中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高一數(shù)學知識點總結(jié)

時間:2024-11-05 15:51:37 知識點總結(jié) 我要投稿

高一數(shù)學知識點總結(jié)15篇(推薦)

  總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗和教訓等方面情況進行評價與描述的一種書面材料,它在我們的學習、工作中起到呈上啟下的作用,因此,讓我們寫一份總結(jié)吧。但是總結(jié)有什么要求呢?以下是小編為大家收集的高一數(shù)學知識點總結(jié),僅供參考,歡迎大家閱讀。

高一數(shù)學知識點總結(jié)15篇(推薦)

高一數(shù)學知識點總結(jié)1

  考點要求:

  1、幾何體的展開圖、幾何體的三視圖仍是高考的熱點。

  2、三視圖和其他的知識點結(jié)合在一起命題是新教材中考查學生三視圖及幾何量計算的趨勢。

  3、重點掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型。

  4、要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等幾何體的三視圖。

  知識結(jié)構(gòu):

  1、多面體的結(jié)構(gòu)特征

 。1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

 。2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形。

  正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

 。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2、旋轉(zhuǎn)體的結(jié)構(gòu)特征

  (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到。

  (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到。

  (3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

 。4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

  3、空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

  三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。

  4、空間幾何體的.直觀圖

  空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

  (1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

 。2)畫幾何體的高

  在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

高一數(shù)學知識點總結(jié)2

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  定義域補充

  能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的'集合.(6)指數(shù)為零底不可以等于零(6)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

  構(gòu)成函數(shù)的三要素:定義域、對應關(guān)系和值域

  再注意:(1)構(gòu)成函數(shù)三個要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)

  值域補充

  (1)、函數(shù)的值域取決于定義域和對應法則,不論采取什么方法求函數(shù)的值域都應先考慮其定義域.(2).應熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復雜函數(shù)值域的基礎(chǔ)。

  3.函數(shù)圖象知識歸納

  (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.

  C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}

  圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

  (2)畫法

  A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內(nèi)描出相應的點P(x,y),最后用平滑的曲線將這些點連接起來.

  B、圖象變換法(請參考必修4三角函數(shù))

  常用變換方法有三種,即平移變換、伸縮變換和對稱變換

  (3)作用:

  1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

高一數(shù)學知識點總結(jié)3

  1、在運用性質(zhì)logaMn=nlogaM時,要特別注意條件,在無M>0的條件下應為logaMn=nloga|M|(n∈N,且n為偶數(shù))。

  2、對數(shù)值取正、負值的規(guī)律:

  當a>1且b>1,或00;

  3、對數(shù)函數(shù)的。定義域及單調(diào)性:

  在對數(shù)式中,真數(shù)必須大于0,所以對數(shù)函數(shù)y=logax的定義域應為{x|x>0}。對數(shù)函數(shù)的單調(diào)性和a的值有關(guān),因而,在研究對數(shù)函數(shù)的單調(diào)性時,要按01進行分類討論。

  4、對數(shù)式的`化簡與求值的常用思路

 。1)先利用冪的運算把底數(shù)或真數(shù)進行變形,化成分數(shù)指數(shù)冪的形式,使冪的底數(shù)最簡,然后正用對數(shù)運算法則化簡合并。

  (2)先將對數(shù)式化為同底數(shù)對數(shù)的和、差、倍數(shù)運算,然后逆用對數(shù)的運算法則,轉(zhuǎn)化為同底對數(shù)真數(shù)的積、商、冪再運算。

高一數(shù)學知識點總結(jié)4

  棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的性質(zhì):

  (1)側(cè)棱交于一點。側(cè)面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個特殊的直角三角形

  esp:

  a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

  拓展閱讀:數(shù)學必修一知識點整理集合與函數(shù)概念

  一、集合有關(guān)概念

  1.集合的含義

  2.集合的中元素的三個特性:

  (1)元素的確定性如:世界上最高的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

  3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集:N*或N+ 整數(shù)集:Z 有理數(shù)集:Q 實數(shù)集:R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2},{x|x-3>2}

  3)語言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類:

  (1)有限集含有有限個元素的集合

  (2)無限集含有無限個元素的集合

  (3)空集不含任何元素的集合

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

  實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:①任何一個集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果AB,BC,那么AC

 、苋绻鸄B同時BA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集個數(shù):

  有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集。

  三、集合的運算

  運算類型交集并集補集

  定義由所有屬于A且屬于B的元素所組成的'集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

  基本初等函數(shù)。

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*。

  當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

  當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數(shù)時,當是偶數(shù)時。

  2.分數(shù)指數(shù)冪

  正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

  0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

  指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

  3.實數(shù)指數(shù)冪的運算性質(zhì)

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R。

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1。

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  函數(shù)的應用

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:

  方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點。

  3、函數(shù)零點的求法:

  求函數(shù)的零點:

  1(代數(shù)法)求方程的實數(shù)根;

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。

  4、二次函數(shù)的零點:

  二次函數(shù)

  1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。

  2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

  3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

高一數(shù)學知識點總結(jié)5

  1、正弦定理:在C中,a、b、c分別為角、、C的對邊,R為C的外接圓的半徑,則有asinbsincsinC2R.

  2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin④a2R,sinb2R,sinCabsinc2R;③a:b:csin:sin:sinC;csinCabcsinsinsinCsin.(正弦定理主要用來解決兩類問題:1、已知兩邊和其中一邊所對的角,求其余的量。2、已知兩角和一邊,求其余的量。)⑤對于已知兩邊和其中一邊所對的角的題型要注意解的情況。(一解、兩解、無解三中情況)如:在三角形ABC中,已知a、b、A(A為銳角)求B。具體的做法是:數(shù)形結(jié)合思想畫出圖:法一:把a擾著C點旋轉(zhuǎn),看所得軌跡以AD有無交點:當無交點則B無解、當有一個交點則B有一解、當有兩個交點則B有兩個解。法二:是算出CD=bsinA,看a的情況:當a但不能到達,在岸邊選取相距3千米的C、D兩點,并測得∠ACB=75O,∠BCD=45O,∠ADC=30O,∠ADB=45(A、B、C、D在同一平面內(nèi)),求兩目標A、B之間的距離。本題解答過程略附:三角形的五個“心”;重心:三角形三條中線交點.外心:三角形三邊垂直平分線相交于一點.內(nèi)心:三角形三內(nèi)角的平分線相交于一點.垂心:三角形三邊上的高相交于一點.

