系數(shù)化為1等式的性質(zhì)2

  兩邊同除以未知數(shù)的系數(shù),記住未知數(shù)的系數(shù)永遠(yuǎn)是分母(除數(shù)),切不可分子、分母顛倒

  (6)檢驗(yàn)

  二、列方程解應(yīng)用題

  1、列方程解應(yīng)用題的一般步驟:

 。1)將實(shí)際問題抽象成數(shù)學(xué)問題;

 。2)分析問題中的已知量和未知量,找出等量關(guān)系;

 。3)設(shè)未知數(shù),列出方程;

 。4)解方程;

 。5)檢驗(yàn)并作答.

  2、一些實(shí)際問題中的規(guī)律和等量關(guān)系:

 。1)日歷上數(shù)字排列的規(guī)律是:橫行每整行排列7個連續(xù)的數(shù),豎列中,下面的數(shù)比上面的數(shù)大7.日歷上的數(shù)字范圍是在1到31之間,不能超出這個范圍

 。2)幾種常用的面積公式:

  長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S=a2,a為邊長,S為面積;

  梯形面積公式:S=1(ab)h,a,b為上下底邊長,h為梯形的高,S為梯形面積;22圓形的面積公式:Sr,r為圓的半徑,S為圓的面積;三角形面積公式:S1ah,a為三角形的一邊長,h為這一邊上的高,S為三角形的2面積.

 。3)幾種常用的周長公式:長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長.正方形的周長:L=4a,a為正方形的邊長,L為周長.圓:L=2πr,r為半徑,L為周長

 。4)柱體的體積等于底面積乘以高,當(dāng)體積不變時,底面越大,高度就越低.所以等積變化的相等關(guān)系一般為:變形前的體積=變形后的體積.

  (5)打折銷售這類題型的等量關(guān)系是:利潤=售價(jià)成本.

 。6)行程問題中關(guān)建的等量關(guān)系:路程=速度×?xí)r間,以及由此導(dǎo)出的其化關(guān)系.

 。7)在一些復(fù)雜問題中,可以借助表格分析復(fù)雜問題中的數(shù)量關(guān)系,找出若干個較直接的等量關(guān)系,借此列出方程,列表可幫助我們分析各量之間的相互關(guān)系.

 。8)在行程問題中,可將題目中的數(shù)字語言用“線段圖”表達(dá)出來,分析問題中的數(shù)量關(guān)系,從而找出等量關(guān)系,列出方程

 。9)關(guān)于儲蓄中的一些概念:

  本金:顧客存入銀行的錢;利息:銀行給顧客的酬金;本息:本金與利息的和;期數(shù):存入的時間;利率:每個期數(shù)內(nèi)利息與本金的比;利息=本金×利率×期數(shù);本息=本金+利息.

  (4)圖形初步認(rèn)識

 。ㄒ唬┒嘧硕嗖实膱D形

  立體圖形:棱柱、棱錐、圓柱、圓錐、球等.

  1、幾何圖形

  平面圖形:三角形、四邊形、圓等.主(正)視圖從正面看

  2、幾何體的三視圖側(cè)(左、右)視圖從左(右)邊看

  俯視圖從上面看

 。1)會判斷簡單物體(直棱柱、圓柱、圓錐、球)的三視圖

  (2)能根據(jù)三視圖描述基本幾何體或?qū)嵨镌?/p>

  3、立體圖形的平面展開圖

 。1)同一個立體圖形按不同的方式展開,得到的平現(xiàn)圖形不一樣的

 。2)了解直棱柱、圓柱、圓錐、的平面展開圖,能根據(jù)展開圖判斷和制作立體模型

  4、點(diǎn)、線、面、體(1)幾何圖形的組成

  點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形最基本的圖形.線:面和面相交的地方是線,分為直線和曲線.面:包圍著體的是面,分為平面和曲面.體:幾何體也簡稱體.

  (2)點(diǎn)動成線,線動成面,面動成體.(二)直線、射線、線段1、基本概念

  圖形直線射線線段端點(diǎn)個數(shù)表示法作法敘述無直線a直線AB(BA)作直線AB;作直線a一個射線AB作射線AB反向延長射線AB兩個線段a線段AB(BA)作線段a;作線段AB;連接AB延長線段AB;反向延長線段BA延長敘述不能延長2、直線的性質(zhì)

  經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線.簡單地:兩點(diǎn)確定一條直線.3、畫一條線段等于已知線段(1)度量法

  (2)用尺規(guī)作圖法

  4、線段的大小比較方法(1)度量法(2)疊合法

  5、線段的中點(diǎn)(二等分點(diǎn))、三等分點(diǎn)、四等分點(diǎn)等定義:把一條線段平均分成兩條相等線段的點(diǎn).圖形:

  AMB

  符號:若點(diǎn)M是線段AB的中點(diǎn),則AM=BM=AB,AB=2AM=2BM.6、線段的性質(zhì)

  兩點(diǎn)的所有連線中,線段最短.簡單地:兩點(diǎn)之間,線段最短.7、兩點(diǎn)的距離連接兩點(diǎn)的線段長度叫做兩點(diǎn)的距離.8、點(diǎn)與直線的位置關(guān)系

 。1)點(diǎn)在直線上(2)點(diǎn)在直線外.(三)角

  1、角:由公共端點(diǎn)的兩條射線所組成的圖形叫做角

  2、角的表示法(四種):

  3、角的度量單位及換算

  4、角的分類∠β范圍銳角0<∠β<90°直角∠β=90°鈍角90°

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)8

  角的性質(zhì):

  (1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

 。2)角的大小可以度量,可以比較。

 。3)角可以參與運(yùn)算。

  時針問題:

  時針每小時300,每分鐘0.50;分針每分鐘60;時針與分針每分鐘差5.50。

  時針與分針夾角=分×5.50—時×300(分針靠近12點(diǎn))

  時針與分針夾角=時×300—分×5.50(時針靠近12點(diǎn))

  若結(jié)果大于1800,另一角度用3600減這個角度。

  經(jīng)過多少時間重合、垂直、在一條線上,用求出的'重合、垂直、在一條線上的時間減去現(xiàn)在的時間。追及問題還可用追及度數(shù)/5.5。

  角的平分線

  從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  多邊形

  由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。

  從一個n邊形的同一個頂點(diǎn)出發(fā),分別連接這個頂點(diǎn)與其余各頂點(diǎn),可以把這個n邊形分割成(n—2)個三角形。n邊形內(nèi)角和等于(n—2)×1800,正多邊形(每條邊都相等,每個內(nèi)角都相等的多邊形)的每個內(nèi)角都等于(n—2)×1800/n,過n邊形一個頂點(diǎn)有(n—3)條對角線,n邊形共(n—3)×n/2條對角線。

  圓、弧、扇形

  圓:平面上一條線段繞著固定的一個端點(diǎn)旋轉(zhuǎn)一周,另一個端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)稱為圓心

  。簣A上A、B兩點(diǎn)之間的部分叫做圓弧,簡稱弧。

  扇形:由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫做扇形。

  圓心角:頂點(diǎn)在圓心的角叫圓心角。

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)9

有理數(shù)及其運(yùn)算板塊:

  1、整數(shù)包含正整數(shù)和負(fù)整數(shù),分?jǐn)?shù)包含正分?jǐn)?shù)和負(fù)分?jǐn)?shù)。正整數(shù)和正分?jǐn)?shù)通稱為正數(shù),負(fù)整數(shù)和負(fù)分?jǐn)?shù)通稱為負(fù)數(shù)。

