- 相關(guān)推薦
高中數(shù)學(xué)解題技巧方法總結(jié)
總結(jié)是事后對某一時(shí)期、某一項(xiàng)目或某些工作進(jìn)行回顧和分析,從而做出帶有規(guī)律性的結(jié)論,它能夠給人努力工作的動(dòng)力,快快來寫一份總結(jié)吧。下面是小編整理的高中數(shù)學(xué)解題技巧方法總結(jié),僅供參考,大家一起來看看吧。
高中數(shù)學(xué)?碱}型答題技巧與方法
1、解決絕對值問題
主要包括化簡、求值、方程、不等式、函數(shù)等題,基本思路是:把含絕對值的問題轉(zhuǎn)化為不含絕對值的問題。
具體轉(zhuǎn)化方法有:
①分類討論法:根據(jù)絕對值符號中的數(shù)或式子的正、零、負(fù)分情況去掉絕對值。
、诹泓c(diǎn)分段討論法:適用于含一個(gè)字母的多個(gè)絕對值的情況。
、蹆蛇吰椒椒ǎ哼m用于兩邊非負(fù)的方程或不等式。
、軒缀我饬x法:適用于有明顯幾何意義的情況。
2、因式分解
根據(jù)項(xiàng)數(shù)選擇方法和按照一般步驟是順利進(jìn)行因式分解的重要技巧。因式分解的一般步驟是:
提取公因式;選擇用公式;十字相乘法;分組分解法;拆項(xiàng)添項(xiàng)法;
3、配方法。利用完全平方公式把一個(gè)式子或部分化為完全平方式就是配方法,它是數(shù)學(xué)中的重要方法和技巧。配方法的主要根據(jù)有:
4、換元法。解某些復(fù)雜的特型方程要用到“換元法”。換元法解方程的一般步驟是:設(shè)元→換元→解元→還元
5、待定系數(shù)法。待定系數(shù)法是在已知對象形式的條件下求對象的一種方法。適用于求點(diǎn)的坐標(biāo)、函數(shù)解析式、曲線方程等重要問題的解決。其解題步驟是:①設(shè)②列③解④寫
6、復(fù)雜代數(shù)等式。復(fù)雜代數(shù)等式型條件的使用技巧:左邊化零,右邊變形。
①因式分解型:(-----)(----)=0兩種情況為或型
、谂涑善椒叫停(----)2+(----)2=0兩種情況為且型
7、數(shù)學(xué)中兩個(gè)最偉大的解題思路
(1)求值的思路列欲求值字母的方程或方程組
(2)求取值范圍的思路列欲求范圍字母的不等式或不等式組
8、化簡二次根式;舅悸肥牵喊选蘭化成完全平方式。即:
9、觀察法
10、代數(shù)式求值
方法有:
(1)直接代入法
(2)化簡代入法
(3)適當(dāng)變形法(和積代入法)
注意:當(dāng)求值的代數(shù)式是字母的“對稱式”時(shí),通?梢曰癁樽帜浮昂团c積”的形式,從而用“和積代入法”求值。
11、解含參方程。方程中除過未知數(shù)以外,含有的其它字母叫參數(shù),這種方程叫含參方程。解含參方程一般要用‘分類討論法’,其原則是:
(1)按照類型求解
(2)根據(jù)需要討論
(3)分類寫出結(jié)論
12、恒相等成立的有用條件
(1)ax+b=0對于任意x都成立關(guān)于x的方程ax+b=0有無數(shù)個(gè)解a=0且b=0。
(2)ax2+bx+c=0對于任意x都成立關(guān)于x的方程ax2+bx+c=0有無數(shù)解a=0、b=0、c=0。
13、恒不等成立的條件。由一元二次不等式解集為R的有關(guān)結(jié)論容易得到下列恒不等成立的條件:
14、平移規(guī)律。圖像的平移規(guī)律是研究復(fù)雜函數(shù)的重要方法。平移規(guī)律是:
15、圖像法。討論函數(shù)性質(zhì)的重要方法是圖像法——看圖像、得性質(zhì)。定義域圖像在X軸上對應(yīng)的部分;值域圖像在Y軸上對應(yīng)的部分;單調(diào)性從左向右看,連續(xù)上升的一段在X軸上對應(yīng)的區(qū)間是增區(qū)間;從左向右看,連續(xù)下降的一段在X軸上對應(yīng)的區(qū)間是減區(qū)間。最值圖像點(diǎn)處有值,圖像最低點(diǎn)處有最小值;奇偶性關(guān)于Y軸對稱是偶函數(shù),關(guān)于原點(diǎn)對稱是奇函數(shù)
16、函數(shù)、方程、不等式間的重要關(guān)系
方程的根
▼
函數(shù)圖像與x軸交點(diǎn)橫坐標(biāo)
▼
不等式解集端點(diǎn)
17、一元二次不等式的解法。一元二次不等式可以用因式分解轉(zhuǎn)化為二元一次不等式組去解,但比較復(fù)雜;它的簡便的實(shí)用解法是根據(jù)“三個(gè)二次”間的關(guān)系,利用二次函數(shù)的圖像去解。具體步驟如下:
二次化為正
▼
判別且求根
▼
畫出示意圖
▼
解集橫軸中
18、一元二次方程根的討論。一元二次方程根的符號問題或m型問題可以利用根的判別式和根與系數(shù)的關(guān)系來解決,但根的一般問題、特別是區(qū)間根的問題要根據(jù)“三個(gè)二次”間的關(guān)系,利用二次函數(shù)的圖像來解決!皥D像法”解決一元二次方程根的問題的一般思路是:
題意
▼
二次函數(shù)圖像
▼
不等式組
不等式組包括:a的符號;△的情況;對稱軸的位置;區(qū)間端點(diǎn)函數(shù)值的符號。
19、基本函數(shù)在區(qū)間上的值域
我們學(xué)過的一次函數(shù)、反比例函數(shù)、二次函數(shù)等有名稱的函數(shù)是基本函數(shù)。基本函數(shù)求值域或最值有兩種情況:
(1)定義域沒有特別限制時(shí)---記憶法或結(jié)論法;
(2)定義域有特別限制時(shí)---圖像截?cái)喾,一般思路是?/p>
畫出圖像
▼
截出一斷
▼
得出結(jié)論
20、最值型應(yīng)用題的解法
應(yīng)用題中,涉及“一個(gè)變量取什么值時(shí)另一個(gè)變量取得值或最小值”的問題是最值型應(yīng)用題。解決最值型應(yīng)用題的基本思路是函數(shù)思想法,其解題步驟是:
設(shè)變量
▼
列函數(shù)
▼
求最值
▼
寫結(jié)論
21、穿線法
穿線法是解高次不等式和分式不等式的方法。其一般思路是:
首項(xiàng)化正
▼
求根標(biāo)根
▼
右上起穿
▼
奇穿偶回
注意:①高次不等式首先要用移項(xiàng)和因式分解的方法化為“左邊乘積、右邊是零”的形式。
