有關因式分解教案3篇
作為一位優(yōu)秀的人民教師,通常會被要求編寫教案,教案是實施教學的主要依據(jù),有著至關重要的作用。教案應該怎么寫呢?下面是小編幫大家整理的因式分解教案3篇,僅供參考,大家一起來看看吧。
因式分解教案 篇1
課型 復習課 教法 講練結合
教學目標(知識、能力、教育)
1.了解分解因式的意義,會用提公因式法、 平方差公式和完全平方公式(直接用公式不超過兩次)分解因式(指數(shù)是正整數(shù)).
2.通過乘法公式 , 的逆向變形,進一步發(fā)展學生觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達能力
教學重點 掌握用提取公因式法、公式法分解因式
教學難點 根據(jù)題目的形式和特征 恰當選擇方法進行分解,以提高綜合解題能力。
教學媒體 學案
教學過程
一:【 課前預習】
(一):【知識梳理】
1.分解因式:把一個多項式化成 的形式,這種變形叫做把這個多項式分解因式.
2.分解困式的方法:
、盘峁珗F式法:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.
⑵運用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步驟:
(1)分解 因式時,首先考慮是否有公因式,如果有公因式,一定先提取公團式,然后再考慮是否能用公式法 分解.
(2)在用公式時,若是兩項,可考慮用平方差公式;若是三項,可考慮用完全平方公式;若是三項以上,可先進行適當?shù)姆纸M,然后分解因式。
4.分解因式時常見的思維誤區(qū):
提公因式時,其公因式應找字母指數(shù)最低的,而不是以首項為準.若有一項被全部提出,括號內(nèi)的項 1易漏掉.分解不徹底,如保留中括號形式,還能繼續(xù)分解等
(二):【課前練習】
1.下列各組多項式中沒有公因式的是( )
A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3
C.mxmy與 nynx D.aba c與 abbc
2. 下列各題中,分解因式錯誤的是( )
3. 列多項式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三題用了 公式
二:【經(jīng)典考題剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解時,無論有幾項,首先考慮提取公因式。提公因式時,不僅注意數(shù),也要 注意字母,字母可能是單項式也可能是多項式,一次提盡。
②當某項完全提出后,該項應為1
③注意 ,
④分解結果(1)不帶中括號;(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項式在前,多項式在后;(3)相同因式寫成冪的形式;(4 )分解結果應在指定范圍內(nèi)不能再分解為止;若無指定范圍,一般在有理數(shù)范圍內(nèi)分解。
2. 分解因式:(1) ;(2) ;(3)
分析:對于二次三項齊次式,將其中一個字母看作末知數(shù),另一個字母視為常數(shù)。首先考慮提公因式后,由余下因式的項數(shù)為3項,可考慮完全平方式或十字相乘法繼續(xù)分解;如果項數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項數(shù)為2項,可考慮平方差公式先分解開,再由項數(shù)考慮選擇方法繼續(xù)分解。
3. 計算:(1)
(2)
分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。
(2)分解后,便有規(guī)可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:對于四項或四項以上的多項式的因式分解,一般采用分組分解法,
5. (1)在實數(shù)范圍內(nèi)分解因式: ;
(2)已知 、 、 是△ABC的三邊,且滿足 ,
求證:△ABC為等邊三角形。
分析:此題給出的是三邊之間的關系,而要證等邊三角形,則須考慮證 ,
從已知給出的等式結構看出,應構造出三個完全平方式 ,
即可得證,將原式兩邊同乘以2即可。略證:
即△ABC為等邊三角形。
三:【課后訓練】
1. 若 是一個完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多項式 因式分解的結果是( )
A. B. C. D.
3. 如果二次三項式 可分解為 ,則 的 值為( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之間的兩個整數(shù)整除,則這兩個數(shù)是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 計算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 滿足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 觀察下列等式:
想一想,等式左邊各項冪的底數(shù)與右邊冪的底數(shù)有何關 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來: 。
10. 已知 是△ABC的三邊,且滿足 ,試判斷△ABC的形狀。閱讀下面解題過程:
解:由 得:
①
、
即 ③
△ABC為Rt△。 ④
試問:以上解題過程是否正確: ;若不正確,請指出錯在哪一步?(填代號) ;錯誤原因是 ;本題結論應為 。
四:【課后小結】
布置作業(yè) 地綱
因式分解教案 篇2
一、教材分析
1、教材的地位與作用
“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎,或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的`基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結構,提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學目標
。1)會推導乘法公式
。2)在應用乘法公式進行計算的基礎上,感受乘法公式的作用和價值。
。3)會用提公因式法、公式法進行因式分解。
。4)了解因式分解的一般步驟。
。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點、難點和關鍵
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
難點:正確運用乘法公式;正確分解因式。
關鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學的方法和策略:
1.注重知識形成的探索過程,讓學生在探索過程中領悟知識,在領悟過程中建構體系,從而更好地實現(xiàn)知識體系的更新和知識的正向遷移.
2.知識內(nèi)容的呈現(xiàn)方式力求與學生已有的知識結構相聯(lián)系,同時兼顧學生的思維水平和心理特征.
3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.
4.注意從生活中選取素材,給學生提供一些交流、討論的空間,讓學生從中體會數(shù)學的應用價值,逐步養(yǎng)成談數(shù)學、想數(shù)學、做數(shù)學的良好習慣.
三、課時安排:
2.1平方差公式 1課時
2.2完全平方公式 2課時
2.3用提公因式法進行因式分解 1課時
2.4用公式法進行因式分解 2課時
因式分解教案 篇3
學習目標
1、了解因式分解的意義以及它與正式乘法的關系。
2、能確定多項式各項的公因式,會用提公因式法分解因式。
學習重點:能用提公因式法分解因式。
學習難點:確定因式的公因式。
學習關鍵,在確定多項式各項公因式時,應抓住各項的公因式來提公因式。
學習過程
一.知識回顧
1、計算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主學習
1、閱讀課文P72-73的內(nèi)容,并回答問題:
(1)知識點一:把一個多項式化為幾個整式的__________的形式叫做____________,也叫做把這個多項式__________。
(2)、知識點二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我們來分析一下多項式ma+mb+mc的特點;它的每一項都含有一個相同的因式m,m叫做各項的_________。如果把這個_________提到括號外面,這樣
ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。
2、練一練。P73練習第1題。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。
3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、準確地確定公因式時提公因式法分解因式的關鍵,確定公因式可分兩步進行:
(1)確定公因式的數(shù)字因數(shù),當各項系數(shù)都是整數(shù)時,他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。
例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。
(2)確定公因式的字母及其指數(shù),公因式的字母應是多項式各項都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(________)
(2)-4a2b+8ab-4b分解因式為__________________
(3)分解因式4x2+12x3+4x=__________________
(4)__________________=-2a(a-2b+3c)
2、P73練習第2題和第3題
五、達標測試。
1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.課本P77習題8.5第1題
學習反思
一、知識點
二、易錯題
三、你的困惑
【有關因式分解教案3篇】相關文章:
有關因式分解教案四篇02-12
有關因式分解教案3篇02-01
因式分解教案匯編五篇02-27
【精華】因式分解教案3篇01-31
關于因式分解教案四篇02-12
因式分解同步的練習題05-27
初中因式分解同步練習題05-26
關于因式分解課后練習題05-27
因式分解同步練習題以及答案05-27