八年級(jí)數(shù)學(xué)教案(集合15篇)
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,時(shí)常要開展教案準(zhǔn)備工作,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那么應(yīng)當(dāng)如何寫教案呢?下面是小編精心整理的八年級(jí)數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
八年級(jí)數(shù)學(xué)教案1
復(fù)習(xí)第一步::
勾股定理的有關(guān)計(jì)算
例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個(gè)正方形,則此正方形的面積為.
析解:圖中陰影是一個(gè)正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6
勾股定理解實(shí)際問題
例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時(shí)的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場(chǎng)上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時(shí)最低處離地面的最小高度h.
析解:彩旗自然下垂的長度就是矩形DCEF
的對(duì)角線DE的長度,連接DE,在Rt△DEF中,根據(jù)勾股定理,
得DE=h=220-150=70(cm)
所以彩旗下垂時(shí)的最低處離地面的最小高度h為70cm
與展開圖有關(guān)的計(jì)算
例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.
析解:正方體是由平面圖形折疊而成,反之,一個(gè)正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點(diǎn)A到點(diǎn)C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點(diǎn)A到頂點(diǎn)C’的最短距離就是在圖2中線段AC’的長度.
在矩形ACC’A’中,因?yàn)锳C=2,CC’=1
所以由勾股定理得AC’=.
∴從頂點(diǎn)A到頂點(diǎn)C’的最短距離為
復(fù)習(xí)第二步:
1.易錯(cuò)點(diǎn):本節(jié)同學(xué)們的易錯(cuò)點(diǎn)是:在用勾股定理求第三邊時(shí),分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯(cuò)誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時(shí)要弄清楚解題中的三角形是否為直角三角形.
例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.
錯(cuò)解:因?yàn)閍=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細(xì),忽視了∠B=90°,這一條件而導(dǎo)致沒有分清直角三角形的斜邊和直角邊,錯(cuò)把c當(dāng)成了斜邊.
正解:因?yàn)閍=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運(yùn)用勾股定理時(shí),一定分清斜邊和直角邊,不能機(jī)械套用c2=a2+b2
例5:已知一個(gè)Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是
錯(cuò)解:因?yàn)镽t△ABC的兩邊長分別為3和4,根據(jù)勾股定理得:第三邊長的平方是32+42=25
剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.
正解:當(dāng)4為直角邊時(shí),根據(jù)勾股定理第三邊長的平方是25;當(dāng)4為斜邊時(shí),第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.
溫馨提示:在用勾股定理時(shí),當(dāng)斜邊沒有確定時(shí),應(yīng)進(jìn)行分類討論.
例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.
錯(cuò)解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形
八年級(jí)數(shù)學(xué)教案2
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握已知三邊畫三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;
(3)會(huì)添加較明顯的輔助線.
2、能力目標(biāo):
(1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;
(2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.
3、情感目標(biāo):
(1)在公理的形成過程中滲透:實(shí)驗(yàn)、觀察、歸納;
(2)通過變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.
教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。
教學(xué)難點(diǎn):如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚(gè)三角形全等。
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:自學(xué)輔導(dǎo)
教學(xué)過程:
1、新課引入
投影顯示
問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對(duì)窗框測(cè)量哪幾個(gè)數(shù)據(jù)?如果你手頭沒有測(cè)量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個(gè)問題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問題的本質(zhì):三角形的三個(gè)元素――三條邊。
2、公理的獲得
問:通過上面問題的分析,滿足什么條件的兩個(gè)三角形全等?
讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實(shí)驗(yàn),根據(jù)三角形全等定義對(duì)公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫圖法)
公理:有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。
應(yīng)用格式: (略)
強(qiáng)調(diào)說明:
(1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫出結(jié)論。
(2)、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)
(3)、此公理與前面學(xué)過的公理區(qū)別與聯(lián)系
(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨(dú)立的條件”做好了準(zhǔn)備,進(jìn)行了溝通。
(5)說明AAA與SSA不能判定三角形全等。
3、公理的應(yīng)用
(1) 講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評(píng)。
例1 如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架
求證:AD⊥BC
分析:(設(shè)問程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1= 只要證什么?
(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
(2)講解例2(投影例2 )
例2已知:如圖AB=DC,AD=BC
求證:∠A=∠C
(1)學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。
(2)找學(xué)生代表口述證明思路。
思路1:連接BD(如圖)
證△ABD≌△CDB(SSS)先得∠A=∠C
思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教師共同討論后,說明思路1較優(yōu),讓學(xué)生用思路1在練習(xí)本上寫出證明,一名學(xué)生板書,教師強(qiáng)調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。
例3如圖,已知AB=AC,DB=DC
(1)若E、F、G、H分別是各邊的中點(diǎn),求證:EH=FG
(2)若AD、BC連接交于點(diǎn)P,問AD、BC有何關(guān)系?證明你的結(jié)論。
學(xué)生思考、分析,適當(dāng)點(diǎn)撥,找學(xué)生代表口述證明思路
讓學(xué)生在練習(xí)本上寫出證明,然后選擇投影顯示。
證明:(略)
說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補(bǔ)角相等證兩直線的夾角等于 ,又是很重要的一種方法。
例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,
求證:AC=2AE.
證明:(略)
學(xué)生口述證明思路,教師強(qiáng)調(diào)說明:“中線”條件下的常規(guī)作輔助線法。
5、課堂小結(jié):
(1)判定三角形全等的方法:3個(gè)公理1個(gè)推論(SAS、ASA、AAS、SSS)
在這些方法中,每一個(gè)都需要3個(gè)條件,3個(gè)條件中都至少包含條邊。
(2)三種方法的綜合運(yùn)用
讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。
6、布置作業(yè):
a、書面作業(yè)P70#11、12
b、上交作業(yè)P70#14 P71B組3
八年級(jí)數(shù)學(xué)教案3
【教學(xué)目標(biāo)】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)重難點(diǎn)】
重點(diǎn):理解分式有意義的條件,分式的值為零的條件.
難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學(xué)過程】
一、課堂導(dǎo)入
1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時(shí).
輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.
3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義.即當(dāng)B≠0時(shí),分式才有意義.
二、例題講解
例1:當(dāng)x為何值時(shí),分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.
(補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的值為0?
(1);(2);(3).
【分析】分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當(dāng)x取何值時(shí),下列分式有意義?
3.當(dāng)x為何值時(shí),分式的值為0?
四、小結(jié)
談?wù)勀愕氖斋@.
五、布置作業(yè)
課本128~129頁練習(xí).