  7、數(shù)列:按照一定順序排列著的一列數(shù).

  8、數(shù)列的項:數(shù)列中的每一個數(shù).

  9、有窮數(shù)列:項數(shù)有限的數(shù)列.

  10、無窮數(shù)列:項數(shù)無限的數(shù)列.

  11、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列(即:an+1>an).

  12、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列(即:an+1④nana1d1;⑤danamnm.

  21、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq.

  22、等差數(shù)列的前n項和的公式:①Snna1an2;②Snna1nn12d.③sna1a2an

  23、等差數(shù)列的前n項和的性質(zhì):①若項數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.S奇S偶nn1②若項數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S偶n1an)(其中S奇nan,

  24、如果一個數(shù)列從第2項起,每一項與它的前一項的'比等于同一個常數(shù),則這個數(shù)列稱為等比數(shù)列,這個常數(shù)稱為等比數(shù)列的公比.符號表示:an1anq(注:①等比數(shù)列中不會出現(xiàn)值為0的項;②同號位上的值同號)注:看數(shù)列是不是等比數(shù)列有以下四種方法: 2①anan1q(n2,q為常數(shù),且0)②anan1an1(n2,anan1an10)③ancqn(c,q為非零常數(shù)).④正數(shù)列{an}成等比的充要條件是數(shù)列{logxan}(x1)成等比數(shù)列.

  25、在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項.若Gab,22則稱G為a與b的等比中項.(注:由Gab不能得出a,G,b成等比,由a,G,bGab)2n1

  26、若等比數(shù)列an的首項是a1,公比是q,則ana1q.

  27、通項公式的變形:①anamqnm;②a1anqn1;③qn1ana1;④qnmanam.

  28、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq.na1q1

  29、等比數(shù)列an的前n項和的公式:①Sna1qnaaq.②sn1n1q11q1q2a1a2an

  30、對任意的數(shù)列{an}的前n項和Sn與通項an的關(guān)系:ans1a1(n1)snsn1(n2)

  [注]:①ana1n1dnda1d(d可為零也可不為零→為等差數(shù)列充要條件(即常數(shù)列也是等差數(shù)列)→若d不為0,則是等差數(shù)列充分條件).②等差{an}前n項和Sndddd22AnBnna1n→222可以為零也可不為零→為等差的充要條件→若為零,則是等差數(shù)列的充分條件;若d不為零,則是等差數(shù)列的充分條件.

 、鄯橇愠(shù)列既可為等比數(shù)列,也可為等差數(shù)列.(不是非零,即不可能有等比數(shù)列)..附:幾種常見的數(shù)列的思想方法:⑴等差數(shù)列的前n項和為Sn,在d0時,有最大值.如何確定使Sn取最大值時的n值,有兩種方法:

  d2n2一是求使an0,an10,成立的n值;二是由Sn數(shù)列通項公式、求和公式與函數(shù)對應關(guān)系如下:數(shù)列等差數(shù)列等比數(shù)列數(shù)列等差數(shù)列前n項和公式通項公式(a1d2)n利用二次函數(shù)的性質(zhì)求n的值.

  對應函數(shù)(時為一次函數(shù))(指數(shù)型函數(shù))對應函數(shù)(時為二次函數(shù))等比數(shù)列(指數(shù)型函數(shù))我們用函數(shù)的觀點揭開了數(shù)列神秘的“面紗”,將數(shù)列的通項公式以及前n項和看成是關(guān)于n的函數(shù),為我們解決數(shù)列有關(guān)問題提供了非常有益的啟示。

  例題:1、等差數(shù)列分析:因為中,,則.是等差數(shù)列,所以是關(guān)于n的一次函數(shù),一次函數(shù)圖像是一條直線,則(n,m),(m,n),(m+n,)三點共線,所以利用每兩點形成直線斜率相等,即,得=0(圖像如上),這里利用等差數(shù)列通項公式與一次函數(shù)的對應關(guān)系,并結(jié)合圖像,直觀、簡潔。

  例題:2、等差數(shù)列中,,前n項和為,若,n為何值時最大?

  分析:等差數(shù)列前n項和可以看成關(guān)于n的二次函數(shù)=,是拋物線=上的離散點,根據(jù)題意,,則因為欲求最大。最大值,故其對應二次函數(shù)圖像開口向下,并且對稱軸為,即當時,

  例題:3遞增數(shù)列,對任意正整數(shù)n,遞增得到:恒成立,設(shè)恒成立,求恒成立,即,則只需求出。,因為是遞的最大值即

  分析:構(gòu)造一次函數(shù),由數(shù)列恒成立,所以可,顯然有最大值對一切對于一切,所以看成函數(shù)的取值范圍是:構(gòu)造二次函數(shù),,它的定義域是增數(shù)列,即函數(shù)為遞增函數(shù),單調(diào)增區(qū)間為,拋物線對稱軸,因為函數(shù)f(x)為離散函數(shù),要函數(shù)單調(diào)遞增,就看動軸與已知區(qū)間的位置。從對應圖像上看,對稱軸的左側(cè)在也可以(如圖),因為此時B點比A點高。于是,,得⑵如果數(shù)列可以看作是一個等差數(shù)列與一個等比數(shù)列的對應項乘積,求此數(shù)列前n項和可依照等比數(shù)列前n項和的推倒導方法:錯位相減求和.例如:112,314,...(2n1)12n,...⑶兩個等差數(shù)列的相同項亦組成一個新的等差數(shù)列,此等差數(shù)列的首項就是原兩個數(shù)列的第一個相同項,公差是兩個數(shù)列公差d1,d2的最小公倍數(shù).