  2、正整數(shù)、0、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)這樣的數(shù)稱為有理數(shù)。

  3、絕對值:數(shù)軸上一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值,用“||”表示。

  整式板塊:

  1、單項(xiàng)式:由數(shù)與字母的乘積組成的式子叫做單項(xiàng)式。

  2、單項(xiàng)式的次數(shù):一個單項(xiàng)式中,所有字母的指數(shù)的和叫做這個單項(xiàng)式的次數(shù)。

  3、整式:單項(xiàng)式與多項(xiàng)式統(tǒng)稱整式。

  4、同類項(xiàng):字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。

  一元一次方程:

  1、含有未知數(shù)的等式叫做方程,使方程左右兩邊的值都相等的未知數(shù)的值叫做方程的解。

  2、移項(xiàng):把等式一邊的某項(xiàng)變號后移到另一邊,叫做移項(xiàng)等。

  其實(shí),七年級上冊數(shù)學(xué)知識點(diǎn)總結(jié)還包括很多,但是我想,萬變不離其宗。

  大家平時要注意整理與積累。配合多加練習(xí)。一些知識要點(diǎn)及時記錄在筆記本上,一些錯題也要及時整理、復(fù)習(xí)。一個個知識點(diǎn)去通過。我相信只要做個有心人,就可以在數(shù)學(xué)考試中取得高分

  三角和的三角函數(shù):

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ—sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ—sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ—tanα·tanβ·tanγ)/(1—tanα·tanβ—tanβ·tanγ—tanγ·tanα)

  數(shù)軸的三要素:

  原點(diǎn)、正方向、單位長度(三者缺一不可)。

  任何一個有理數(shù),都可以用數(shù)軸上的一個點(diǎn)來表示。(反過來,不能說數(shù)軸上所有的點(diǎn)都表示有理數(shù))

  如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。(0的相反數(shù)是0)

  在數(shù)軸上,表示互為相反數(shù)的兩個點(diǎn),位于原點(diǎn)的側(cè),且到原點(diǎn)的距離相等。

  數(shù)軸上兩點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)在原點(diǎn)的右邊,負(fù)數(shù)在原點(diǎn)的左邊。

  絕對值的定義:

  一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離。數(shù)a的絕對值記作|a|。

  正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的數(shù);0的絕對值是0。

  絕對值的性質(zhì):

  除0外,絕對值為一正數(shù)的數(shù)有兩個,它們互為相反數(shù);

  互為相反數(shù)的兩數(shù)(除0外)的絕對值相等;

  任何數(shù)的絕對值總是非負(fù)數(shù),即|a|0

  比較兩個負(fù)數(shù)的大小,絕對值大的反而小。比較兩個負(fù)數(shù)的大小的步驟如下:

 、傧惹蟪鰞蓚數(shù)負(fù)數(shù)的絕對值;

  ②比較兩個絕對值的大;

 、鄹鶕(jù)兩個負(fù)數(shù),絕對值大的反而小做出正確的判斷。

  絕對值的性質(zhì):

  ①對任何有理數(shù)a,都有|a|0

 、谌魘a|=0,則|a|=0,反之亦然

  ③若|a|=b,則a=b

  ④對任何有理數(shù)a,都有|a|=|—a|

  有理數(shù)加法法則:

 、偻杻蓴(shù)相加,取相同符號,并把絕對值相加。

 、诋愄杻蓴(shù)相加,絕對值相等時和為0;絕對值不等時取絕對值較大的數(shù)的符號,并用較大數(shù)的絕對值減去較小數(shù)的絕對值。

 、垡粋數(shù)同0相加,仍得這個數(shù)。

  加法的交換律、結(jié)合律在有理數(shù)運(yùn)算中同樣適用。

  靈活運(yùn)用運(yùn)算律,使用運(yùn)算簡化,通常有下列規(guī)律:

  ①互為相反的兩個數(shù),可以先相加;

 、诜栂嗤臄(shù),可以先相加;

 、鄯帜赶嗤臄(shù),可以先相加;

 、軒讉數(shù)相加能得到整數(shù),可以先相加。

  有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  有理數(shù)減法運(yùn)算時注意兩變:

 、俑淖冞\(yùn)算符號;

 、诟淖儨p數(shù)的性質(zhì)符號(變?yōu)橄喾磾?shù))

  有理數(shù)減法運(yùn)算時注意一個不變:被減數(shù)與減數(shù)的位置不能變換,也就是說,減法沒有交換律。

  有理數(shù)的'加減法混合運(yùn)算的步驟:

 、賹懗墒÷约犹柕拇鷶(shù)和。在一個算式中,若有減法,應(yīng)由有理數(shù)的減法法則轉(zhuǎn)化為加法,然后再省略加號和括號;

  ②利用加法則,加法交換律、結(jié)合律簡化計(jì)算。

 。ㄗ⒁猓簻p去一個數(shù)等于加上這個數(shù)的相反數(shù),當(dāng)有減法統(tǒng)一成加法時,減數(shù)應(yīng)變成它本身的相反數(shù)。)

  有理數(shù)乘法法則:

 、賰蓴(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

  ②任何數(shù)與0相乘,積仍為0。

  如果兩個數(shù)互為倒數(shù),則它們的乘積為1。

  乘法的交換律、結(jié)合律、分配律在有理數(shù)運(yùn)算中同樣適用。

  有理數(shù)乘法運(yùn)算步驟:①先確定積的符號;

 、谇蟪龈饕驍(shù)的絕對值的積。

  乘積為1的兩個有理數(shù)互為倒數(shù)。注意:

 、倭銢]有倒數(shù)

  ②求分?jǐn)?shù)的倒數(shù),就是把分?jǐn)?shù)的分子分母顛倒位置。一個帶分?jǐn)?shù)要先化成假分?jǐn)?shù)。

  ③正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。

  有理數(shù)除法法則:

  ①兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。

 、0除以任何非0的數(shù)都得0。0不可作為除數(shù),否則無意義。

  有理數(shù)的乘方

  注意:

 、僖粋數(shù)可以看作是本身的一次方,如5=51;

 、诋(dāng)?shù)讛?shù)是負(fù)數(shù)或分?jǐn)?shù)時,要先用括號將底數(shù)括上,再在右上角寫指數(shù)。

  乘方的運(yùn)算性質(zhì):

 、僬龜(shù)的任何次冪都是正數(shù);

 、谪(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù);

  ③任何數(shù)的偶數(shù)次冪都是非負(fù)數(shù);

  ④1的任何次冪都得1,0的任何次冪都得0;

 、荨1的偶次冪得1;—1的奇次冪得—1;

 、拊谶\(yùn)算過程中,首先要確定冪的符號,然后再計(jì)算冪的絕對值。

  有理數(shù)混合運(yùn)算法則:①先算乘方,再算乘除,最后算加減。

 、谌绻欣ㄌ,先算括號里面的。

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)10

  1.代數(shù)式:用運(yùn)算符號“+-×÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式。

  注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實(shí)際生活或生產(chǎn)有意義;單獨(dú)一個數(shù)或一個字母也是代數(shù)式。2.列代數(shù)式的幾個注意事項(xiàng):

  13(1)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×1應(yīng)寫成a;

  223(2)在代數(shù)式中出現(xiàn)除法運(yùn)算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;

  a3.幾個重要的代數(shù)式:(m、n表示整數(shù))

  (1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

 。2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;

 。3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;4.有理數(shù):(1)凡能寫成

  q(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù)。不是有理數(shù)。p正整數(shù)正整數(shù)正有理數(shù)整數(shù)零正分?jǐn)?shù)(2)有理數(shù)的分類:①有理數(shù)零②有理數(shù)負(fù)整數(shù)

  負(fù)整數(shù)正分?jǐn)?shù)負(fù)有理數(shù)分?jǐn)?shù)負(fù)分?jǐn)?shù)負(fù)分?jǐn)?shù)(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù)。(4)自然數(shù)包括:0和正整數(shù)。5.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);

  a(a0)a(a0)(2)絕對值可表示為:a0(a0)或a;絕對值的問題經(jīng)常分類討論;

  aa1a0;

  aa1a0;

  aba。b(4)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a||b|=|ab|,

  臨淵羨魚,不如退而結(jié)網(wǎng)!