八年級(jí)數(shù)學(xué)教案4
教學(xué)目標(biāo)
理解平行四邊形的定義,能根據(jù)定義探究平行四邊形的性質(zhì).
教學(xué)思考
1.通過觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理、交流等數(shù)學(xué)活動(dòng),發(fā)展學(xué)生合情推理能力和動(dòng)手操作能力及應(yīng)用數(shù)學(xué)的意識(shí)與能力.
2.能夠根據(jù)平行四邊形的性質(zhì)進(jìn)行簡單的推理和計(jì)算.
解決問題
通過平行四邊形性質(zhì)的探索過程,豐富學(xué)生從事數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)與體驗(yàn),能運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的推理和計(jì)算,發(fā)展應(yīng)用意識(shí).
情感態(tài)度
在應(yīng)用平行四邊形的性質(zhì)的過程養(yǎng)成獨(dú)立思考的習(xí)慣,在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).
重點(diǎn)
平行四邊形的性質(zhì)的探究和平行四邊形的性質(zhì)的應(yīng)用.
難點(diǎn)
平行四邊形的性質(zhì)的應(yīng)用.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)內(nèi)容和目的
活動(dòng)1欣賞圖片,了解生活中的特殊四邊形
活動(dòng)2剪三角形紙片,拼凸四邊形
活動(dòng)3理解平行四邊形的概念
活動(dòng)4探究平行四邊形邊、角的性質(zhì)
活動(dòng)5平行四邊形性質(zhì)的應(yīng)用
活動(dòng)6評(píng)價(jià)反思、布置作業(yè)
熟悉生活中特殊的四邊形,導(dǎo)出課題.
通過用三角形拼四邊形的過程,滲透轉(zhuǎn)化思想,激發(fā)探索精神.
掌握平行四邊形的定義及表示方法.
探究平行四邊形的性質(zhì).
運(yùn)用平行四邊形的性質(zhì).
學(xué)生交流,內(nèi)化知識(shí),課后鞏固知識(shí).
教學(xué)過程設(shè)計(jì)
問題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)1]
下面的圖片中,有你熟悉的哪些圖形?
。ǔ鍪緢D片)
演示圖片,學(xué)生欣賞.
教師介紹四邊形與我們生活密切聯(lián)系,學(xué)生可再補(bǔ)充列舉.
從實(shí)例圖片中,抽象出的特殊四邊形,培養(yǎng)學(xué)生的抽象思維.通過舉例,讓學(xué)生感受到數(shù)學(xué)與我們的生活緊密聯(lián)系.
問題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)2]
拼一拼
將一張紙對(duì)折,剪下兩張疊放的三角形紙片.將這兩個(gè)三角形相等的一組邊重合,你會(huì)得到怎樣的圖形.
。1)你拼出了怎樣的凸四邊形?與同伴交流.
。2)一位同學(xué)拼出了如下圖所示的一個(gè)四邊形,這個(gè)四邊形的對(duì)邊有怎樣的位置關(guān)系?說說你的理由.
學(xué)生經(jīng)過實(shí)驗(yàn)操作,開展獨(dú)立思考與合作學(xué)習(xí).
教師深入學(xué)生之中,觀察學(xué)生頻出的方法與過程,接受學(xué)生質(zhì)疑并指導(dǎo)個(gè)別學(xué)生探究.
教師待學(xué)生充分探究后,請(qǐng)學(xué)生展示拼圖的方法和不同的圖形.并引導(dǎo)學(xué)生分析(2)中的四邊形的邊的位置特征,從而引出本節(jié)課研究的內(nèi)容
八年級(jí)數(shù)學(xué)教案5
教學(xué)目標(biāo):
【知識(shí)與技能】
1、理解并掌握等腰三角形的性質(zhì)。
2、會(huì)用符號(hào)語言表示等腰三角形的性質(zhì)。
3、能運(yùn)用等腰三角形性質(zhì)進(jìn)行證明和計(jì)算。
【過程與方法】
1、通過觀察等腰三角形的對(duì)稱性,發(fā)展學(xué)生的形象思維。
2、通過實(shí)踐、觀察、證明等腰三角形的性質(zhì),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),感受數(shù)學(xué)思考過程的條理性,發(fā)展學(xué)生的合情推理能力。
3、通過運(yùn)用等腰三角形的性質(zhì)解決有關(guān)問題,提高學(xué)生運(yùn)用幾何語言表達(dá)問題的,運(yùn)用知識(shí)和技能解決問題的能力。
【情感態(tài)度】
引導(dǎo)學(xué)生對(duì)圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解答問題的活動(dòng)中取得成功的體驗(yàn)。
【教學(xué)重點(diǎn)】
等腰三角形的性質(zhì)及應(yīng)用。
【教學(xué)難點(diǎn)】
等腰三角形的證明。
教學(xué)過程:
一、情境導(dǎo)入,初步認(rèn)識(shí)
問題1什么叫等腰三角形?它是一個(gè)軸對(duì)稱圖形嗎?請(qǐng)根據(jù)自己的理解,利用軸對(duì)稱的知識(shí),自己做一個(gè)等腰三角形。要求學(xué)生獨(dú)立思考,動(dòng)手作圖后再互相交流評(píng)價(jià)。
可按下列方法做出:
作一條直線l,在l上取點(diǎn)A,在l外取點(diǎn)B,作出點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)C,連接AB,AC,CB,則可得到一個(gè)等腰三角形。
問題2每位同學(xué)請(qǐng)拿出事先準(zhǔn)備好的長方形紙片,按下圖方式折疊剪裁,再把它展開,觀察并討論:得到的△ABC有什么特點(diǎn)?
教師指導(dǎo):上述過程中,剪刀剪過的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。
把剪出的等腰三角形ABC沿折痕對(duì)折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的性質(zhì)嗎?說說你的猜想。
在一張白紙上任意畫一個(gè)等腰三角形,把它剪下來,請(qǐng)你試著折一折。你的猜想仍然成立嗎?