  2.判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法:(1)定義法:對于n≥2的任意自然數(shù),驗證anan1(anan1)為同一常數(shù)。(2)通項公式法。(3)中項公式法:驗證

  2an1anan2(an1anan2)nN都成立。2am03.在等差數(shù)列{an}中,有關(guān)Sn的最值問題:(1)當a1>0,d把①式兩邊同乘2后得2sn=122232n2234n1②

  用①-②,即:123nsn=122232n2①2sn=122232n2234n1②得sn12222n22(12)12n1n23nn1n2n122n2n1n1(1n)22∴sn(n1)2n12

  4.倒序相加法:類似于等差數(shù)列前n項和公式的推導方法.5.常用結(jié)論1):1+2+3+...+n=n(n1)2212)1+3+5+...+(2n-1)=n3)12nn(n1)2223334)123n22216n(n1)(2n1)5)

  1n(n1)1n1n11n(n2)1pq111()2nn21qp1p1q6)()(pq)

  31、ab0ab;ab0ab;ab0ab.

  32、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;nd0acabdb0a⑥;⑦⑧ab0nnbn,n1;anbn,n1.

  33、一元二次不等式:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.

  34、含絕對值不等式、一元二次不等式的解法及延伸1.整式不等式(高次不等式)的解法

  穿根法(零點分段法)求解不等式:a0xa1xnn1a2xn2an0(0)(a00)

  解法:①將不等式化為a0(x-x1)(x-x2)(x-xm)>0(0”,則找“線”在x軸上方的區(qū)間;若不等式是“

  由圖可看出不等式x23x26x80的解集為:

  x|2x1,或x4

  (x1)(x2)(x5)(x6)(x4)0的解集。

  例題:求解不等式

  解:略

  一元二次不等式的求解:

  特例①一元一次不等式ax>b解的討論;

 、谝辉尾坏仁絘x+bx+c>0(a>0)解的討論.

  二次函數(shù)yax22

  000bxc有兩相異實根x1,x2(x1x2)(a0)的圖象一元二次方程ax2有兩相等實根x1x2b2abxc0a0的根2無實根Raxbxc0(a0)的解集axbxc0(a0)的解集2xxx或xx12bxx2axx1xx2對于a0(或

  f(x)g(x)(2)轉(zhuǎn)化為整式不等式(組)

  1xf(x)g(x)0f(x)g(x)0;f(x)g(x)00g(x)0g(x)

  f(x)例題:求解不等式:解:略例題:求不等式

  xx11

  1的解集。

  3.含絕對值不等式的解法:基本形式:

 、傩腿纾簗x|<a(a>0)的不等式的解集為:x|axa②型如:|x|>a(a>0)的不等式的解集為:x|xa,或xa變型:

  其中-c3x23x23x2(x2)(x3)10xR③當x2時,(去絕對值符號)原不等式化為:x2x292x9(x2)(x3)102x2由①②③得原不等式的解集為:x|112x9(注:是把①②③的解集并在一起)2y函數(shù)圖像法:

  令f(x)|x2||x3|

  2x1(x3)則有:f(x)5(3x2)

  2x1(x2)f(x)=1051123o292x在直角坐標系中作出此分段函數(shù)及f(x)10的圖像如圖11292由圖像可知原不等式的解集為:x|x4.一元二次方程ax2+bx+c=0(a>0)的實根的分布常借助二次函數(shù)圖像來分析:y設(shè)ax2+bx+c=0的兩根為、,f(x)=ax2+bx+c,那么:0①若兩根都大于0,即0,0,則有0

  0o對稱軸x=b2ax

  0b0②若兩根都小于0,即0,0,則有2af(0)0y

  11

  對稱軸x=b2aox

 、廴魞筛幸桓∮0一根大于0,即0,則有f(0)0

 、苋魞筛趦蓪崝(shù)m,n之間,即mn,

  0bnm則有2af(m)0of(n)0yoxymX=b2anx⑤若兩個根在三個實數(shù)之間,即mtn,

  yf(m)0則有f(t)0

  f(n)0

  常由根的分布情況來求解出現(xiàn)在a、b、c位置上的參數(shù)

  例如:若方程x2(m1)xm2m30有兩個正實數(shù)根,求m的取值范圍。

  4(m1)24(m22m3)00m1m1m3解:由①型得02(m1)00m1,或m32m2m3022omX=tb2anx所以方程有兩個正實數(shù)根時,m3。

  又如:方程xxm10的一根大于1,另一根小于1,求m的范圍。

  55220m(1)4(m1)02解:因為有兩個不同的根,所以由21m122f(1)011m101m122

  35、二元一次不等式:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.

  36、二元一次不等式組:由幾個二元一次不等式組成的不等式組.

  37、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對x,y,所有這樣的有序數(shù)對x,y構(gòu)成的集合.

  38、在平面直角坐標系中,已知直線xyC0,坐標平面內(nèi)的點x0,y0.①若0,x0y0C0,則點x0,y0在直線xyC0的上方.②若0,x0y0C0,則點x0,y0在直線xyC0的下方.

  39、在平面直角坐標系中,已知直線xyC0.(一)由B確定:①若0,則xyC0表示直線xyC0上方的區(qū)域;xyC0表示直線xyC0下方的區(qū)域.

 、谌0,則xyC0表示直線xyC0下方的區(qū)域;xyC0表示直線 xyC0上方的區(qū)域.

  (二)由A的符號來確定:先把x的系數(shù)A化為正后,看不等號方向:①若是“>”號,則xyC0所表示的區(qū)域為直線l:xyC0的右邊部分。②若是“線性規(guī)劃問題:求線性目標函數(shù)在線性約束條件下的最大值或最小值問題.可行解:滿足線性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標函數(shù)取得最大值或最小值的可行解.

  41、設(shè)a、b是兩個正數(shù),則ab2稱為正數(shù)a、b的算術(shù)平均數(shù),ab稱為正數(shù)a、b的幾何平均數(shù).a(chǎn)b2ab.

  42、均值不等式定理:若a0,b0,則ab2ab,即

  43、常用的基本不等式:①ab2aba,bR;②ab222ab222a,bR;③abab2a0,b0;2④ab222ab2a,bR.