  (3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0a=0,b=0;

  0.120.012底數(shù)的小數(shù)點(diǎn)移動一位,平方數(shù)的小數(shù)點(diǎn)移動二位。(4)據(jù)規(guī)律112101006.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

  7.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  8.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。9.混合運(yùn)算法則:先乘方,后乘除,最后加減;10.等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式。

  11.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

 、伲辉淮畏匠痰臉(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。②.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)。

 、郏辉淮畏匠探夥ǖ囊话悴襟E:整理方程,去分母,去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1(檢驗(yàn)方程的解)。

 、埽祈(xiàng):改變符號后,把方程的項(xiàng)從一邊移到另一邊叫移項(xiàng).移項(xiàng)的依據(jù)是等式性質(zhì)1。12.列方程解應(yīng)用題的常用公式:

  (1)行程問題:距離=速度時間速度距離距離時間;時間速度(2)工程問題:工作量=工效工時工效工作量工作量工時;工時工效(3)比率問題:部分=全體比率比率部分部分全體;全體比率(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價(jià)格問題:售價(jià)=定價(jià)折

  售價(jià)成本1,利潤=售價(jià)-成本,利潤率100%;

  成本10(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

  1S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。

  3臨淵羨魚,不如退而結(jié)網(wǎng)!

  初一下冊知識點(diǎn)總結(jié)

  1.同底數(shù)冪的乘法:aman=am+n,底數(shù)不變,指數(shù)相加。2.同底數(shù)冪的除法:am÷an=am-n,底數(shù)不變,指數(shù)相減。

  3.冪的乘方與積的乘方:(am)n=amn,底數(shù)不變,指數(shù)相乘;(ab)n=anbn,積的乘方等于各因式乘方的積。4.零指數(shù)與負(fù)指數(shù)公式:(1)a0=1(a≠0);a-n=

  1an,(a≠0)。注意:00,0-2無意義。

 。2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)=a2-b2,兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差;(2)完全平方公式:

 、(a+b)2=a2+2ab+b2,兩個數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;②(a-b)2=a2-2ab+b2,兩個數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc6.配方:

  p(1)若二次三項(xiàng)式x+px+q是完全平方式,則有關(guān)系式:q;

  22

  2※(2)二次三項(xiàng)式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。注意:當(dāng)x=h時,可求出ax2+bx+c的最大(或最小)值k。1※(3)注意:x2x2。

  xx2127.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);

  系數(shù)不為零時,單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)。

  8.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個單項(xiàng)式叫多項(xiàng)式的項(xiàng);

  多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);

  注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項(xiàng)式。9.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)。10.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變。

  11.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項(xiàng)都不變號;若括號前邊是“-”號,括號里的各項(xiàng)都要變號。

  注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列。

  臨淵羨魚,不如退而結(jié)網(wǎng)!

  平面幾何部分

  1、補(bǔ)角重要性質(zhì):同角或等角的補(bǔ)角相等.余角重要性質(zhì):同角或等角的余角相等.2、①直線公理:過兩點(diǎn)有且只有一條直線.線段公理:兩點(diǎn)之間線段最短.

 、谟嘘P(guān)垂線的定理:(1)過一點(diǎn)有且只有一條直線與已知直線垂直;

 。2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短.

  比例尺:比例尺1:m中,1表示圖上距離,m表示實(shí)際距離,若圖上1厘米,表示實(shí)際距離m厘米.3、三角形的內(nèi)角和等于180

  三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和三角形的一個外角大于與它不相鄰的任何一個內(nèi)角4、n邊形的對角線公式:

  n(n-3)2各個角都相等,各條邊都相等的多邊形叫做正多邊形

  5、n邊形的內(nèi)角和公式:180(n-2);多邊形的外角和等于3606、判斷三條線段能否組成三角形:

 、賏+b>c(ab為最短的兩條線段)②a-b

  擴(kuò)展閱讀:初中數(shù)學(xué)七年級上冊知識點(diǎn)總結(jié)

  提分?jǐn)?shù)學(xué)

  提分?jǐn)?shù)學(xué)七年級上知識清單

  第一章有理數(shù)

  一.正數(shù)和負(fù)數(shù)

 、闭龜(shù)和負(fù)數(shù)的概念

  負(fù)數(shù):比0小的數(shù)正數(shù):比0大的'數(shù)0既不是正數(shù),也不是負(fù)數(shù)

  注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時,-a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時,-a是正數(shù);當(dāng)a表示0時,-a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負(fù)號的數(shù)是負(fù)數(shù),這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)

 、谡龜(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。2.具有相反意義的量

  若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:零上8℃表示為:+8℃;零下8℃表示為:-8℃

  支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計(jì)數(shù):比原先多了的數(shù),增加增長了的數(shù)一般記為正數(shù);相反,比原先少了的數(shù),減少降低了的數(shù)一般記為負(fù)數(shù)。3.0表示的意義

 、0表示“沒有”,如教室里有0個人,就是說教室里沒有人;⑵0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。

  二.有理數(shù)

  1.有理數(shù)的概念

 、耪麛(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))⑵正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)

 、钦麛(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。

  理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。

  注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像-2,-4,-6,-8也是偶數(shù),-1,-3,-5也是奇數(shù)。2.(1)凡能寫成

  q(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)p分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);

  提分?jǐn)?shù)學(xué)

  正整數(shù)正有理數(shù)正分?jǐn)?shù)(2)有理數(shù)的分類:①按正、負(fù)分類:有理數(shù)零

  負(fù)整數(shù)負(fù)有理數(shù)負(fù)分?jǐn)?shù)正整數(shù)整數(shù)零②按有理數(shù)的意義來分:有理數(shù)負(fù)整數(shù)正分?jǐn)?shù)分?jǐn)?shù)負(fù)分?jǐn)?shù)總結(jié):①正整數(shù)、0統(tǒng)稱為非負(fù)整數(shù)(也叫自然數(shù))②負(fù)整數(shù)、0統(tǒng)稱為非正整數(shù)③正有理數(shù)、0統(tǒng)稱為非負(fù)有理數(shù)④負(fù)有理數(shù)、0統(tǒng)稱為非正有理數(shù)

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);

  a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).