教學(xué)說明:通過學(xué)生的動(dòng)手操作與觀察發(fā)現(xiàn),加深學(xué)生對(duì)等腰三角形性質(zhì)的理解。
二、思考探究,獲取新知
教師依據(jù)學(xué)生討論發(fā)言的情況,歸納等腰三角形的性質(zhì):
①∠B=∠C→兩個(gè)底角相等。
、贐D=CD→AD為底邊BC上的中線。
、邸螧AD=∠CAD→AD為頂角∠BAC的平分線。
∠ADB=∠ADC=90°→AD為底邊BC上的高。
指導(dǎo)學(xué)生用語言敘述上述性質(zhì)。
性質(zhì)1等腰三角形的兩個(gè)底角相等(簡寫成:“等邊對(duì)等角”)。
性質(zhì)2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡記為:“三線合一”)。
教師指導(dǎo)對(duì)等腰三角形性質(zhì)的證明。
1、證明等腰三角形底角的性質(zhì)。
教師要求學(xué)生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證。在引導(dǎo)學(xué)生分析思路時(shí)強(qiáng)調(diào):
(1)利用三角形全等來證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個(gè)三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個(gè)三角形。
(2)添加輔助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。
2、證明等腰三角形“三線合一”的性質(zhì)。
【教學(xué)說明】在證明中,設(shè)計(jì)輔助線是關(guān)鍵,引導(dǎo)學(xué)生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來的條件是不同的,重視這一點(diǎn),要求學(xué)生板書證明過程,以體會(huì)一題多解帶來的體驗(yàn)。
三、典例精析,掌握新知
例如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。
解:∵AB=AC,BD=BC=AD,
∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對(duì)等角)。
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,
從而∠ABC=∠C=∠BDC=2x。
于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°
于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。
【教學(xué)說明】等腰三角形“等邊對(duì)等角”及“三線合一”性質(zhì),可以實(shí)現(xiàn)由邊到角的轉(zhuǎn)化,從而可求出相應(yīng)角的度數(shù)。要在解題過程中,學(xué)會(huì)從復(fù)雜圖形中分解出等腰三角形,用方程思想和數(shù)形結(jié)合思想解決幾何問題。
四、運(yùn)用新知,深化理解
第1組練習(xí):
1、如圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)。
如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標(biāo)出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。
2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。
第2組練習(xí):
1、如果△ABC是軸對(duì)稱圖形,則它一定是( )
A、等邊三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
2、等腰三角形的一個(gè)外角是100°,它的頂角的度數(shù)是( )
A、80° B、20°
C、80°和20° D、80°或50°
3、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm。求這個(gè)等腰三角形的邊長。
4、如圖,在△ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。
【教學(xué)說明】
等腰三角形解邊方面的計(jì)算類型較多,引導(dǎo)學(xué)生見識(shí)不同類型,并適時(shí)概括歸納,幫學(xué)生形成解題能力,注意提醒學(xué)生分類討論思想的應(yīng)用。
【答案】
第1組練習(xí)答案:
1、(1)72°;(2)30°
2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD
3、∠B=77°,∠C=38、5°
第2組練習(xí)答案:
1、C
2、C
3、設(shè)三角形的底邊長為xcm,則其腰長為(x+2)cm,根據(jù)題意,得2(x+2)+x=16。解得x=4!嗟妊切蔚娜呴L為4cm,6cm和6cm。
4、延長CD交AB的延長線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC!唷螾=∠ACD。又∵DE∥AP,∴∠CDE=∠P!唷螩DE=∠ACD,∴DE=EC。同理可證:AE=DE!郃E=CE。
四、師生互動(dòng),課堂小結(jié)
這節(jié)課主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡單的應(yīng)用。請(qǐng)學(xué)生表述性質(zhì),提醒每個(gè)學(xué)生要靈活應(yīng)用它們。
學(xué)生間可交流體會(huì)與收獲。
八年級(jí)數(shù)學(xué)教案6
一.教學(xué)目標(biāo):
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過程。
3.會(huì)用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動(dòng)大小。
二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
2.難點(diǎn):理解方差公式
3.難點(diǎn)的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。
(2)波動(dòng)性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法。可以畫折線圖方法來反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫折線圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋,波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
三.例習(xí)題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計(jì)算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動(dòng)大小的方法——畫折線法。
(4).客觀上反映了在解決某些實(shí)際問題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。
2.教材P154例1的設(shè)計(jì)意圖:
(1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類似的實(shí)際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績選擇參賽隊(duì)員這樣的實(shí)際問題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過程中應(yīng)抓住以下幾點(diǎn):
1.題目中“整齊”的含義是什么?說明在這個(gè)問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動(dòng)小,所以要研究兩組數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄,這個(gè)問題可以使學(xué)生明確利用方差計(jì)算步驟。
3.方差怎樣去體現(xiàn)波動(dòng)大小?
這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。
六.隨堂練習(xí):
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農(nóng)作物的苗長的比較高?
(2)哪種農(nóng)作物的苗長得比較整齊?
2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?
測(cè)試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強(qiáng)10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強(qiáng)的成績要穩(wěn)定。
七.課后練習(xí):
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會(huì)選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級(jí)數(shù)學(xué)教案7
第11章平面直角坐標(biāo)系
11。1平面上點(diǎn)的坐標(biāo)
第1課時(shí)平面上點(diǎn)的坐標(biāo)(一)
教學(xué)目標(biāo)
【知識(shí)與技能】
1。知道有序?qū)崝?shù)對(duì)的概念,認(rèn)識(shí)平面直角坐標(biāo)系的相關(guān)知識(shí),如平面直角坐標(biāo)系的構(gòu)成:橫軸、縱軸、原點(diǎn)等。
2。理解坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng)關(guān)系,能寫出給定的平面直角坐標(biāo)系中某一點(diǎn)的坐標(biāo)。已知點(diǎn)的坐標(biāo),能在平面直角坐標(biāo)系中描出點(diǎn)。
3。能在方格紙中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系來描述點(diǎn)的位置。
【過程與方法】
1。結(jié)合現(xiàn)實(shí)生活中表示物體位置的例子,理解有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系的作用。
2。學(xué)會(huì)用有序?qū)崝?shù)對(duì)和平面直角坐標(biāo)系中的點(diǎn)來描述物體的位置。
【情感、態(tài)度與價(jià)值觀】
通過引入有序?qū)崝?shù)對(duì)、平面直角坐標(biāo)系讓學(xué)生體會(huì)到現(xiàn)實(shí)生活中的問題的解決與數(shù)學(xué)的發(fā)展之間有聯(lián)系,感受到數(shù)學(xué)的價(jià)值。
重點(diǎn)難點(diǎn)
【重點(diǎn)】
認(rèn)識(shí)平面直角坐標(biāo)系,寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能在坐標(biāo)平面內(nèi)描出點(diǎn)。
【難點(diǎn)】
理解坐標(biāo)系中的坐標(biāo)與坐標(biāo)軸上的數(shù)字之間的關(guān)系。
教學(xué)過程
一、創(chuàng)設(shè)情境、導(dǎo)入新知
師:如果讓你描述自己在班級(jí)中的位置,你會(huì)怎么說?