  44、極值定理:設(shè)x、y都為正數(shù),則有:

 、湃魓ys(和為定值),則當xy時,積xy取得最大值s42.⑵若xyp(積為定值),則當xy時,和xy取得最小值2例題:已知x解:∵x5454p.14x5,求函數(shù)f(x)4x2的最大值。

  ,∴4x50由原式可以化為:f(x)4x55214x5(54x)154x3[(54x)154x]3(54x)154x3132當54x154x2,即(54x)1x1,或x32(舍去)時取到“=”號也就是說當x1時有f(x)max2

高一數(shù)學知識點總結(jié)6

  考點一、映射的概念

  1、了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多。

  2、映射:設(shè)A和B是兩個非空集合,如果按照某種對應關(guān)系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個映射(mapping)。映射是特殊的對應,簡稱“對一”的對應。包括:一對一多對一。

  考點二、函數(shù)的概念

  1、函數(shù):設(shè)A和B是兩個非空的數(shù)集,如果按照某種確定的對應關(guān)系f,對于集合A中的任意一個數(shù)x,在集合B中都存在確定的數(shù)y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個函數(shù)。記作y=f(x),xA。其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的'映射,是非空數(shù)集A到非空數(shù)集B的映射。

  2、函數(shù)的三要素:定義域、值域、對應關(guān)系。這是判斷兩個函數(shù)是否為同一函數(shù)的依據(jù)。

  3、區(qū)間的概念:設(shè)a,bR,且a

  ①(a,b)={xa

  ②(a,+∞)={>a}

 、踇a,+∞)={≥a}

 、埽ā,b)={

  考點三、函數(shù)的表示方法

  1、函數(shù)的三種表示方法列表法圖象法解析法

  2、分段函數(shù):定義域的不同部分,有不同的對應法則的函數(shù)。

  注意兩點:

 、俜侄魏瘮(shù)是一個函數(shù),不要誤認為是幾個函數(shù)。

 、诜侄魏瘮(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

  考點四、求定義域的幾種情況

 、偃鬴(x)是整式,則函數(shù)的定義域是實數(shù)集R。

  ②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實數(shù)集。

 、廴鬴(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合。

  ④若f(x)是對數(shù)函數(shù),真數(shù)應大于零。

 、菀驗榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時為零。

  ⑥若f(x)是由幾個部分的數(shù)學式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合。

 、呷鬴(x)是由實際問題抽象出來的函數(shù),則函數(shù)的定義域應符合實際問題。

高一數(shù)學知識點總結(jié)7

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

  解析式

  頂點坐標

  對稱軸

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當h<0時,則向左平行移動|h|個單位得到.

  當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

  當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的.圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根.這兩點間的距離AB=|x?-x?|

  當△=0.圖象與x軸只有一個交點;

  當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).

  (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

高一數(shù)學知識點總結(jié)8

  圓的方程定義:

  圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

  直線和圓的'位置關(guān)系:

  1、直線和圓位置關(guān)系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。

  ①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。

  方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

  ①dR,直線和圓相離、

  2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

  3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

  切線的性質(zhì)

 、艌A心到切線的距離等于圓的半徑;

 、七^切點的半徑垂直于切線;

 、墙(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;

 、冉(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;

  當一條直線滿足

  (1)過圓心;

 。2)過切點;

 。3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足。

  切線的判定定理

  經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。

  切線長定理

  從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

高一數(shù)學知識點總結(jié)9

  一、集合有關(guān)概念

  1.集合的含義

  2.集合的中元素的三個特性:

  (1)元素的確定性如:世界上的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

  3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集:N_或N+

  整數(shù)集:Z

  有理數(shù)集:Q

  實數(shù)集:R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2},{x|x-3>2}

  3)語言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類:

  (1)有限集含有有限個元素的集合

  (2)無限集含有無限個元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

  實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:①任何一個集合是它本身的子集。AA

 、谡孀蛹:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果AB,BC,那么AC

 、苋绻鸄B同時BA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集個數(shù):

  有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

  三、集合的運算

  運算類型交集并集補集

  定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

  設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  記作,即

  CSA=

  AA=A

  AΦ=Φ

  AB=BA

  ABA

  ABB

  AA=A

  AΦ=A

  AB=BA

  ABA

  ABB

  (CuA)(CuB)

  =Cu(AB)

  (CuA)(CuB)

  =Cu(AB)

  A(CuA)=U

  A(CuA)=Φ.

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念

  設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  注意:

  1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。

  求函數(shù)的定義域時列不等式組的主要依據(jù)是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)不小于零;

  (3)對數(shù)式的真數(shù)必須大于零;

  (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

  (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的.x的值組成的集合.

  (6)指數(shù)為零底不可以等于零,

  (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

  相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));

 、诙x域一致(兩點必須同時具備)

  2.值域:先考慮其定義域

  (1)觀察法(2)配方法(3)代換法

  3.函數(shù)圖象知識歸納

  (1)定義:

  在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.

  (2)畫法

  1.描點法:2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換

  4.區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示.

  5.映射

  一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f(對應關(guān)系):A(原象)B(象)”

  對于映射f:A→B來說,則應滿足:

  (1)集合A中的每一個元素,在集合B中都有象,并且象是的;

  (2)集合A中不同的元素,在集合B中對應的象可以是同一個;

  (3)不要求集合B中的每一個元素在集合A中都有原象。

  6.分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補充:復合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。

  二.函數(shù)的性質(zhì)

  1.函數(shù)的單調(diào)性(局部性質(zhì))

  (1)增函數(shù)

  設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1

  如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1

  注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

  (2)圖象的特點

  如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A)定義法:

  (1)任取x1,x2∈D,且x1

  (2)作差f(x1)-f(x2);或者做商

  (3)變形(通常是因式分解和配方);

  (4)定號(即判斷差f(x1)-f(x2)的正負);

  (5)下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

  (B)圖象法(從圖象上看升降)

  (C)復合函數(shù)的單調(diào)性

  復合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8.函數(shù)的奇偶性(整體性質(zhì))

  (1)偶函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2)奇函數(shù):一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  (3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

  9.利用定義判斷函數(shù)奇偶性的步驟:

  ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

  注意:函數(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定.

