一元二次不等式教案
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,總歸要編寫(xiě)教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么你有了解過(guò)教案嗎?下面是小編收集整理的一元二次不等式教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
解一元二次不等式化為標(biāo)準(zhǔn)型。判斷△的符號(hào)。若△<0,則不等式是在R上恒成立或恒不成立。
若△>0,則求出兩根,在數(shù)軸上標(biāo)出,每個(gè)根上畫(huà)一條豎線(xiàn),再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。
2.解簡(jiǎn)單一元高次不等式
a.化為標(biāo)準(zhǔn)型。
b.將不等式分解成若干個(gè)因式的積。
c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫(huà)一條豎線(xiàn),再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的'范圍。
3.解分式不等式的解
a.化為標(biāo)準(zhǔn)型。
b.可將分式化為整式,將整式分解成若干個(gè)因式的積。
c.求出各個(gè)根,在數(shù)軸上標(biāo)出,每個(gè)根上畫(huà)一條豎線(xiàn),再?gòu)挠业阶笙嚅g標(biāo)正負(fù)號(hào),不等式大于0則取標(biāo)正的范圍,小于0則取標(biāo)負(fù)的范圍。(如果不等式是非嚴(yán)格不等式,則要注意分式分母不等于0。)
4.解含參數(shù)的一元二次不等式
a.對(duì)二次項(xiàng)系數(shù)a的討論。
若二次項(xiàng)系數(shù)a中含有參數(shù),則須對(duì)a的符號(hào)進(jìn)行分類(lèi)討論。分為a>0,a=0,a<0。
b.對(duì)判別式△的討論
若判別式△中含有參數(shù),則須對(duì)△的符號(hào)進(jìn)行分類(lèi)討論。分為△>0,△=0,△<0。
c.對(duì)根大小的討論
若不等式對(duì)應(yīng)的方程的根x1、x2中含有參數(shù),則須對(duì)x1、x2的大小進(jìn)行分類(lèi)討論。分為x1>x2,x1=x2,x1<x2。
5.一元二次方程的根的分布問(wèn)題
a.將方程化為標(biāo)準(zhǔn)型。(a的符號(hào))
b.畫(huà)圖觀(guān)察,若有區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值小于0,則只須討論區(qū)間端點(diǎn)的函數(shù)值。
若沒(méi)有區(qū)間端點(diǎn)對(duì)應(yīng)的函數(shù)值小于0,則須討論區(qū)間端點(diǎn)的函數(shù)值、△、軸。
6.一元二次不等式的應(yīng)用
⑴在R上恒成立問(wèn)題(恒不成立問(wèn)題相反,在某區(qū)間恒成立可轉(zhuǎn)化為實(shí)根分布問(wèn)題)
a.對(duì)二次項(xiàng)系數(shù)a的符號(hào)進(jìn)行討論,分為a=0與a≠0。
b.a(chǎn)=0時(shí),把a(bǔ)=0帶入,檢驗(yàn)不等式是否成立,判斷a=0是否屬于不等式解集。
a≠0時(shí),則轉(zhuǎn)化為二次函數(shù)圖像全在x軸上方或下方。
若f(x)>0,則要求a>0,△<0。
若f(x)<0,則要求a<0,△<0。
、铺厥忸}型:已知一不等式的解集(含有字母),求另一不等式的解集(與原不等式系數(shù)大小相同,位置不同)。a.寫(xiě)出原不等式對(duì)應(yīng)的方程,由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
b.寫(xiě)出變換后不等式對(duì)應(yīng)的方程,由由韋達(dá)定理得出解集字母與方程系數(shù)間的關(guān)系。
c.將a中得到的關(guān)系變化后帶入b的關(guān)系中,得到變換后方程的兩根。
d.判斷兩根的大小,變換后不等式二次項(xiàng)的系數(shù),從而寫(xiě)出所求解集。
【一元二次不等式教案】相關(guān)文章:
一元二次不等式教學(xué)設(shè)計(jì)09-23
《一元二次不等式》教學(xué)課件04-01
一元二次不等式解法的說(shuō)課稿02-08
一元二次不等式的解法說(shuō)課稿02-20
《一元二次不等式解法》說(shuō)課稿01-09