生甲:我在第3排第5個(gè)座位。
生乙:我在第4行第7列。
師:很好!我們買的電影票上寫著幾排幾號(hào),是對(duì)應(yīng)某一個(gè)座位,也就是這個(gè)座位可以用排號(hào)和列號(hào)兩個(gè)數(shù)字確定下來。
二、合作探究,獲取新知
師:在以上幾個(gè)問題中,我們根據(jù)一個(gè)物體在兩個(gè)互相垂直的方向上的數(shù)量來表示這個(gè)物體
的位置,這兩個(gè)數(shù)量我們可以用一個(gè)實(shí)數(shù)對(duì)來表示,但是,如果(5,3)表示5排3號(hào)的話,那么(3,5)表示什么呢?
生:3排5號(hào)。
師:對(duì),它們對(duì)應(yīng)的不是同一個(gè)位置,所以要求表示物體位置的這個(gè)實(shí)數(shù)對(duì)是有序的。誰來說說我們應(yīng)該怎樣表示一個(gè)物體的位置呢?
生:用一個(gè)有序的實(shí)數(shù)對(duì)來表示。
師:對(duì)。我們學(xué)過實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,有序?qū)崝?shù)對(duì)是不是也可以和一個(gè)點(diǎn)對(duì)應(yīng)起來呢?
生:可以。
教師在黑板上作圖:
我們可以在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為
正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點(diǎn)為原點(diǎn)。這樣就構(gòu)成了平面直角坐標(biāo)系,這個(gè)平面叫做坐標(biāo)平面。
師:有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個(gè)有序?qū)崝?shù)對(duì)來表示了,F(xiàn)在請(qǐng)大家自己動(dòng)手畫一個(gè)平面直角坐標(biāo)系。
學(xué)生操作,教師巡視。教師指正學(xué)生易犯的錯(cuò)誤。
教師邊操作邊講解:
如圖,由點(diǎn)P分別向x軸和y軸作垂線,垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是5,我們就說P點(diǎn)的橫坐標(biāo)是3,縱坐標(biāo)是5,我們把橫坐標(biāo)寫在前,縱坐標(biāo)寫在后,(3,5)就是點(diǎn)P的坐標(biāo)。在x軸上的點(diǎn),過這點(diǎn)向y軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的縱坐標(biāo)就是0;在y軸上的點(diǎn),過這點(diǎn)向x軸作垂線,對(duì)應(yīng)的坐標(biāo)是0,所以它的橫坐標(biāo)就是0;原點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都是0,即原點(diǎn)的坐標(biāo)是(0,0)。
教師多媒體出示:
師:如圖,請(qǐng)同學(xué)們寫出A、B、C、D這四點(diǎn)的坐標(biāo)。
生甲:A點(diǎn)的坐標(biāo)是(—5,4)。
生乙:B點(diǎn)的坐標(biāo)是(—3,—2)。
生丙:C點(diǎn)的坐標(biāo)是(4,0)。
生。篋點(diǎn)的坐標(biāo)是(0,—6)。
師:很好!我們已經(jīng)知道了怎樣寫出點(diǎn)的坐標(biāo),如果已知一點(diǎn)的坐標(biāo)為(3,—2),怎樣在平面直角坐標(biāo)系中找到這個(gè)點(diǎn)呢?
教師邊操作邊講解:
在x軸上找出橫坐標(biāo)是3的點(diǎn),過這一點(diǎn)向x軸作垂線,橫坐標(biāo)是3的點(diǎn)都在這條直線上;在y軸上找出縱坐標(biāo)是—2的點(diǎn),過這一點(diǎn)向y軸作垂線,縱坐標(biāo)是—2的點(diǎn)都在這條直線上;這兩條直線交于一點(diǎn),這一點(diǎn)既滿足橫坐標(biāo)為3,又滿足縱坐標(biāo)為—2,所以這就是坐標(biāo)為(3,—2)的點(diǎn)。下面請(qǐng)同學(xué)們?cè)诜礁窦堉薪⒁粋(gè)平面直角坐標(biāo)系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個(gè)點(diǎn)。
學(xué)生動(dòng)手作圖,教師巡視指導(dǎo)。
三、深入探究,層層推進(jìn)
師:兩個(gè)坐標(biāo)軸把坐標(biāo)平面劃分為四個(gè)區(qū)域,從x軸正半軸開始,按逆時(shí)針方向,把這四個(gè)區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標(biāo)軸不屬于任何一個(gè)象限。在同一象限內(nèi)的點(diǎn),它們的橫坐標(biāo)的符號(hào)一樣嗎?縱坐標(biāo)的符號(hào)一樣嗎?
生:都一樣。
師:對(duì),由作垂線求坐標(biāo)的過程,我們知道第一象限內(nèi)的點(diǎn)的橫坐標(biāo)的符號(hào)為+,縱坐標(biāo)的符號(hào)也為+。你能說出其他象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)嗎?
生:能。第二象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,+),第三象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(—,—),第四象限內(nèi)的點(diǎn)的坐標(biāo)的符號(hào)為(+,—)。
師:很好!我們知道了一點(diǎn)所在的象限,就能知道它的坐標(biāo)的符號(hào)。同樣的,我們由點(diǎn)的坐標(biāo)也能知道它所在的象限。一點(diǎn)的坐標(biāo)的符號(hào)為(—,+),你能判斷這點(diǎn)是在哪個(gè)象限嗎?
生:能,在第二象限。
四、練習(xí)新知
師:現(xiàn)在我給出幾個(gè)點(diǎn),你們判斷一下它們分別在哪個(gè)象限。
教師寫出四個(gè)點(diǎn)的坐標(biāo):A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A點(diǎn)在第三象限。
生乙:B點(diǎn)在第四象限。
生丙:C點(diǎn)不屬于任何一個(gè)象限,它在y軸上。
生。篋點(diǎn)不屬于任何一個(gè)象限,它在x軸上。
師:很好!現(xiàn)在請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,在上面描出這些點(diǎn)。
學(xué)生作圖,教師巡視,并予以指導(dǎo)。
五、課堂小結(jié)
師:本節(jié)課你學(xué)到了哪些新的知識(shí)?