  10、函數(shù)的解析表達式

  (1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域.

  (2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法

  11.函數(shù)(小)值

  ○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值

  ○2利用圖象求函數(shù)的(小)值

  ○3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

  第三章基本初等函數(shù)

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈_.

  負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  當是奇數(shù)時,,當是偶數(shù)時,

  2.分數(shù)指數(shù)冪

  正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

  ,

  0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

  3.實數(shù)指數(shù)冪的運算性質(zhì)

  (1);

  (2);

  (3).

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域為R.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  a>10

  定義域R定義域R

  值域y>0值域y>0

  在R上單調(diào)遞增在R上單調(diào)遞減

  非奇非偶函數(shù)非奇非偶函數(shù)

  函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1)

  注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

  (1)在[a,b]上,值域是或;

  (2)若,則;取遍所有正數(shù)當且僅當;

  (3)對于指數(shù)函數(shù),總有;

  二、對數(shù)函數(shù)

  (一)對數(shù)

  1.對數(shù)的概念:

  一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(—底數(shù),—真數(shù),—對數(shù)式)

  說明:○1注意底數(shù)的限制,且;

  ○2;

  ○3注意對數(shù)的書寫格式.

  兩個重要對數(shù):

  ○1常用對數(shù):以10為底的對數(shù);

  ○2自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).

  指數(shù)式與對數(shù)式的互化

  冪值真數(shù)

  =N=b

  底數(shù)

  指數(shù)對數(shù)

  (二)對數(shù)的運算性質(zhì)

  如果,且,,,那么:

  ○1+;

  ○2-;

  ○3.

  注意:換底公式:(,且;,且;).

  利用換底公式推導下面的結(jié)論:(1);(2).

  (3)、重要的公式①、負數(shù)與零沒有對數(shù);②、,③、對數(shù)恒等式

  (二)對數(shù)函數(shù)

  1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).

  注意:○1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).

  ○2對數(shù)函數(shù)對底數(shù)的限制:,且.

  2、對數(shù)函數(shù)的性質(zhì):

  a>10

  定義域x>0定義域x>0

  值域為R值域為R

  在R上遞增在R上遞減

  函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0)

  (三)冪函數(shù)

  1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).

  2、冪函數(shù)性質(zhì)歸納.

  (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);

  (2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;

  (3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.

  第四章函數(shù)的應用

  一、方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。

  即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

  3、函數(shù)零點的求法:

  ○1(代數(shù)法)求方程的實數(shù)根;

  ○2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

  4、二次函數(shù)的零點:

  二次函數(shù).

  (1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

  (2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

  (3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

高一數(shù)學知識點總結(jié)10

  高一年級數(shù)學必修三知識點

  (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

  (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點。

  (8)顯然指數(shù)函數(shù)無_。

  奇偶性

  定義

  一般地,對于函數(shù)f(x)

  (1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對于函數(shù)定義域內(nèi)的.任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

  高一數(shù)學必修二重要知識點

  公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上的所有的點都在這個平面內(nèi)。

  公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。

  公理3:過不在同一條直線上的三個點,有且只有一個平面。

  推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。

  推論2:經(jīng)過兩條相交直線,有且只有一個平面。

  推論3:經(jīng)過兩條平行直線,有且只有一個平面。

  公理4:平行于同一條直線的兩條直線互相平行。

  等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

  高一年級數(shù)學高效學習方法

  基礎(chǔ)是關(guān)鍵,課本是首選

  首先,新高一同學要明確的是:高一數(shù)學是高中數(shù)學的重點基礎(chǔ)。剛進入高一,有些學生還不是很適應,如果直接學習高考技巧仿佛是“沒學好走就想跑”。任何的技巧都是建立在牢牢的基礎(chǔ)知識之上,因此建議高一的學生多抓基礎(chǔ),多看課本。

  在應試教育中,只有多記公式,掌握解題技巧,熟悉各種題型,把自己變成一個做題機器,才能在考試中取得的成績。在高考中只會做題是不行的,一定要在會的基礎(chǔ)上加個“熟練”才行,小題一般要控制在每個兩分鐘左右。

  高一數(shù)學的知識掌握較多,高一試題約占高考得分的70%,一學年要學五本書,只要把高一的數(shù)學掌握牢靠,高二,高三則只是對高一的復習與補充,所以進入高中后,要盡快適應新環(huán)境,上課認真聽,多做筆記,一定會學好數(shù)學。

  因此,新高一同學應該在熟記概念的基礎(chǔ)上,多做練習,穩(wěn)扎穩(wěn)打,只有這樣,才能學好數(shù)學。

  一、數(shù)學預習

  預習是學好數(shù)學的必要前提,可謂是“火燒赤壁”所需“東風”.總的來說,預習可以分為以下2步。

  1.預習即將學習的章節(jié)的課本知識。在預習課本的過程中,要將課本中的定義、定理記熟,做到活學活用。有是要仔細做課本上的例題以及課后練習,這些基礎(chǔ)性的東西往往是最重要的。

  2.自覺完成自學稿。自學稿是新課改以來歡迎的學習方式!首先應將自學稿上的《預習檢測》部分寫完,然后想后看題。在剛開始,可能會有一些不會做,記住不要苦心去鉆研,那樣往往會事倍功半!

  二、數(shù)學聽講

  聽講是學好數(shù)學的重要環(huán)節(jié)?梢赃@么說,不聽講,就不會有好成績。

  1.在上課時,認真聽老師講課,積極發(fā)言。在遇到不懂的問題時,做上標記,課后及時的向老師請教!