、诜质讲坏仁揭话悴荒苡脙蛇叾汲巳シ帜傅姆椒▉斫,要通過移項(xiàng)、通分合并、因式分解的方法化為“商零式”,用穿線法解。
高考數(shù)學(xué)五大解題思路總結(jié)
高考數(shù)學(xué)解題思想一:函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系(或構(gòu)造函數(shù))運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
高考數(shù)學(xué)解題思想二:數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數(shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
高考數(shù)學(xué)解題思想三:特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),我們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
高考數(shù)學(xué)解題思想四:極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;(2)確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
高考數(shù)學(xué)解題思想五:分類討論思想
我們常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶ο蟀硕喾N情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
高中數(shù)學(xué)的解題的方法
1、首先是精選題目,做到少而精。只有解決質(zhì)量高的、有代表性的題目才能達(dá)到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。
2、其次是分析題目。解答任何一個(gè)數(shù)學(xué)題目之前,都要先進(jìn)行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個(gè)過程中也反映出對數(shù)學(xué)基礎(chǔ)知識掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
3、最后,題目總結(jié)。解題不是目的,我們是通過解題來檢驗(yàn)我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進(jìn)和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機(jī)會(huì)。對于一道完成的題目,有以下幾個(gè)方面需要總結(jié):
、僭谥R方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識,在解題過程中是如何應(yīng)用這些知識的。
、谠诜椒ǚ矫妫喝绾稳胧值,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。
③能不能把解題過程概括、歸納成幾個(gè)步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個(gè)步驟)。
、苣懿荒軞w納出題目的類型,進(jìn)而掌握這類題目的解題通法(我們反對老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵(lì)學(xué)生自己總結(jié)、歸納題目類型)。
高中數(shù)學(xué)選擇題的解題方法
方法一:直接法
所謂直接法,就是直接從題設(shè)的條件出發(fā),運(yùn)用有關(guān)的概念、定義、性質(zhì)、定理、法則和公式等知識,通過嚴(yán)密的推理與計(jì)算來得出題目的結(jié)論,然后再對照題目所給的四個(gè)選項(xiàng)來“對號入座”.其基本策略是由因?qū)Ч,直接求解?/p>
方法二:特例法
特例法的理論依據(jù)是:命題的一般性結(jié)論為真的先決條件是它的特殊情況為真,即普通性寓于特殊性之中,所謂特例法,就是用特殊值(特殊圖形、特殊位置)代替題設(shè)普遍條件,得出特殊結(jié)論,對各個(gè)選項(xiàng)進(jìn)行檢驗(yàn),從而作出正確的判斷.常用的特例有取特殊數(shù)值、特殊數(shù)列、特殊函數(shù)、特殊圖形、特殊角、特殊位置等.這種方法實(shí)際是一種“小題小做”的解題策略,對解答某些選擇題有時(shí)往往十分奏效。
注意:
在題設(shè)條件都成立的情況下,用特殊值(取得越簡單越好)進(jìn)行探求,從而清晰、快捷地得到正確的答案,即通過對特殊情況的研究來判斷一般規(guī)律,是解答本類選擇題的較佳策略.近幾年高考選擇題中可用或結(jié)合特例法來解答的約占30%.因此,特例法是求解選擇題的好招。
方法三:排除法
數(shù)學(xué)選擇題的解題本質(zhì)就是去偽存真,舍棄不符合題目要求的選項(xiàng),找到符合題意的正確結(jié)論.篩選法(又叫排除法)就是通過觀察分析或推理運(yùn)算各項(xiàng)提供的信息或通過特例,對于錯(cuò)誤的選項(xiàng),逐一剔除,從而獲得正確的結(jié)論。
注意:
排除法適應(yīng)于定性型或不易直接求解的選擇題.當(dāng)題目中的條件多于一個(gè)時(shí),先根據(jù)某些條件在選項(xiàng)中找出明顯與之矛盾的,予以否定,再根據(jù)另一些條件在縮小選項(xiàng)的范圍內(nèi)找出矛盾,這樣逐步篩選,直到得出正確的答案.它與特例法、圖解法等結(jié)合使用是解選擇題的常用方法,近幾年高考選擇題中占有很大的比重。
方法四:數(shù)形結(jié)合法
數(shù)形結(jié)合,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語言與直觀的圖形結(jié)合起來,使抽象思維與形象思維結(jié)合起來,通過對圖形的處理,發(fā)揮直觀對抽象的支持作用,實(shí)現(xiàn)抽象概念與具體形象的聯(lián)系和轉(zhuǎn)化,化難為易,化抽象為直觀.