生:認(rèn)識(shí)了平面直角坐標(biāo)系,會(huì)寫出坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),已知坐標(biāo)能描點(diǎn),知道了四個(gè)象限以及四個(gè)象限內(nèi)點(diǎn)的符號(hào)特征。
教師補(bǔ)充完善。
教學(xué)反思
物體位置的說法和表述物體的位置等問題,學(xué)生在實(shí)際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學(xué)的聯(lián)系。教師在這節(jié)課上引導(dǎo)學(xué)生去想到建立一個(gè)平面直角坐標(biāo)系來表示物體的位置,讓學(xué)生參與到探索獲取新知的活動(dòng)中,主動(dòng)學(xué)習(xí)思考,感受數(shù)學(xué)的魅力。在教學(xué)中我讓學(xué)生由生活中的實(shí)例與坐標(biāo)的聯(lián)系感受坐標(biāo)的實(shí)用性,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
第2課時(shí)平面上點(diǎn)的坐標(biāo)(二)
教學(xué)目標(biāo)
【知識(shí)與技能】
進(jìn)一步學(xué)習(xí)和應(yīng)用平面直角坐標(biāo)系,認(rèn)識(shí)坐標(biāo)系中的圖形。
【過程與方法】
通過探索平面上的點(diǎn)連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。
【情感、態(tài)度與價(jià)值觀】
培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)通過二維坐標(biāo)來描述圖形頂點(diǎn),從而描述圖形的方法。
重點(diǎn)難點(diǎn)
【重點(diǎn)】
理解平面上的點(diǎn)連接成的圖形,計(jì)算圍成的圖形的面積。
【難點(diǎn)】
不規(guī)則圖形面積的求法。
教學(xué)過程
一、創(chuàng)設(shè)情境,導(dǎo)入新知
師:上節(jié)課我們學(xué)習(xí)了平面直角坐標(biāo)系的概念,也學(xué)習(xí)了已知點(diǎn)的坐標(biāo),怎樣在平面直角坐標(biāo)系中把這個(gè)點(diǎn)表示出來。下面請(qǐng)大家在方格紙上建立一個(gè)平面直角坐標(biāo)系,并在上面標(biāo)出A(5,1),B(2,1),C(2,—3)這三個(gè)點(diǎn)。
學(xué)生作圖。
教師邊操作邊講解:
二、合作探究,獲取新知
師:現(xiàn)在我們把這三個(gè)點(diǎn)用線段連接起來,看一下得到的是什么圖形?
生甲:三角形。
生乙:直角三角形。
師:你能計(jì)算出它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎樣算的呢?
生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。
師:很好!
教師邊操作邊講解:
大家再描出四個(gè)點(diǎn):A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么
圖形?
學(xué)生完成操作后回答:平行四邊形。
師:你能計(jì)算它的面積嗎?
生:能。
教師挑一名學(xué)生:你是怎么計(jì)算的呢?
生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點(diǎn),我們將它們順次連接形成圖形,下面我們來看這樣一個(gè)連接成的圖形:
教師多媒體出示下圖:
八年級(jí)數(shù)學(xué)教案8
總課時(shí):7課時(shí) 使用人:
備課時(shí)間:第八周 上課時(shí)間:第十周
第4課時(shí):5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識(shí)與技能
1.在給定的直角坐標(biāo)系下,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí)。
情感態(tài)度與價(jià)值觀
通過生動(dòng)有趣的教學(xué)活動(dòng),發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對(duì)應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請(qǐng)同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的`圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫(gè)小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個(gè)圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫圖)
(拿出一位做對(duì)的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動(dòng)的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級(jí)數(shù)學(xué)教案9
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?
反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中
可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡單的實(shí)際問題;通過具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):
● 知識(shí)與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
● 情感與態(tài)度目標(biāo)
1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證
本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)
但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程;
(3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?
2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個(gè)三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問題:
1.這三組數(shù)都滿足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。
意圖:
通過學(xué)生的合作探究,得出若一個(gè)三角形的三邊長 ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。
從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:
如果一個(gè)三角形的三邊長 ,滿足 ,那么這個(gè)三角形是直角三角形
內(nèi)容2:說理
提問:有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:
如果一個(gè)三角形的三邊長 ,滿足 ,那么這個(gè)三角形是直角三角形
滿足 的三個(gè)正整數(shù),稱為勾股數(shù)。
注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級(jí),還可利用幾何畫板動(dòng)畫演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。
活動(dòng)3:反思總結(jié)
提問:
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?
4.通過今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請(qǐng)說明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個(gè)三角形的三邊長分別是 ,則這個(gè)三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用
效果
每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫出相應(yīng)的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問題時(shí),考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問題。
效果:
學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。
意圖:
鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長 ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識(shí)解決實(shí)際問題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡便計(jì)算。
4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書設(shè)計(jì)
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠(yuǎn)
八年級(jí)數(shù)學(xué)教案10
一、教材的地位和作用
現(xiàn)實(shí)生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對(duì)稱”的知識(shí),進(jìn)一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實(shí)生活的需要,而且從思想方法和知識(shí)儲(chǔ)備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)、
性質(zhì)“等腰三角形的兩個(gè)底角相等”是幾何論證過程中,證明“兩個(gè)角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個(gè)角相等”等結(jié)論的重要理論依據(jù)、
教學(xué)重點(diǎn):
1、讓學(xué)生主動(dòng)經(jīng)歷思考和探索的過程、
2、掌握等腰三角形性質(zhì)及其應(yīng)用、
教學(xué)難點(diǎn):等腰三角形性質(zhì)的理解和探究過程、
二、學(xué)情分析
本年級(jí)的學(xué)生已經(jīng)研究過一般三角形的性質(zhì),積累了一定的經(jīng)驗(yàn),動(dòng)手能力強(qiáng),善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識(shí)、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因?yàn)榛A(chǔ)不同,在學(xué)習(xí)中必然會(huì)出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過程中著重關(guān)注的一點(diǎn)、
三、目標(biāo)分析
知識(shí)與技能
1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)
2、了解等邊三角形的概念并探索其性質(zhì)
3、運(yùn)用等腰三角形的性質(zhì)解決問題
過程與方法
1、通過觀察等腰三角形的對(duì)稱性,發(fā)展學(xué)生的形象思維、
2、探索等腰三角形的性質(zhì)時(shí),經(jīng)歷了觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)過程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展了學(xué)生的歸納推理,類比遷移的能力、在與他人交流的過程中,能運(yùn)用數(shù)學(xué)語言合乎邏輯的進(jìn)行討論和質(zhì)疑,提高了數(shù)學(xué)語言表達(dá)能力、
情感態(tài)度價(jià)值觀:
1、通過情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識(shí)到學(xué)習(xí)等腰三角形的必要性、
2、通過等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識(shí)到科學(xué)結(jié)論的發(fā)現(xiàn),是一個(gè)不斷完善的過程,培養(yǎng)學(xué)生堅(jiān)強(qiáng)的意志品質(zhì)、
3、通過小組合作,發(fā)展學(xué)生互幫互助的精神,體驗(yàn)合作學(xué)習(xí)中的樂趣和成就感、
四、教法分析
根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗(yàn)——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、
設(shè)計(jì)意圖
同學(xué)們,我們?cè)谄吣昙?jí)已研究了一般三角形的性質(zhì),今天我們一起來探究特殊的三角形:等腰三角形、
等腰三角形的定義
有兩條邊相等的三角形叫做等腰三角形、
等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、
提出問題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?