  2.記錄往往是一個細小的環(huán)節(jié)。注意老師重復的語句,以及寫在黑板上的大量文字(數(shù)學老師一般不多寫字),及時地用一個小本記錄下來,這樣日積月累,會形成一個知識小冊。

高一數(shù)學知識點總結(jié)11

  第一章集合與函數(shù)概念

  一、集合有關(guān)概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性:1.元素的確定性; 2.元素的互異性; 3.元素的無序性

  說明:

  (1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{ … }如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  注意。撼S脭(shù)集及其記法:非負整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R關(guān)于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。 ①語言描述法:例:{不是直角三角形的三角形} ②數(shù)學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

  4、集合的分類:

  1.有限集含有有限個元素的集合2.無限集含有無限個元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實例:設(shè)A={x|x2-1=0} B={-1,1} “元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B ①任何一個集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

  ③如果AíB, BíC ,那么AíC

 、苋绻鸄íB同時BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集與補集(1)補集:設(shè)S是一個集合,A是S的一個子集(即),由S中所有不屬于A的.元素組成的集合,叫做S中子集A的補集(或余集)記作:CSA即CSA ={x | x?S且x?A}

  (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ

  ⑶(CUA)∪A=U

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域

  .注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;

  3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.定義域補充能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零;

  (3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實際問題中的函數(shù)的定義域還要保證實際問題有意義. (又注意:求出不等式組的解集即為函數(shù)的定義域。)構(gòu)成函數(shù)的三要素:定義域、對應關(guān)系和值域再注意:(1)構(gòu)成函數(shù)三個要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備) (見課本21頁相關(guān)例2)值域補充(1)、函數(shù)的值域取決于定義域和對應法則,不論采取什么方法求函數(shù)的值域都應先考慮其定義域. (2).應熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復雜函數(shù)值域的基礎(chǔ)。 3.函數(shù)圖象知識歸納(1)定義:在平面直角坐標系中,以函數(shù)y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x ∈A)的圖象. C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.即記為C={ P(x,y) | y= f(x) , x∈A }圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。 (2)畫法A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內(nèi)描出相應的點P(x, y),最后用平滑的曲線將這些點連接起來. B、圖象變換法(請參考必修4三角函數(shù))常用變換方法有三種,即平移變換、伸縮變換和對稱變換

  (3)作用:1、直觀的看出函數(shù)的性質(zhì); 2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。發(fā)現(xiàn)解題中的錯誤。 4.快去了解區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示.

  5.什么叫做映射一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f:A B”給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

  說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應

  ,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調(diào)從集合A到集合B的對應,它與從B到A的對應關(guān)系一般是不同的;③對于映射f:A→B來說,則應滿足:

  (Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;

  (Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

  常用的函數(shù)表示法及各自的優(yōu)點:

  1函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù);

  2解析法:必須注明函數(shù)的定義域;

  3圖象法:描點法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;

  4列表法:選取的自變量要有代表性,應能反映定義域的特征.注意。航馕龇ǎ罕阌谒愠龊瘮(shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值

  補充一:分段函數(shù)(參見課本P24-25)在定義域的不同部分上有不同的解析表達式的函數(shù)。在不同的范圍里求函數(shù)值時必須把自變量代入相應的表達式。

  分段函數(shù)的解析式不能寫成幾個不同的方程,而就寫函數(shù)值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況.

  (1)分段函數(shù)是一個函數(shù),不要把它誤認為是幾個函數(shù);

  (2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.補充二:復合函數(shù)如果y=f(u),(u∈M),u=g(x),(x∈A),則y=f[g(x)]=F(x),(x∈A)稱為f、g的復合函數(shù)。

  例如: y=2sinX y=2cos(X2+1)

  7.函數(shù)單調(diào)性

  (1).增函數(shù)設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

  注意:1函數(shù)的單調(diào)性是在定義域內(nèi)的某個區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì)

  2必須是對于區(qū)間D內(nèi)的任意兩個自變量x1,x2;當x1

  (2)圖象的特點如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)

  定義法:1任取x1,x2∈D,且x1

  8.函數(shù)的奇偶性(1)偶函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2).奇函數(shù)一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  注意:1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。 2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).

  (3)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

  總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

  1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;

  2確定f(-x)與f(x)的關(guān)系;

  3作出相應結(jié)論:若f(-x) = f(x)或f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x)或f(-x)+f(x) = 0,則f(x)是奇函數(shù).注意。汉瘮(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件.

  首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據(jù)是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定.

  9、函數(shù)的解析表達式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域. (2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時,可用待定系數(shù)法;已知復合函數(shù)f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數(shù)表達式,則常用解方程組消參的方法求出f(x)

  10.函數(shù)最大(小)值(定義見課本p36頁)

  1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值2利用圖象求函數(shù)的最大(小)值3利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

  第二章基本初等函數(shù)

  一、指數(shù)函數(shù)(一)指數(shù)與指數(shù)冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(n th root),其中>1,且∈ *.當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radical exponent),叫做被開方數(shù)(radicand)

  .當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成± ( >0).

  由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,2.分數(shù)指數(shù)冪正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:,0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

  指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential ),其中x是自變量,函數(shù)的定義域為R.注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)a>1 0

  (1)在[a,b]上,值域是或;

  (2)若,則;取遍所有正數(shù)當且僅當;

  (3)對于指數(shù)函數(shù),總有;

  (4)當時,若,則;二、對數(shù)函數(shù)(一)對數(shù)1.對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:( —底數(shù),—真數(shù),—對數(shù)式)

  說明:1注意底數(shù)的限制,且; 2 ; 3注意對數(shù)的書寫格式.兩個重要對數(shù):1常用對數(shù):以10為底的對數(shù); 2自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).對數(shù)式與指數(shù)式的互化對數(shù)式指數(shù)式對數(shù)底數(shù)← →冪底數(shù)對數(shù)← →指數(shù)真數(shù)← →冪(二)對數(shù)的運算性質(zhì)如果,且,那么:1 · + ; 2 - ; 3 .注意:換底公式(,且;,且; ).利用換底公式推導下面的結(jié)論(1) ;(2) . (二)對數(shù)函數(shù)1、對數(shù)函數(shù)的概念:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).注意:1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù). 2對數(shù)函數(shù)對底數(shù)的限制:,且. 2、對數(shù)函數(shù)的性質(zhì):a>1 0

  (三)冪函數(shù)