  三.?dāng)?shù)軸

 、睌(shù)軸的概念

  規(guī)定了原點(diǎn),正方向,單位長度的直線叫做數(shù)軸。

  注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點(diǎn)、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實(shí)際需要規(guī)定的。2.數(shù)軸上的點(diǎn)與有理數(shù)的關(guān)系

  ⑴所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示,正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,0用原點(diǎn)表示。

 、扑械挠欣頂(shù)都可以用數(shù)軸上的點(diǎn)表示出來,但數(shù)軸上的點(diǎn)不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點(diǎn)不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點(diǎn)π不是有理數(shù))3.利用數(shù)軸表示兩數(shù)大小

 、旁跀(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;⑵正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);⑶兩個負(fù)數(shù)比較,距離原點(diǎn)遠(yuǎn)的數(shù)比距離原點(diǎn)近的數(shù)小。

  提分?jǐn)?shù)學(xué)

  4.數(shù)軸上特殊的最大(。⿺(shù)

 、抛钚〉淖匀粩(shù)是0,無最大的自然數(shù);⑵最小的正整數(shù)是1,無最大的正整數(shù);⑶最大的負(fù)整數(shù)是-1,無最小的負(fù)整數(shù)5.a可以表示什么數(shù)

 、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;⑵a提分?jǐn)?shù)學(xué)

 、乓话愕,數(shù)a的相反數(shù)是-a,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。當(dāng)a>0時,-a0,那么|a|=a;②如果a0),則x=±a;

  ⑸互為相反數(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;|a|是重要的非負(fù)數(shù),即

  提分?jǐn)?shù)學(xué)

  |a|≥0;注意:|a||b|=|ab|,

  abab⑹絕對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;

  ⑺若幾個數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。(非負(fù)數(shù)的常用性質(zhì):若幾個非負(fù)數(shù)的和為0,則有且只有這幾個非負(fù)數(shù)同時為0)4.有理數(shù)大小的比較

 、爬脭(shù)軸比較兩個數(shù)的大。簲(shù)軸上的兩個數(shù)相比較,左邊的數(shù)總比右邊的數(shù)小,或者右邊的數(shù)總比左邊的數(shù)大

 、评媒^對值比較兩個負(fù)數(shù)的大。簝蓚負(fù)數(shù)比較大小,絕對值大的反而;異號兩數(shù)比較大小,正數(shù)大于負(fù)數(shù)。

 。3)正數(shù)的絕對值越大,這個數(shù)越大;(4)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(5)正數(shù)大于一切負(fù)數(shù);

 。6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.5.絕對值的化簡

 、佼(dāng)a≥0時,|a|=a;②當(dāng)a≤0時,|a|=-a6.已知一個數(shù)的絕對值,求這個數(shù)

  一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離,一般地,絕對值為同一個正數(shù)的有理數(shù)有兩個,它們互為相反數(shù),絕對值為0的數(shù)是0,沒有絕對值為負(fù)數(shù)的數(shù)。

  六.有理數(shù)的加減法.

  1.有理數(shù)的加法法則

 、磐杻蓴(shù)相加,取相同的符號,并把絕對值相加;

 、平^對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;⑶互為相反數(shù)的兩數(shù)相加,和為零;⑷一個數(shù)與0相加,仍得這個數(shù)。2.有理數(shù)加法的運(yùn)算律⑴加法交換律:a+b=b+a⑵加法結(jié)合律:(a+b)+c=a+(b+c)

  在運(yùn)用運(yùn)算律時,一定要根據(jù)需要靈活運(yùn)用,以達(dá)到化簡的目的,通常有下列規(guī)律:①互為相反數(shù)的兩個數(shù)先相加“相反數(shù)結(jié)合法”;

  提分?jǐn)?shù)學(xué)

 、诜栂嗤膬蓚數(shù)先相加“同號結(jié)合法”;③分母相同的數(shù)先相加“同分母結(jié)合法”;④幾個數(shù)相加得到整數(shù),先相加“湊整法”;⑤整數(shù)與整數(shù)、小數(shù)與小數(shù)相加“同形結(jié)合法”。3.加法性質(zhì)

  一個數(shù)加正數(shù)后的和比原數(shù)大;加負(fù)數(shù)后的和比原數(shù);加0后的和等于原數(shù)。即:⑴當(dāng)b>0時,a+b>a⑵當(dāng)b提分?jǐn)?shù)學(xué)

 、.把分母相同或便于通分的加數(shù)相結(jié)合(同分母結(jié)合法)--

  313217+-+-524528321137)+(-+)+(+-)55224818原式=(--

  =-1+0-

  =-1

 、.既有小數(shù)又有分?jǐn)?shù)的運(yùn)算要統(tǒng)一后再結(jié)合(先統(tǒng)一后結(jié)合)(+0.125)-(-3

  18312)+(-3)-(-10)-(+1.25)4833121)+(-3)+(+10)+(-1)4834原式=(+)+(+3

  18=+3

  183121-3+10-14834=(3

  31112-1)+(-3)+1044883=2

  12-3+102316=-3+13

  =10

  16617-12+41122151761)+(-)

  5151122Ⅴ.把帶分?jǐn)?shù)拆分后再結(jié)合(先拆分后結(jié)合)-3+10

  15原式=(-3+10-12+4)+(-+

  =-1+

  411+1522提分?jǐn)?shù)學(xué)

  =-1+

  815+3030=-

  730Ⅵ.分組結(jié)合

  2-3-4+5+6-7-8+9+66-67-68+69

  原式=(2-3-4+5)+(6-7-8+9)++(66-67-68+69)

  =0

  Ⅶ.先拆項(xiàng)后結(jié)合

 。1+3+5+7+99)-(2+4+6+8+100)

  七.有理數(shù)的乘除法

  1.有理數(shù)的乘法法則

  法則一:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;(“同號得正,異號得負(fù)”專指“兩數(shù)相乘”的情況,如果因數(shù)超過兩個,就必須運(yùn)用法則三)法則二:任何數(shù)同0相乘,都得0;

  法則三:幾個不是0的數(shù)相乘,負(fù)因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負(fù)因數(shù)的個數(shù)是奇數(shù)時,積是負(fù)數(shù);法則四:幾個數(shù)相乘,如果其中有因數(shù)為0,則積等于0.2.倒數(shù)

  乘積是1的兩個數(shù)互為倒數(shù),其中一個數(shù)叫做另一個數(shù)的倒數(shù),用式子表示為a

  1=1(a≠0),就是說aa和

  111互為倒數(shù),即a是的倒數(shù),是a的倒數(shù)。aaa1互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么a的倒數(shù)是;倒數(shù)是本身的數(shù)

  a是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).注意:①0沒有倒數(shù);

  ②求假分?jǐn)?shù)或真分?jǐn)?shù)的倒數(shù),只要把這個分?jǐn)?shù)的分子、分母點(diǎn)顛倒位置即可;求帶分?jǐn)?shù)的倒數(shù)時,先把帶分?jǐn)?shù)化為假分?jǐn)?shù),再把分子、分母顛倒位置;

 、壅龜(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(求一個數(shù)的倒數(shù),不改變這個數(shù)的性質(zhì));④倒數(shù)等于它本身的數(shù)是1或-1,不包括0。3.有理數(shù)的乘法運(yùn)算律

  提分?jǐn)?shù)學(xué)

 、懦朔ń粨Q律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。即ab=ba⑵乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。即(ab)c=a(bc).⑶乘法分配律:一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,在把積相加。即a(b+c)=ab+ac4.有理數(shù)的除法法則

  (1)除以一個不等0的數(shù),等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即無意義(2)兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得05.有理數(shù)的乘除混合運(yùn)算

  (1)乘除混合運(yùn)算往往先將除法化成乘法,然后確定積的符號,最后求出結(jié)果。

 。2)有理數(shù)的加減乘除混合運(yùn)算,如無括號指出先做什么運(yùn)算,則按照‘先乘除,后加減’的順序進(jìn)行。

  a0八.有理數(shù)的乘方

  1.乘方的概念

  求n個相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。在a中,a叫做底數(shù),n叫做指數(shù)。(1)a是重要的非負(fù)數(shù),即a≥0;若a+|b|=0a=0,b=0;

  0.120.01211(2)據(jù)規(guī)律2底數(shù)的小數(shù)點(diǎn)移動一位,平方數(shù)的小數(shù)點(diǎn)移動二位

  101002

  22

  n2.乘方的性質(zhì)

  (1)負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪的正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)=-a或(a-b)=-(b-a),當(dāng)

  n為正偶數(shù)時:(-a)=a或(a-b)=(b-a).