首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的
通過學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、
剪紙游戲
你能利用手中的這個(gè)矩形紙片剪出一個(gè)等腰三角形嗎?注意安全呦!
學(xué)情分析:
大部分學(xué)生會(huì)有自己的想法,根據(jù)軸對(duì)稱圖形的性質(zhì),利用對(duì)折紙片,再“剪一刀”就是就得到了兩條“腰”;
可能還有的同學(xué)會(huì)利用正方形的折法,獲得特殊的等腰直角三角形;
可能還有同學(xué)先畫圖,再依線條剪得、
在這個(gè)過程中,注重落實(shí)三維目標(biāo)、讓學(xué)生在獲取新知的過程中更好的認(rèn)識(shí)自我,建立自信、我不失時(shí)機(jī)的對(duì)學(xué)生給予鼓勵(lì)和表揚(yáng),使活動(dòng)更加深入,課堂充滿愉悅和溫馨、
知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的理性思考、
我設(shè)計(jì)了問題:你是如何想到的?為的是剖析學(xué)生的思維過程:“折疊”就是為了得到“對(duì)稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實(shí)際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、
提出問題:
等腰三角形還有什么性質(zhì)?請(qǐng)?zhí)岢瞿愕牟孪耄?yàn)證你的猜想?并填寫在學(xué)案上、
合作小組活動(dòng)規(guī)則:
1、有主記錄員記錄小組的結(jié)論;
2、定出小組的主發(fā)言人(其它同學(xué)可作補(bǔ)充);
3、小組探究出的結(jié)論是什么?
4、說明你們小組所獲得結(jié)論的理由、
等腰三角形的性質(zhì):
性質(zhì)一:等腰三角形的兩個(gè)底角相等(簡稱“等邊對(duì)等角”)、
性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”)、
學(xué)情分析:這個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是教學(xué)難點(diǎn)、盡管在教學(xué)過程中,因?yàn)閷W(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會(huì)立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識(shí)的形成過程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、
通過設(shè)置恰當(dāng)?shù)膭?dòng)手實(shí)踐活動(dòng),引導(dǎo)學(xué)生經(jīng)歷觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)探究活動(dòng),這種探究的學(xué)習(xí)過程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、
(1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達(dá)的,盡量讓學(xué)生表達(dá);能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、
這種教學(xué)方式,把學(xué)習(xí)的過程真正還給學(xué)生,不怕學(xué)生說不好,不怕學(xué)生出問題,其實(shí)學(xué)生說不好的地方、學(xué)生出問題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點(diǎn)、著眼點(diǎn)、增長點(diǎn)、
(2)教師在這個(gè)過程中,充分聽取和參與學(xué)生的小組討論,對(duì)有困難的學(xué)生,及時(shí)指導(dǎo)、
鞏固知識(shí)
1、等腰三角形頂角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為________;
2、等腰三角形一個(gè)角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_____;
3、等腰三角形一個(gè)角為100°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_____、
內(nèi)化知識(shí)
1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?
知識(shí)遷移
等邊三角形有什么特殊的性質(zhì)?簡單地?cái)⑹隼碛伞?/p>
等邊三角形的性質(zhì)定理:
等邊三角形的各角都相等,并且每一個(gè)角都等于60°、
拓展延伸
如圖2,在△ABC中,AB=AC,點(diǎn)D,E在BC上,AD=AE,你能說明BD=EC?
由于學(xué)生之間存在知識(shí)基礎(chǔ)、經(jīng)驗(yàn)和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識(shí),使學(xué)困生達(dá)到簡單運(yùn)用水平,中等生達(dá)到綜合運(yùn)用水平,優(yōu)等生達(dá)到創(chuàng)建水平、
暢談收獲
總結(jié)活動(dòng)情況,重在肯定與鼓勵(lì)、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識(shí),運(yùn)用的數(shù)學(xué)思想方法,新舊知識(shí)的聯(lián)系等方面進(jìn)行反思,提高學(xué)生自主建構(gòu)知識(shí)網(wǎng)絡(luò)、分析解決問題的能力、
幫助學(xué)生梳理知識(shí),回顧探究過程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、
反思過程不僅是學(xué)生學(xué)習(xí)過程的繼續(xù),更重要的是一種提高和發(fā)展自己的過程、
基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4
八年級(jí)數(shù)學(xué)教案11
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):探索圖形之間的變換關(guān)系(軸對(duì)稱、平移、旋轉(zhuǎn)及其組合)。
2、能力目標(biāo):
、俳(jīng)歷對(duì)具有旋轉(zhuǎn)特征的圖形進(jìn)行觀察、分析、動(dòng)手操作和畫圖等過程,掌握畫圖技能。
、谀軌虬匆笞鞒龊唵纹矫鎴D形旋轉(zhuǎn)后的圖形,并在此基礎(chǔ)上達(dá)到鞏固旋轉(zhuǎn)的有關(guān)性質(zhì)。
3、情感體驗(yàn)點(diǎn):培養(yǎng)學(xué)生的觀察能力和審美能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
重點(diǎn)與難點(diǎn):
重點(diǎn):圖形之間的變換關(guān)系(軸對(duì)稱、平移、旋轉(zhuǎn)及其組合);
難點(diǎn):綜合利用各種變換關(guān)系觀察圖形的形成。
疑點(diǎn):基本圖案不同,形成方式不同。
教學(xué)方法:
新授課在教師引導(dǎo)下,以學(xué)生的分組討論、合作交流為主展開教學(xué)。
教學(xué)過程設(shè)計(jì):
1、情境導(dǎo)入
播放自制圖形形成的影片,如圖351。
2、充分利用本課時(shí)引入開放性的問題:圖351由四部分組成,每部分都包括兩個(gè)小十字,其中一部分能經(jīng)過適當(dāng)?shù)男D(zhuǎn)得到其他三部分嗎?能經(jīng)過平移嗎?能經(jīng)過軸對(duì)稱嗎?還有其它方式嗎?