  1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù). 2、冪函數(shù)性質(zhì)歸納. (1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(1,1); (2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸; (3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.第三章函數(shù)的應用一、方程的根與函數(shù)的零點1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。 2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點. 3、函數(shù)零點的求法:求函數(shù)的零點:1 (代數(shù)法)求方程的實數(shù)根; 2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點. 4、二次函數(shù)的零點:二次函數(shù). 1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點. 2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點. 3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點。

高一數(shù)學知識點總結(jié)12

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  總結(jié)起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

  如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的.實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進入函數(shù)的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  (1)所有的圖形都通過(1,1)這點。

  (2)當a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

  (3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

  (4)當a小于0時,a越小,圖形傾斜程度越大。

  (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

  (6)顯然冪函數(shù)無界。

  拓展閱讀:高一數(shù)學學習方法技巧

  1、課后及時回憶

  如果等到把課堂內(nèi)容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習,可以一個人單獨回憶,也可以幾個人在一起互相啟發(fā),補充回憶。一般按照教師板書的提綱和要領(lǐng)進行,也可以按教材綱目結(jié)構(gòu)進行,從課題到重點內(nèi)容,再到例題的每部分的細節(jié),循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。

  2、定期重復鞏固

  即使是復習過的內(nèi)容仍須定期鞏固,但是復習的次數(shù)應隨時間的增長而逐步減小,間隔也可以逐漸拉長?梢援斕祆柟绦轮R,每周進行周小結(jié),每月進行階段性總結(jié),期中、期末進行全面系統(tǒng)的學期復習。從內(nèi)容上看,每課知識即時回顧,每單元進行知識梳理,每章節(jié)進行知識歸納總結(jié),必須把相關(guān)知識串聯(lián)在一起,形成知識網(wǎng)絡(luò),達到對知識和方法的整體把握。

  3、科學合理安排

  復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優(yōu)于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復習也應結(jié)合各自認知水平,以及識記素材的特點,把握重復次數(shù)與間隔時間,并非間隔時間越長越好,而要適合自己的復習規(guī)律。

高一數(shù)學知識點總結(jié)13

  冪函數(shù)的性質(zhì):

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  總結(jié)起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的`定義域為大于0的所有實數(shù);

  如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進入函數(shù)的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

 。1)所有的圖形都通過(1,1)這點。

  (2)當a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

 。3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

  (4)當a小于0時,a越小,圖形傾斜程度越大。

 。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

 。6)顯然冪函數(shù)。

  解題方法:換元法

  解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來。或者變?yōu)槭煜さ男问,把復雜的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。

  練習題:

  1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

 。1)求f(log2x)的最小值及對應的x值;

 。2)x取何值時,f(log2x)>f(1)且log2[f(x)]

  2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(—2k,2)是函數(shù)y=f—1(x)圖象上的點。

 。1)求實數(shù)k的值及函數(shù)f—1(x)的解析式;

 。2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實數(shù)m的取值范圍。

高一數(shù)學知識點總結(jié)14

  指數(shù)函數(shù)——信息技術(shù)應用 借助信息技術(shù)探究指數(shù)函數(shù)的性質(zhì)

  對數(shù)函數(shù)——閱讀與思考 對數(shù)的發(fā)明

  探究與發(fā)現(xiàn) 互為反函數(shù)的兩個函數(shù)圖像之間的關(guān)系

  冪函數(shù)

  復習參考題

  第三章 函數(shù)的應用

  函數(shù)與方程——閱讀與思考 中外歷史上的方程求解

  信息技術(shù)應用 借助信息技術(shù)求方程的近似解

  函數(shù)模型及其應用——信息技術(shù)應用 收集數(shù)據(jù)并建立函數(shù)模型

  實習作業(yè)

  復習參考題

  關(guān)于數(shù)學:

  課本上講的定理,你可以自己 試著自己去推理。這樣不但提高自己的證明能力,也加深對公式的理解。還有就 是大量練習題目;旧厦空n之后都要做課余練習的題目(不包括老師的作業(yè))。

  數(shù)學成績的提高,數(shù)學方法的掌握都和同學們良好的學習習慣分不開 的,因此。良好的數(shù)學學習習慣包括:聽講、閱讀、探究、作業(yè)。聽講:應抓住 聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好 筆記。每堂課結(jié)束以后應深思一下進行歸納,做到一課一得。

  閱讀:閱讀時應 仔細推敲,弄懂弄通每一個概念、定理和法則,對于例題應與同類參考書聯(lián)系起 來一同學習,博采眾長,增長知識,發(fā)展思維。

  探究:要學會思考,在問題解 決之后再探求一些新的方法,學會從不同角度去思考問題,甚至改變條件或結(jié)論 去發(fā)現(xiàn)新問題,經(jīng)過一段學習,應當將自己的思路整理一下,以形成自己的思維 規(guī)律。作業(yè):要先復習后作業(yè),先思考再動筆,做會一類題領(lǐng)會一大片,作業(yè)要 認真、書寫要規(guī)范,只有這樣腳踏實地,一步一個腳印,才能學好數(shù)學。

  總之,在學習數(shù)學的過程中,要認識到數(shù)學的重要性,充分發(fā)揮自己 的主觀能動性,從小的細節(jié)注意起,養(yǎng)成良好的數(shù)學學習習慣,進而培養(yǎng)思考問 題、分析問題和解決問題的能力,最終把數(shù)學學好。

  到了高中,數(shù)學跟初中數(shù) 學是有很多的不同,對知識的理解能力要求高了,對數(shù)學思維的要求也高了,憑 以前的方法是不行了。

  高中數(shù)學學習方法一般來講還是以上課認真聽講為主, 抓住課本典型例題理解透了掌握透了才是王道,千萬別只顧著看參考書了,那是 本末倒置的方法;另外與老師交朋友經(jīng)常與老師溝通,問問題、請教學習方法都 很重要。建立自己的錯題檔案是殺手锏的一招。

  總之,是個積累的過程,你了 解的越多,學習就越好,所以多記憶,選擇自己的方法。

  有關(guān)數(shù)學知識點拓展 數(shù)學(mathematics),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念 的一門學科,從某種角度看屬于形式科學的一種。借用《數(shù)學簡史》的話,數(shù)學就是研究集合上各種結(jié)構(gòu)(關(guān)系)的科學, 可見,數(shù)學是一門抽象的學科,而嚴謹?shù)倪^程是數(shù)學抽象的關(guān)鍵。