  (2)正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  nnnnnnnn

  九.有理數(shù)的混合運(yùn)算

  做有理數(shù)的混合運(yùn)算時,應(yīng)注意以下運(yùn)算順序:1.先乘方,再乘除,最后加減;2.同級運(yùn)算,從左到右進(jìn)行;

  3.如有括號,先做括號內(nèi)的運(yùn)算,按小括號,中括號,大括號依次進(jìn)行。

  十.科學(xué)記數(shù)法

  把一個大于10的數(shù)表示成a10的形式(其中1a10,n是正整數(shù)),這種記數(shù)法是科學(xué)記數(shù)法

  -9-

  n提分?jǐn)?shù)學(xué)

  近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

  有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計(jì)算的最重要的原

  則.

  特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.

  等于本身的數(shù)匯總:相反數(shù)等于本身的數(shù):0倒數(shù)等于本身的數(shù):1,-1絕對值等于本身的數(shù):正數(shù)和0平方等于本身的數(shù):0,1立方等于本身的數(shù):0,1,-1.

  第二章整式的加減

  一.用字母表示數(shù)(代數(shù)初步知識)

  1.代數(shù)式:用運(yùn)算符號“+-÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實(shí)際生活或生產(chǎn)有意義;單獨(dú)一個數(shù)或一個字母也是代數(shù)式;用基本運(yùn)算符號把數(shù)和字母連接而成的式子叫做代數(shù)式,如n,-1,2n+500,abc。2.代數(shù)式書寫規(guī)范:

 。1)數(shù)與字母相乘,或字母與字母相乘中通常使用“”乘,或省略不寫;(2)數(shù)與數(shù)相乘,仍應(yīng)使用“”乘,不用“”乘,也不能省略乘號;(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a5應(yīng)寫成5a;13(4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a1應(yīng)寫成a;

  223(5)在代數(shù)式中出現(xiàn)除法運(yùn)算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;

  a

  提分?jǐn)?shù)學(xué)

 。6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做

  a-b和b-a.

  出現(xiàn)除式時,用分?jǐn)?shù)表示;

  (7)若運(yùn)算結(jié)果為加減的式子,當(dāng)后面有單位時,要用括號把整個式子括起來。3.幾個重要的代數(shù)式:(m、n表示整數(shù))

 。1)a與b的平方差是:a-b;a與b差的平方是:(a-b);

 。2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;

 。3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)

  是:n-1、n、n+1;

 。4)若b>0,則正數(shù)是:a+b,負(fù)數(shù)是:-a-b,非負(fù)數(shù)是:a,非正數(shù)是:-a.

  2222222

  二.整式

  1.單項(xiàng)式:表示數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式。單獨(dú)的一個數(shù)或一個字母也是代數(shù)式。

  2.單項(xiàng)式的系數(shù):單項(xiàng)式中的數(shù)字因數(shù);單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);

  3.單項(xiàng)式的次數(shù):一個單項(xiàng)式中,所有字母的指數(shù)和

  4多項(xiàng)式:幾個單項(xiàng)式的和叫做多項(xiàng)式。每個單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng)叫做常數(shù)項(xiàng)。多項(xiàng)式里次數(shù)最高項(xiàng)的次數(shù),叫做這個多項(xiàng)式的次數(shù)。常數(shù)項(xiàng)的次數(shù)為0。注意:(若a、b、c、p、q是常數(shù))ax+bx+c和x+px+q是常見的兩個二次三項(xiàng)式.

  5整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式,即凡不含有除法運(yùn)算,或雖含有除法運(yùn)算但除式中不含字母的代數(shù)式叫整式.整式分類為:整式2

  2

  單項(xiàng)式多項(xiàng)式.

  注意:分母上含有字母的不是整式。

  6.多項(xiàng)式的升冪和降冪排列:把一個多項(xiàng)式的各項(xiàng)按某個字母的指數(shù)從小到大(或從大到。┡帕衅饋,

  叫做按這個字母的升冪排列(或降冪排列).注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.

  提分?jǐn)?shù)學(xué)

  三.整式的加減

  1.合并同類項(xiàng)

  2同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。

  3合并同類項(xiàng)的法則:同類項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  4合并同類項(xiàng)的步驟:(1)準(zhǔn)確的找出同類項(xiàng);(2)運(yùn)用加法交換律,把同類項(xiàng)交換位置后結(jié)合在一起;(3)利用法則,把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變;(4)寫出合并后的結(jié)果。5去括號去括號的法則:

 。1)括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項(xiàng)的符號都不變;(2)括號前面是“”號,把括號和它前面的“”號去掉,括號里各項(xiàng)的符號都要改變。

  6添括號法則:添括號時,若括號前邊是“+”號,括號里的各項(xiàng)都不變號;若括號前邊是“-”號,括號

  里的各項(xiàng)都要變號.

  7整式的加減:進(jìn)行整式的加減運(yùn)算時,如果有括號先去括號,再合并同類項(xiàng);整式的加減,實(shí)際上是在去括號的基礎(chǔ)上,把多項(xiàng)式的同類項(xiàng)合并.

  8整式加減的步驟:(1)列出代數(shù)式;(2)去括號;(3)添括號(4)合并同類項(xiàng)。

  第三章一元一次方程

  1等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3方程:含未知數(shù)的等式,叫方程.

  4一元一次方程的概念:只含有一個未知數(shù)(元)(含未知數(shù)項(xiàng)的系數(shù)不是零)且未知數(shù)的指數(shù)是1(次)的整式方程叫做一元一次方程。一般形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)

  1注意:未知數(shù)在分母中時,它的次數(shù)不能看成是1次。如3x,它不是一元一次方程。

  x5解一元一次方程

  提分?jǐn)?shù)學(xué)

  方程的解:能使方程左右兩邊相等的未知數(shù)的值叫做方程的解;注意:“方程的解就能代入”驗(yàn)算!解方程:求方程的解的過程叫做解方程。

  等式的性質(zhì):(1)等式兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍是等式;(2)等式兩邊都乘或除以同一個不等于0的數(shù),所得結(jié)果仍是等式。

  6移項(xiàng)

  移項(xiàng):方程中的某些項(xiàng)改變符號后,可以從方程的一邊移到另一邊,這樣的變形叫做移項(xiàng)。

  移項(xiàng)的依據(jù):(1)移項(xiàng)實(shí)際上就是對方程兩邊進(jìn)行同時加減,根據(jù)是等式的性質(zhì)1;(2)系數(shù)化為1實(shí)際上就是對方程兩邊同時乘除,根據(jù)是等式的性質(zhì)2。

  移項(xiàng)的作用:移項(xiàng)時一般把含未知數(shù)的項(xiàng)向左移,常數(shù)項(xiàng)往右移,使左邊對含未知數(shù)的項(xiàng)合并,右邊對常數(shù)項(xiàng)合并。

  注意:移項(xiàng)時要跨越“=”號,移過的項(xiàng)一定要變號。

  7解一元一次方程的一般步驟:整理方程、去分母、去括號、移項(xiàng)、合并同類項(xiàng)、未知數(shù)的系數(shù)化為1;(檢驗(yàn)方程的解)。