問題本身為學(xué)生創(chuàng)設(shè)了一個(gè)探究圖形之間變化關(guān)系的情景,圖形雖十簡單,但變換方式綜合性強(qiáng),可以讓學(xué)生自由發(fā)揮,各抒已見,后由教師進(jìn)行適當(dāng)歸納小結(jié):
(1)整個(gè)圖形可以看做是由一個(gè)十字組成部分通過連續(xù)七次平移前后的圖形共同組成;
(2)整個(gè)圖形也可以看做是由左邊的兩個(gè)十字組成的部分通過三次放置形成的;
(3)整個(gè)圖形不定期可以看做把左邊的兩個(gè)十字組成的部分先通過平移一次形成左右四個(gè)十字組成的圖形,然后繞圖形中心旋轉(zhuǎn)90度前后的圖形共同組成;
(4)整個(gè)圖形還可以看做把左邊的兩個(gè)十字組成的部分通過二次軸對(duì)稱形成的。
(學(xué)生可能還有其他不同描述,教師應(yīng)予以肯定)
3、通過上述問題的討論,我們看到圖形的平移、旋轉(zhuǎn),軸對(duì)稱變換是圖形變換中最基本的三種變換方式,它們是今后設(shè)計(jì)圖案的主要手段。
4、利用想一想你能將圖352的左圖,通過平移或旋轉(zhuǎn)得到右圖嗎?
學(xué)生議論或動(dòng)手操作會(huì)發(fā)現(xiàn)這是不可能的,教材意圖十分明確,要告訴學(xué)生并不是所有圖形都可以通過一次平移或旋轉(zhuǎn)而得到的,從而要求我們今后分析圖形之間的關(guān)系時(shí),要充分利用它們各自的性質(zhì)、特征正確判斷和識(shí)別。那么上述圖形能通過軸對(duì)稱變換從左圖變成右圖嗎?進(jìn)一步讓學(xué)生思考,從而得到結(jié)論是可能的。
5、例1、怎樣將圖353中的甲圖變成乙圖案?
通過相對(duì)簡單活潑的問題,讓學(xué)生能運(yùn)用圖形變換的幾種不同方式解答問題(先旋轉(zhuǎn)再平移后等到或先平移后旋轉(zhuǎn)也可以)
例2、怎樣將圖354中右邊的圖案變成左邊的圖案?
留給學(xué)生充足的時(shí)間討論交流。
(師):哪位同學(xué)有好好方法,請(qǐng)告訴大家!
(生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案按逆時(shí)針方向旋轉(zhuǎn)900 。
(生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案順逆時(shí)針方向旋轉(zhuǎn)2700 。
明確可以通過不同的辦法達(dá)到同樣的效果,激勵(lì)學(xué)生動(dòng)手動(dòng)腦。
5、學(xué)習(xí)小結(jié)
(1)內(nèi)容總結(jié)
兩個(gè)圖案前后變化彩用了哪些方法?(平移、旋轉(zhuǎn),軸對(duì)稱)
(2)方法歸納
、倭私獠⒅缊D案變化的一般方法。
、趫D案變化的方法很多,在生活中要養(yǎng)成多途徑觀察,思考問題的習(xí)慣。
6、目標(biāo)檢測(cè)
圖355是由三個(gè)正三角形拼成的,它可以看做由其中一個(gè)三角形經(jīng)過怎樣的變換而得到?
延伸拓展:
1、鏈接生活
鏈接一:奧運(yùn)會(huì)的五環(huán)旗圖案是大家熟悉的圖案,請(qǐng)你根據(jù)所學(xué)知識(shí)分析它的形成。(用課本知識(shí)解釋生活中的圖形變換)
鏈接二:夏季是荷花盛開的季節(jié),同學(xué)們都贊美過它出淤泥而不染的品質(zhì),很多同學(xué)曾畫過荷花,請(qǐng)你用所學(xué)知識(shí)再畫一朵荷花,看與以前有什么不同的感受(讓學(xué)生進(jìn)一步體會(huì)數(shù)學(xué)與生活的密切聯(lián)系)
實(shí)踐探索:
、賹(shí)踐活動(dòng)列舉實(shí)例歸納圖形之間的變換關(guān)系(平移、旋轉(zhuǎn),軸對(duì)稱及其組合)
②鞏固練習(xí)課本74頁中的習(xí)題3.6。
板書設(shè)計(jì):
3.5它們是怎樣變過來的。
軸對(duì)稱、平移、旋轉(zhuǎn)的性質(zhì)例題;
圖形之間的變換關(guān)系;
八年級(jí)數(shù)學(xué)教案12
【教學(xué)目標(biāo)】
一、教學(xué)知識(shí)點(diǎn)
1.命題的組成.
2.命題真假的判斷。
二、能力訓(xùn)練要求:
1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假
2.通過舉例判定一個(gè)命題是假命題,使學(xué)生學(xué)會(huì)反面思考問題的方法
三、情感與價(jià)值觀要求:
1.通過反例說明假命題,使學(xué)生認(rèn)識(shí)到任何事情都是正反兩方面對(duì)立統(tǒng)一
2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣
3.通過對(duì)《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價(jià)值
【教學(xué)重點(diǎn)】準(zhǔn)確的找出命題的條件和結(jié)論
【教學(xué)難點(diǎn)】理解判斷一個(gè)真命題需要證明
【教學(xué)方法】探討、合作交流
【教具準(zhǔn)備】投影片
【教學(xué)過程】
一、情景創(chuàng)設(shè)、引入新課
師:如果這個(gè)星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個(gè)周日,我們郊游一定能成行嗎?為什么?
新課:
。1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。
1.如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等。
2.如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形。
3.如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等。
4.如果一個(gè)四邊形的對(duì)角線相等,那么這個(gè)四邊形是矩形。
5.如果一個(gè)四邊形的兩條對(duì)角線相互垂直,那么這個(gè)四邊形是菱形。
師:由此可見,每個(gè)命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng)。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。
二、例題講解:
例1:師:下列命題的條件是什么?結(jié)論是什么?