方法五:估算法
在選擇題中作準(zhǔn)確計(jì)算不易時(shí),可根據(jù)題干提供的信息,估算出結(jié)果的大致取值范圍,排除錯(cuò)誤的選項(xiàng).對于客觀性試題,合理的估算往往比盲目的準(zhǔn)確計(jì)算和嚴(yán)謹(jǐn)推理更為有效,可謂“一葉知秋”。
方法六:綜合法
當(dāng)單一的解題方法不能使試題迅速獲解時(shí),我們可以將多種方法融為一體,交叉使用,試題便能迎刃而解.根據(jù)題干提供的信息,不易找到解題思路時(shí),我們可以從選項(xiàng)里找解題靈感。
高中數(shù)學(xué)的證明題的推理方法
一、合情推理
1.歸納推理是由部分到整體,由個(gè)別到一般的推理,在進(jìn)行歸納時(shí),要先根據(jù)已知的部分個(gè)體,把它們適當(dāng)變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論;
2.類比推理是由特殊到特殊的推理,是兩類類似的對象之間的推理,其中一個(gè)對象具有某個(gè)性質(zhì),則另一個(gè)對象也具有類似的性質(zhì)。在進(jìn)行類比時(shí),要充分考慮已知對象性質(zhì)的推理過程,然后類比推導(dǎo)類比對象的性質(zhì)。
二、演繹推理
演繹推理是由一般到特殊的推理,數(shù)學(xué)的證明過程主要是通過演繹推理進(jìn)行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的,其結(jié)論一定是正確,一定要注意推理過程的正確性與完備性。
三、直接證明與間接證明
直接證明是相對于間接證明說的,綜合法和分析法是兩種常見的直接證明。綜合法一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法(或順推證法、由因?qū)Ч?。分析法一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個(gè)明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。
間接證明是相對于直接證明說的,反證法是間接證明常用的方法。假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯(cuò)誤,從而證明原命題成立,這種證明方法叫做反證法。
四、數(shù)學(xué)歸納法
數(shù)學(xué)上證明與自然數(shù)N有關(guān)的命題的一種特殊方法,它主要用來研究與正整數(shù)有關(guān)的數(shù)學(xué)問題,在高中數(shù)學(xué)中常用來證明等式成立和數(shù)列通項(xiàng)公式成立。
數(shù)學(xué)答題技巧及方法
1、函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2、如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3、面對含有參數(shù)的初等函數(shù)來說,在研究的時(shí)候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點(diǎn),二次函數(shù)的對稱軸或是……;
4、選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5、求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6、恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7、圓錐曲線的題目優(yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式;
8、求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(注意去掉不符合條件的特殊點(diǎn));
9、求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10、三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11、數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會(huì)方程的思想;
12、立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13、導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
14、概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少?zèng)Q定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
15、遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來完成;
16、注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
17、絕對值問題優(yōu)先選擇去絕對值,去絕對值優(yōu)先選擇使用定義;
18、與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19、關(guān)于中心對稱問題,只需使用中點(diǎn)坐標(biāo)公式就可以,關(guān)于軸對稱問題,注意兩個(gè)等式的運(yùn)用:一是垂直,一是中點(diǎn)在對稱軸上。
【高中數(shù)學(xué)解題技巧方法總結(jié)】相關(guān)文章:
高中數(shù)學(xué)學(xué)習(xí)方法總結(jié)07-14
高中數(shù)學(xué)的學(xué)習(xí)方法12-02
高中數(shù)學(xué)的學(xué)習(xí)方法05-17
高中數(shù)學(xué)的學(xué)習(xí)方法(優(yōu))05-29
高中數(shù)學(xué)學(xué)習(xí)方法10-12
有效的高中數(shù)學(xué)學(xué)習(xí)方法01-05