  注意:去分母時不可漏乘不含分母的項(xiàng)。分?jǐn)?shù)線有括號的作用,去掉分母后,若分子是多項(xiàng)式,要加括號。解下列方程:(1)4x342x;(2)4x3(20x)6x7(9x);(3)0.1x0.2x130.020.5x15xx1;(4)32638用方程解決問題

  列一元一次方程解應(yīng)用題的基本步驟:審清題意、設(shè)未知數(shù)(元)、列出方程、解方程、寫出答案。關(guān)鍵在于抓住問題中的有關(guān)數(shù)量的相等關(guān)系,列出方程。

  解決問題的策略:利用表格和示意圖幫助分析實(shí)際問題中的數(shù)量關(guān)系9列一元一次方程解應(yīng)用題:

 。1)讀題分析法:多用于“和,差,倍,分問題”

  仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

  (2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形

  提分?jǐn)?shù)學(xué)

  各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  10實(shí)際問題的常見類型:

 。1)行程問題:路程=時間速度,時間=

  路程路程,速度=速度時間(單位:路程米、千米;時間秒、分、時;速度米/秒、米/分、千米/小時)

  (2)工程問題:工作總量=工作時間工作效率,工作效率工作時間工作總量;工作總量=各部分工作量的和;

  工作效率利潤,售價(jià)=標(biāo)價(jià)(1-折扣);進(jìn)價(jià)工作總量;

  工作時間(3)利潤問題:利潤=售價(jià)-進(jìn)價(jià),利潤率=

  (4)商品價(jià)格問題:售價(jià)=定價(jià)折

  售價(jià)成本1100%;,利潤=售價(jià)-成本,利潤率成本10(5)利息問題:本息和=本金+利息;利息=本金利率(6)比率問題:部分=全體比率比率部分部分全體;全體比率(7)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

 。8)等積變形問題:長方體的體積=長寬高;圓柱的體積=底面積高;鍛造前的體積=鍛造后的體積

 。9)周長、面積、體積問題:C圓=2πR,S圓=πR,C長方形=2(a+b),S長方形=ab,C正方形=4a,

  2

  1222322

  S正方形=a,S環(huán)形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V圓錐=πRh.

  310.列一元一次方程解應(yīng)用題:

 。1)讀題分析法:多用于“和,差,倍,分問題”

  仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

  提分?jǐn)?shù)學(xué)

 。2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  第四章走進(jìn)圖形世界

  1、幾何圖形:

  現(xiàn)實(shí)生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形

  從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  立體圖形:有些幾何圖形的各個部分不都在同一平面內(nèi),它們是立體圖形。長方體、正方體、球、圓柱、

  圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。

  平面圖形:有些幾何圖形的各個部分都在同一平面內(nèi),它們是平面圖形。長方形、正方形、三角形、圓

  等都是平面圖形。

  立體圖形與平面圖形:許多立體圖形是由一些平面圖形圍成的,將它們適當(dāng)?shù)丶糸_,就可以展開成平面圖形。

  2、點(diǎn)、線、面、體(1)幾何圖形的組成

  點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。

  包圍著體的是面。面有平的面和曲的面兩種。面和面相交的地方形成線;線和線相交的地方是點(diǎn);幾何圖形都是由點(diǎn)、線、面、體組成的,點(diǎn)是構(gòu)成圖形的基本元素。

  (2)點(diǎn)動成線,線動成面,面動成體。

  3、生活中的立體圖形圓柱柱體

  棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、

  生活中的立體圖形球體

  (按名稱分)圓錐

  椎體

  提分?jǐn)?shù)學(xué)

  棱錐

  4、棱柱及其有關(guān)概念:

  棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。

  n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點(diǎn)。

  棱柱的所有側(cè)棱長都相等,棱柱的上下兩個底面是相同的多邊形,直棱柱的側(cè)面是長方形。棱柱的側(cè)面有可能是長方形,也有可能是平行四邊形。

  5、正方體的平面展開圖:11種

  6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。7、三視圖

  物體的三視圖指主視圖、俯視圖、左視圖。主視圖:從正面看到的圖,叫做主視圖。左視圖:從左面看到的圖,叫做左視圖。俯視圖:從上面看到的圖,叫做俯視圖。

  平面圖形的認(rèn)識

  線段,射線,直線名稱線段射線直線

  -16-

  不同點(diǎn)延伸性不能延伸只能向一方延伸可向兩方無限延伸端點(diǎn)數(shù)21無聯(lián)系線段向一方延長就成射線,向兩方延長就成直線共同點(diǎn)都是直的線提分?jǐn)?shù)學(xué)

  點(diǎn)、直線、射線和線段的表示在幾何里,我們常用字母表示圖形。一個點(diǎn)可以用一個大寫字母表示,如點(diǎn)A

  一條直線可以用一個小寫字母表示或用直線上兩個點(diǎn)的大寫字母表示,如直線l,或者直線AB

  一條射線可以用一個小寫字母表示或用端點(diǎn)和射線上另一點(diǎn)來表示(端點(diǎn)字母寫在前面),如射線l,射線AB一條線段可以用一個小寫字母表示或用它的端點(diǎn)的兩個大寫字母來表示,如線段l,線段AB

  點(diǎn)和直線的位置關(guān)系有兩種:

 、冱c(diǎn)在直線上,或者說直線經(jīng)過這個點(diǎn)。②點(diǎn)在直線外,或者說直線不經(jīng)過這個點(diǎn)。

  線段的性質(zhì)

 。1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。

  (2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。(3)線段的中點(diǎn)到兩端點(diǎn)的距離相等。

 。4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。(5)線段的比較:1.目測法2.疊合法3.度量法線段的中點(diǎn):

  點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。

  M是線段AB的中點(diǎn)

  A

  直線的性質(zhì)

  MB

  AM=BM=

  1AB(或者AB=2AM=2BM)2(1)直線公理:經(jīng)過兩個點(diǎn)有且只有一條直線。(2)過一點(diǎn)的直線有無數(shù)條。

 。3)直線是是向兩方面無限延伸的,無端點(diǎn),不可度量,不能比較大小。(4)直線上有無窮多個點(diǎn)。

  (5)兩條不同的直線至多有一個公共點(diǎn)。

  經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線;兩點(diǎn)確定一條直線;點(diǎn)C線段AB分成相等的兩條線段AM與MB,點(diǎn)M叫做線段AB的中點(diǎn)。類似的還有線段的三等分點(diǎn)、四等分點(diǎn)等。

  提分?jǐn)?shù)學(xué)

  直線桑一點(diǎn)和它一旁的部分叫做射線;兩點(diǎn)的所有連線中,線段最短。簡單說成:兩點(diǎn)之間,線段最短。

  角:有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個角的頂點(diǎn),這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。

  平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。

  角的表示:

 、儆脭(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨(dú)的一個角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋大寫英文字母表示一個獨(dú)立(在一個頂點(diǎn)處只有一個角)的角,如∠B,∠C等。④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫英文字母表示角時,一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。

  用一副三角板,可以畫出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”;度、分、秒是常用的角的度量單位。

  把一個周角360等分,每一份就是一度的角,記作1°;

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”;把1’的角60等分,每一份叫做1秒的角,1秒記作“1””;角的性質(zhì)

 。1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。(2)角的大小可以度量,可以比較(3)角可以參與運(yùn)算。角的平分線

  從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。類似的,

  1°=60’,1’=60”