  數(shù)學在人類歷史發(fā)展和社會生活中發(fā)揮著不可替代的作用,也是學習和研究現(xiàn)代科學技術(shù)必不可少的基本工具。

  數(shù)學起源于人類早期的生產(chǎn)活動,古巴比倫人從遠古時代開始已經(jīng)積 累了一定的數(shù)學知識,并能應用實際問題。從數(shù)學本身看,他們的數(shù)學知識也只 是觀察和經(jīng)驗所得,沒有綜合結(jié)論和證明,但也要充分肯定他們對數(shù)學所做出的 貢獻。

  基礎(chǔ)數(shù)學的知識與運用是個人與團體生活中不可或缺的一部分。其基 本概念的精煉早在古埃及、美索不達米亞及古印度內(nèi)的古代數(shù)學文本內(nèi)便可觀見。

  從那時開始,其發(fā)展便持續(xù)不斷地有小幅度的進展。但當時的.代數(shù)學和幾何學長 久以來仍處于獨立的狀態(tài)。代數(shù)學可以說是最為人們廣泛接受的“數(shù)學”。

  可以說每一個人從小時候開始學數(shù)數(shù)起,最先接觸到的數(shù)學就是代數(shù) 學。而數(shù)學作為一個研究“數(shù)”的學科,代數(shù)學也是數(shù)學最重要的組成部分之一。

  幾何學則是最早開始被人們研究的數(shù)學分支。直到16世紀的文藝復興時期,笛卡 爾創(chuàng)立了解析幾何,將當時完全分開的代數(shù)和幾何學聯(lián)系到了一起。從那以后, 我們終于可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的 代數(shù)方程。而其后更發(fā)展出更加精微的微積分。

  西方最原始math(數(shù)學)應用之一,奇普現(xiàn)時數(shù)學已包括多個分支。創(chuàng) 立于二十世紀三十年代的法國的布爾巴基學派則認為:數(shù)學,至少純數(shù)學,是研 究抽象結(jié)構(gòu)的理論。結(jié)構(gòu),就是以初始概念和公理出發(fā)的演繹系統(tǒng)。他們認為, 數(shù)學有三種基本的母結(jié)構(gòu):代數(shù)結(jié)構(gòu)(群,環(huán),域,格……)、序結(jié)構(gòu)(偏序,全序 ……)、拓撲結(jié)構(gòu)(鄰域,極限,連通性,維數(shù)……)。

  數(shù)學被應用在很多不同的領(lǐng)域上,包括科學、工程、醫(yī)學和經(jīng)濟學等。

  數(shù)學在這些領(lǐng)域的應用一般被稱為應用數(shù)學,有時亦會激起新的數(shù)學發(fā)現(xiàn),并促 成全新數(shù)學學科的發(fā)展。數(shù)學家也研究純數(shù)學,也就是數(shù)學本身,而不以任何實 際應用為目標。雖然有許多工作以研究純數(shù)學為開端,但之后也許會發(fā)現(xiàn)合適的 應用。

  具體的,有用來探索由數(shù)學核心至其他領(lǐng)域上之間的連結(jié)的子領(lǐng)域:由邏輯、集合論(數(shù)學基礎(chǔ))、至不同科學的經(jīng)驗上的數(shù)學(應用數(shù)學)、以較近代 的對于不確定性的研究(混沌、模糊數(shù)學)。就縱度而言,在數(shù)學各自領(lǐng)域上的探 索亦越發(fā)深入。

  如何學好數(shù)學

  1、重視課本知識

  對于高一學生來說,大部分數(shù)學知識的來源都是課本,只有很少的一部分知識是課外拓展。所以高一學生想要學好數(shù)學,就要先把課本知識理解透徹。平時做題的時候,也要以課本為重,把課本上的練習做會了,再做其他題。

  2、課前預習

  對很多高一學生來說,還沒有養(yǎng)成良好的學習習慣,完全沒有課前預習的習慣。但是如果想要學好高一數(shù)學,一定要進行適當?shù)念A習,如果時間不多,可以瀏覽一下老師要講的主要內(nèi)容,有一個大概的印象。這樣在上課的時候,可以更好的跟上老師的思路。

  最牛高考勵志書,淘寶搜索《高考蝶變》購買!

  3、記好筆記

  對于高一學生來說,想要學好數(shù)學,記好課堂筆記也是一件很重要的事情。不要以為記筆記是文科生該做的事情,理科同樣需要。高一學生要清楚,在這45分鐘內(nèi),并不是所有的知識點都能掌握的,這個時候要把自己沒有理解的知識點記下來,然后課下再去鉆研。另外筆記也可以作為考試復習時的參考!

  4、及時復習

  想要學好高一數(shù)學,及時復習是其中重要的一環(huán)。高一學生可以通過反復閱讀教材和查找相關(guān)資料,來加深自己對基本概念和知識體系的理解和記憶,把自己學到的新知識和舊知識聯(lián)系起來,進行比較和分析。

高一數(shù)學知識點總結(jié)15

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1.元素的確定性;2.元素的互異性;3.元素的無序性

  說明:(1)對于一個給定的集合,集合中的'元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

  ①任何一個集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果AíB,BíC,那么AíC

 、苋绻鸄íB同時BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

【高一數(shù)學知識點總結(jié)】相關(guān)文章:

高一數(shù)學知識點總結(jié)11-09

高一數(shù)學知識點總結(jié)06-06

高一數(shù)學函數(shù)知識點總結(jié)12-01

高一數(shù)學知識點總結(jié)06-10

高一數(shù)學必修知識點總結(jié)12-15

高一數(shù)學必修知識點總結(jié)08-01

高一數(shù)學集合知識點總結(jié)12-01

高一數(shù)學的知識點歸納總結(jié)07-11

高一數(shù)學函數(shù)的知識點總結(jié)05-28

高一數(shù)學必修知識點總結(jié)08-30