1.如果兩個(gè)角相等,那么他們是對(duì)頂角;
2.如果a>b,b>c,那么a=c;
3.兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等;
4.菱形的四條邊都相等;
5.全等三角形的面積相等。
例題教學(xué)建議:1:其中(1)、(2)請(qǐng)學(xué)生直接回答,(3)、(4)、(5)請(qǐng)學(xué)生分成小組交流然后回答。
2:有的命題的描述沒有用“如果……那么……”的形式,在分析時(shí)可以擴(kuò)展成這種形式,以分清條件和結(jié)論。
例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。
師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個(gè)命題是假命題,通常可以舉一個(gè)例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。
教學(xué)建議:對(duì)于反例的要求可以采取啟發(fā)式層層遞進(jìn)方式給出,即:說明命題錯(cuò)誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。
三、思維拓展:
拓展1.師:如何證實(shí)一個(gè)命題是真命題呢?請(qǐng)同學(xué)們分小組交流一下。
教學(xué)建議:不急于解決學(xué)生怎么證實(shí)真命題的問題,可按以下程序設(shè)計(jì)教學(xué)過程
。1)首先給學(xué)生介紹歐幾里得的《原本》
(2)引出概念:公理、定理,證明
。3)啟發(fā)學(xué)生,現(xiàn)在如何證實(shí)一個(gè)命題的正確性
。4)給出本套教材所選用如下6個(gè)命題作為公理
。5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。
拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?
建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長期實(shí)踐驗(yàn)證的,不需要再進(jìn)行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。
練習(xí)書p197習(xí)題6.31
四、問題式總結(jié)
師:經(jīng)過本節(jié)課我們?cè)谝黄鸸餐接懡涣,你了解了有關(guān)命題的哪些知識(shí)?
建議:可對(duì)學(xué)生進(jìn)行提示性引導(dǎo),如:命題的構(gòu)成特點(diǎn)、命題是否都正確、如何判斷一個(gè)命題是假命題、如何證實(shí)一個(gè)命題是真命題。
作業(yè):書p197習(xí)題6.32、3
板書設(shè)計(jì):
定義與命題
課時(shí)2
條件
1.命題的結(jié)構(gòu)特征
結(jié)論
1.假命題——可以舉反例
2.命題真假的判別
2.真命題——需要證明 學(xué)生活動(dòng)一——
探索命題的結(jié)構(gòu)特征
學(xué)生觀察、分組討論,得出結(jié)論:
。1)這五個(gè)命題都是用“如果……那么……”形式敘述的
。2)這五個(gè)命題都是由已知得到結(jié)論
。3)這五個(gè)命題都有條件和結(jié)論
學(xué)生活動(dòng)二——
探索命題的條件和結(jié)論
生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個(gè)三角形兩角和其中一角對(duì)邊對(duì)應(yīng)相等是條件,那么這兩個(gè)三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。
學(xué)生活動(dòng)三
探索命題的真假——如何判斷假命題
生:可以舉一個(gè)例子,說明命題1是不正確的,如圖:
已知:∠AOB,∠1=∠2,∠1,∠2不是對(duì)頂角
生:命題2,若a=10,b=8,c=5,此時(shí)a>b,b>c,但a≠c
生:由此說明:命題1、2是不正確的
生:命題3、4、5是正確的
學(xué)生活動(dòng)四
探索命題的真假——如何證實(shí)一個(gè)命題是真命題
學(xué)生交流:
生:用我們以前學(xué)過的觀察、實(shí)驗(yàn)、驗(yàn)證特例等方法
生:這些方法往往并不可靠
生:能夠根據(jù)已知道的真命題證實(shí)呢?
生:那已經(jīng)知道的真命題又是如何證實(shí)的?
生:那可怎么辦呢?
生:可通過證明的方法
學(xué)生分小組討論得出結(jié)論
生:命題的結(jié)構(gòu)特征:條件和結(jié)論
生:命題有真假之分
生:可以通過舉反例的方法判斷假命題
生:可通過證明的方法證實(shí)真命題
八年級(jí)數(shù)學(xué)教案13
教學(xué)內(nèi)容
本節(jié)課主要介紹全等三角形的概念和性質(zhì).
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念.
2.過程與方法
經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素.
2.難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法.
3.關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,?兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.教具準(zhǔn)備
四張大小一樣的紙片、直尺、剪刀.
教學(xué)方法
采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí).教學(xué)過程
一、動(dòng)手操作,導(dǎo)入課題
1.先在其中一張紙上畫出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?
2.重新在一張紙板上畫出任意一個(gè)三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?
【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論.
【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形.
學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個(gè)過程要細(xì)心.
【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個(gè)圖形叫做全等形,用“≌”表示.
概念:能夠完全重合的兩個(gè)三角形叫做全等三角形.
【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?
【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等.
【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊.
【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?
【交流討論】通過同桌交流,實(shí)驗(yàn)得出下面結(jié)論:
1.任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合.
2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了.
3.完全重合說明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,?對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置.
八年級(jí)數(shù)學(xué)教案14
一、教學(xué)目標(biāo):
1、知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、
2、掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、
3、會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)、
二、教學(xué)重點(diǎn):
掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)、
三、難點(diǎn):
會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)、
四、情感態(tài)度與價(jià)值觀:
通過學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實(shí)踐,服務(wù)于實(shí)踐、能利用事物之間的類比性解決問題、
五、教學(xué)過程:
(一)課堂引入
1、回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));
2、回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1、
3、你還記得1納米=10?9米,即1納米=米嗎?
4、計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)、
。ǘ┛偨Y(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立、 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的、
。ㄈ┛茖W(xué)記數(shù)法:
我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5.即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)、 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2.0、0012 = 1.2×10?3,0、00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1、
八年級(jí)數(shù)學(xué)教案15
一、學(xué)習(xí)目標(biāo)
1.使學(xué)生了解運(yùn)用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點(diǎn)難點(diǎn)
重點(diǎn):掌握運(yùn)用平方差公式分解因式。
難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
三、合作學(xué)習(xí)
創(chuàng)設(shè)問題情境,引入新課
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。
1.請(qǐng)看乘法公式
左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過來就是左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?
利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
。1)9(m+n)2—(m—n)2;(2)2x3—8x。
補(bǔ)充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
。2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、課堂練習(xí)
教科書練習(xí)。
六、作業(yè)
1、教科書習(xí)題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案07-26
八年級(jí)數(shù)學(xué)教案優(yōu)秀03-16
八年級(jí)下冊(cè)數(shù)學(xué)教案08-30
八年級(jí)數(shù)學(xué)教案變化的魚06-11
八年級(jí)數(shù)學(xué)教案(15篇)06-14