  還有叫的三等分線。

  AOB平分∠AOC∠AOB=∠BOC=

  1∠AOC(或者∠AOC=2∠AOB=2∠2OBBOC)

  -18-

  C提分?jǐn)?shù)學(xué)

  余角和補(bǔ)角

 、偃绻麅蓚角的和是一個直角等于90°,這兩個角叫做互為余角,簡稱互余,其中一個角是另一個角的

  余角。用數(shù)學(xué)語言表示為如果∠α+∠β=90°,那么∠α與∠β互余;反過來,如果∠α與∠β互余,那么∠α+∠β=90°

  ②如果兩個角的和是一個平角等于180°,這兩個角叫做互為補(bǔ)角,簡稱互補(bǔ),其中一個角是另一個角的補(bǔ)角。用數(shù)學(xué)語言表示為如果∠α+∠β=180°,那么∠α與∠β互補(bǔ);反過來如果∠α與∠β互補(bǔ),那么∠α+∠β=180°

 、弁牵ɑ虻冉牵┑挠嘟窍嗟龋煌牵ɑ虻冉牵┑难a(bǔ)角相等。

  對頂角

  ①一對角,如果它們的頂點(diǎn)重合,兩條邊互為反向延長線,我們把這樣的兩個角叫做互為對頂角,其中一

  個角叫做另一個角的對頂角。

  注意:對頂角是成對出現(xiàn)的,它們有公共的頂點(diǎn);只有兩條直線相交時才能形成對頂角。

 、趯斀堑男再|(zhì):對頂角相等

  如圖,∠1和∠4是對頂角,∠2和∠3是對頂角

  2431

  ∠1=∠4,∠2=∠3

  平行線:

  在同一個平面內(nèi),不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行于CD”。

  注意:(1)平行線是無限延伸的,無論怎樣延伸也不相交。

 。2)當(dāng)遇到線段、射線平行時,指的是線段、射線所在的直線平行。平行線公理及其推論

  平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補(bǔ)充平行線的判定方法:

  提分?jǐn)?shù)學(xué)

 。1)平行于同一條直線的兩直線平行。

 。2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。垂直:

  兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。

  直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。

  垂線的性質(zhì):

  性質(zhì)1:平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

  性質(zhì)2:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短。簡稱:垂線段最短。點(diǎn)到直線的距離:過A點(diǎn)作l的垂線,垂足為B點(diǎn),線段AB的長度叫做點(diǎn)A到直線l的距離。同一平面內(nèi),兩條直線的位置關(guān)系:相交或平行。

  圖形知識結(jié)構(gòu)圖:

  提分?jǐn)?shù)學(xué)

  從不同方向看立體圖形

  立體圖形展開立體圖形

  幾何圖形平面圖形角的度量角角的大小比較余角和補(bǔ)角角的平分線同角(等角)的余角相等;同角(等角)的補(bǔ)角相等等角的余角相等

  直線、射線、線段

  平面圖形平面圖形

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)11

  數(shù)軸

  1.?dāng)?shù)軸的概念

  規(guī)定了原點(diǎn),正方向,單位長度的直線叫做數(shù)軸。

  注意:

 、艛(shù)軸是一條向兩端無限延伸的直線;

  ⑵原點(diǎn)、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;

 、峭粩(shù)軸上的單位長度要統(tǒng)一;

 、葦(shù)軸的三要素都是根據(jù)實(shí)際需要規(guī)定的'。

  2.?dāng)?shù)軸上的點(diǎn)與有理數(shù)的關(guān)系

 、潘械挠欣頂(shù)都可以用數(shù)軸上的點(diǎn)來表示,正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,0用原點(diǎn)表示。

 、扑械挠欣頂(shù)都可以用數(shù)軸上的點(diǎn)表示出來,但數(shù)軸上的點(diǎn)不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點(diǎn)不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點(diǎn)π不是有理數(shù))

  3.利用數(shù)軸表示兩數(shù)大小

  ⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;

 、普龜(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);

 、莾蓚負(fù)數(shù)比較,距離原點(diǎn)遠(yuǎn)的數(shù)比距離原點(diǎn)近的數(shù)小。

  4.?dāng)?shù)軸上特殊的(小)數(shù)

 、抛钚〉淖匀粩(shù)是0,無的自然數(shù);

 、谱钚〉恼麛(shù)是1,無的正整數(shù);

 、堑呢(fù)整數(shù)是—1,無最小的負(fù)整數(shù)

  5.a(chǎn)可以表示什么數(shù)

  ⑴a>0表示a是正數(shù);反之,a是正數(shù),則a>0;

 、芶

  ⑶a=0表示a是0;反之,a是0,則a=0

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)12

  1、用加、減、乘(乘方)、除等運(yùn)算符號把數(shù)或表示數(shù)的字母連接而成的式子,叫做代數(shù)式。(注:單獨(dú)一個數(shù)字或字母也是代數(shù)式)

  2、代數(shù)式的寫法:數(shù)學(xué)與字母相乘時,“×”號省略,數(shù)字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數(shù)字與數(shù)字相乘時,“×”號不能省略;式中出現(xiàn)除法時,一般寫成分?jǐn)?shù)形式。式中出現(xiàn)帶分?jǐn)?shù)時,一般寫成假分?jǐn)?shù)形式。

  3、分段問題書寫代數(shù)式時要分段考慮,有單位時要考慮是否要();如:電費(fèi)、水費(fèi)、出租車、商店優(yōu)惠———————。

  4、單項(xiàng)式:由數(shù)字和字母乘積組成的'式子。單獨(dú)一個數(shù)或一個字母也是單項(xiàng)式。因此,判斷代數(shù)式是否是單項(xiàng)式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,若①分母中不含有字母,②式子中含有加、減運(yùn)算關(guān)系,也不是單項(xiàng)式。

  單項(xiàng)式的系數(shù):是指單項(xiàng)式中的數(shù)字因數(shù);(不要漏負(fù)號和分母)

  單項(xiàng)數(shù)的次數(shù):是指單項(xiàng)式中所有字母的指數(shù)的和。(注意指數(shù)1)

  5、多項(xiàng)式:幾個單項(xiàng)式的和。判斷代數(shù)式是否是多項(xiàng)式,關(guān)鍵要看代數(shù)式中的每一項(xiàng)是否是單項(xiàng)式。每個單項(xiàng)式稱項(xiàng),(其中不含字母的項(xiàng)叫常數(shù)項(xiàng))多項(xiàng)式的次數(shù)是指多項(xiàng)式里次數(shù)最高項(xiàng)的次數(shù)(選代表);多項(xiàng)式的項(xiàng)是指在多項(xiàng)式中每一個單項(xiàng)式。特別注意多項(xiàng)式的項(xiàng)包括它前面的性質(zhì)符號。它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項(xiàng)式和多項(xiàng)式的每一項(xiàng)都包括它前面的符號。

  6、代數(shù)式分為整式和分式(分母里含有字母);整式分為單項(xiàng)式和多項(xiàng)式。

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)13

  一、方程的有關(guān)概念

  1.方程:含有未知數(shù)的等式就叫做方程.

  2. 一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

  3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

  注:⑴ 方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計(jì)算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.

  二、等式的性質(zhì)

  等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.

  等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c

  等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

  三、移項(xiàng)法則:把等式一邊的某項(xiàng)變號后移到另一邊,叫做移項(xiàng).

  四、去括號法則

  1. 括號外的因數(shù)是正數(shù),去括號后各項(xiàng)的符號與原括號內(nèi)相應(yīng)各項(xiàng)的符號相同.

  2. 括號外的`因數(shù)是負(fù)數(shù),去括號后各項(xiàng)的符號與原括號內(nèi)相應(yīng)各項(xiàng)的符號改變.

  五、解方程的一般步驟

  1. 去分母(方程兩邊同乘各分母的最小公倍數(shù))

  2. 去括號(按去括號法則和分配律)

  3. 移項(xiàng)(把含有未知數(shù)的項(xiàng)移到方程一邊,其他項(xiàng)都移到方程的另一邊,移項(xiàng)要變號)

  4. 合并(把方程化成ax = b (a≠0)形式)

  5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=a(b).

  六、用方程思想解決實(shí)際問題的一般步驟

  1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.

  2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)

  3. 列:根據(jù)題意列方程.

  4. 解:解出所列方程.

  5. 檢:檢驗(yàn)所求的解是否符合題意.

  6. 答:寫出答案(有單位要注明答案)

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)14

  一、單項(xiàng)式

  1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項(xiàng)式。

  2、單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù)。

  3、單項(xiàng)式中所有字母的指數(shù)和叫做單項(xiàng)式的次數(shù)。

  4、單獨(dú)一個數(shù)或一個字母也是單項(xiàng)式。

  5、只含有字母因式的單項(xiàng)式的系數(shù)是1或1。

  6、單獨(dú)的一個數(shù)字是單項(xiàng)式,它的系數(shù)是它本身。

  7、單獨(dú)的.一個非零常數(shù)的次數(shù)是0。

  8、單項(xiàng)式中只能含有乘法或乘方運(yùn)算,而不能含有加、減等其他運(yùn)算。

  9、單項(xiàng)式的系數(shù)包括它前面的符號。

  10、單項(xiàng)式的系數(shù)是帶分?jǐn)?shù)時,應(yīng)化成假分?jǐn)?shù)。

  11、單項(xiàng)式的系數(shù)是1或1時,通常省略數(shù)字“1”。

  12、單項(xiàng)式的次數(shù)僅與字母有關(guān),與單項(xiàng)式的系數(shù)無關(guān)。

  二、多項(xiàng)式

  1、幾個單項(xiàng)式的和叫做多項(xiàng)式。

  2、多項(xiàng)式中的每一個單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。

  3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

  4、一個多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。

  5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號。

  6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。

  7、多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),叫做這個多項(xiàng)式的次數(shù)。

  三、整式

  1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

  2、單項(xiàng)式或多項(xiàng)式都是整式。

  3、整式不一定是單項(xiàng)式。

  4、整式不一定是多項(xiàng)式。

  5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。

  四、整式的加減

  1、整式加減的理論根據(jù)是:去括號法則,合并同類項(xiàng)法則,以及乘法分配率。

  2、幾個整式相加減,關(guān)鍵是正確地運(yùn)用去括號法則,然后準(zhǔn)確合并同類項(xiàng)。

  3、幾個整式相加減的一般步驟:

 。1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。

 。2)按去括號法則去括號。

 。3)合并同類項(xiàng)。

  4、代數(shù)式求值的一般步驟:

 。1)代數(shù)式化簡。

 。2)代入計(jì)算

 。3)對于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計(jì)算。

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)15

  一、初一數(shù)學(xué)上冊知識點(diǎn):代數(shù)初步知識。

  1.代數(shù)式:用運(yùn)算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實(shí)際生活或生產(chǎn)有意義;單獨(dú)一個數(shù)或一個字母也是代數(shù)式)

  2.列代數(shù)式的幾個注意事項(xiàng):

  (1)數(shù)與字母相乘,或字母與字母相乘通常使用“〃”乘,或省略不寫;

  (2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“〃”乘,也不能省略乘號;

  (3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;

  (4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×應(yīng)寫成a;

  (5)在代數(shù)式中出現(xiàn)除法運(yùn)算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.

  二、初一數(shù)學(xué)上冊知識點(diǎn):幾個重要的代數(shù)式(m、n表示整數(shù))。

  (1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

  (2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;

  (3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;

  (4)若b>0,則正數(shù)是:a2+b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是:a2,非正數(shù)是:-a2.

  三、初一數(shù)學(xué)上冊知識點(diǎn):有理數(shù)。1.有理數(shù):(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

  (2)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|〃|b|=|a〃b|,

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;(4)2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.3.相反數(shù):

  (4)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;(3)4.絕對值:

  5.有理數(shù)比大。(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).

  3.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

  4.有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;(2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定.5.有理數(shù)乘法的運(yùn)算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.

  6.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.7.有理數(shù)乘方的法則:

  (1)正數(shù)的任何次冪都是正數(shù);

  五、初一數(shù)學(xué)上冊知識點(diǎn):乘方的定義。(1)求相同因式積的運(yùn)算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;(3)(4)據(jù)規(guī)律底數(shù)的小數(shù)點(diǎn)移動一位,平方數(shù)的小數(shù)點(diǎn)移動二位.2.

  3.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

  4.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

  5.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計(jì)算的最重要的原則.6.特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.六、初一數(shù)學(xué)上冊知識點(diǎn):整式的加減。

  1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式.2.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的`數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);系數(shù)不為零時,單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).3.多項(xiàng)式:幾個單項(xiàng)式的和叫多項(xiàng)式.4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);注意:(若a、b、c、p、q是常數(shù))是常見的兩個二次三項(xiàng)式.

  5.整式:凡不含有除法運(yùn)算,或雖含有除法運(yùn)算但除式中不含字母的代數(shù)式叫整式.

  七、初一數(shù)學(xué)上冊知識點(diǎn):整式分類為。

  1.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng).

  2.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變.3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項(xiàng)都不變號;若括號前邊是“-”號,括號里的各項(xiàng)都要變號.

  4.整式的加減:整式的加減,實(shí)際上是在去括號的基礎(chǔ)上,把多項(xiàng)式的同類項(xiàng)合并.

  5.多項(xiàng)式的升冪和降冪排列:把一個多項(xiàng)式的各項(xiàng)按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.

  八、初一數(shù)學(xué)上冊知識點(diǎn):一元一次方程1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!

  2.等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.

  3.方程:含未知數(shù)的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!5.移項(xiàng):改變符號后,把方程的項(xiàng)從一邊移到另一邊叫移項(xiàng).移項(xiàng)的依據(jù)是等式性質(zhì)1.

  6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程.7.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).

  8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).

  9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1……(檢驗(yàn)方程的解).

  九、初一數(shù)學(xué)上冊知識點(diǎn):列一元一次方程解應(yīng)用題。(1)讀題分析法:…………多用于“和,差,倍,分問題”仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法:…………多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  十、初一數(shù)學(xué)上冊知識點(diǎn):.列方程解應(yīng)用題的常用公式。

  十一、結(jié)語。

【初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

初一數(shù)學(xué)上冊知識點(diǎn)總結(jié)11-22

初一數(shù)學(xué)上冊知識點(diǎn)總結(jié)07-24

初一數(shù)學(xué)上冊知識點(diǎn)總結(jié)04-23

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)11-18

初一上冊數(shù)學(xué)知識點(diǎn)總結(jié)10-31

初一上冊數(shù)學(xué)所有知識點(diǎn)總結(jié)04-19

初一數(shù)學(xué)上冊知識點(diǎn)總結(jié)5篇11-27

初一數(shù)學(xué)上冊知識點(diǎn)總結(jié)8篇12-03

初一數(shù)學(xué)上冊知識點(diǎn)總結(jié)(8篇)12-03