平方差公式教學設(shè)計
教學建議
一、知識結(jié)構(gòu)
二、重點、難點分析
本節(jié)教學的重點是掌握公式的結(jié)構(gòu)特征及正確運用公式.難點是公式推導(dǎo)的理解及字母的廣泛含義.是進一步學習完全平方公式、進行相關(guān)代數(shù)運算與變形的重要知識基礎(chǔ).
1.是由多項式乘法直接計算得出的:
與一般式多項式的乘法一樣,積的項數(shù)是多項式項數(shù)的積,即四項.合并同類項后僅得兩項.
2.這一公式的結(jié)構(gòu)特征:左邊是兩個二項式相乘,這兩個二項式中有一項完全相同,另一項互為相反數(shù);右邊是乘式中兩項的平方差,即相同項的平方與相反項的平方差.公式中的字母可以表示具體的數(shù)(正數(shù)和負數(shù)),也可以表示單項式或多項式等代數(shù)式.
只要符合公式的結(jié)構(gòu)特征,就可運用這一公式.例如
在運用公式的過程中,有時需要變形,例如,變形為,兩個數(shù)就可以看清楚了.
3.關(guān)于的特征,在學習時應(yīng)注意:
。1)左邊是兩個二項式相乘,并且這兩上二項式中有一項完全相同,另一項互為相反數(shù).
(2)右邊是乘式中兩項的平方差(相同項的平方減去相反項的平方).
。3)公式中的和可以是具體數(shù),也可以是單項式或多項式.
。4)對于形如兩數(shù)和與這兩數(shù)差相乘,就可以運用上述公式來計算.
三、教法建議
1.可以將“兩個二項式相乘,積可能有幾項”的問題作為課題引入,目的是激發(fā)學生的學習興趣,使學生能在兩個二項式相乘其積可能為四項、三項、兩項中找出積為兩項的.特征,上升到一定的理論認識,加以實踐檢驗,從而培養(yǎng)學生觀察、概括的能力.
2.通過學生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出為什么有的兩個二項式相乘,其積為兩項,因為其中兩項是兩個數(shù)的平方差,而另兩項恰是互為相反數(shù),合并同類項時為零,即
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
這樣得出,并且把這類乘法的實質(zhì)講清楚了.
3.通過例題、練習與小結(jié),教會學生如何正確應(yīng)用.這里特別要求學生注意公式的結(jié)構(gòu),教師可以用對應(yīng)思想來加強對公式結(jié)構(gòu)的理解和訓練,如計算(1+2x)(1-2x),
(1+2x)(1-2x)=12-(2x)2=1-4x2 ↓ ↓ ↓ ↓ ↑ ↑
(a + b)(a - b)=a2- b2.
這樣,學生就能正確應(yīng)用公式進行計算,不容易出差錯.
另外,在計算中不一定用一種模式刻板地應(yīng)用公式,可以結(jié)合以前學過的運算法則,經(jīng)過變形后靈活應(yīng)用公式,培養(yǎng)學生解題的靈活性.
教學目標
1.使學生理解和掌握,并會用公式進行計算;
2.注意培養(yǎng)學生分析、綜合和抽象、概括以及運算能力.
教學重點和難點
重點:的應(yīng)用.
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
教學過程設(shè)計
一、師生共同研究
我們已經(jīng)學過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學生動腦、動筆進行探討,并發(fā)表自己的見解.教師根據(jù)學生的回答,引導(dǎo)學生進一步思考:
兩個二項式相乘,乘式具備什么特征時,積才會是二項式?為什么具備這些特點的兩個二項式相乘,積會是兩項呢?而它們的積又有什么特征?
(當乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數(shù)的平方差)
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的.
在此基礎(chǔ)上,讓學生用語言敘述公式.
二、運用舉例 變式練習
例1 計算(1+2x)(1-2x).
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教師引導(dǎo)學生分析題目條件是否符合特征,并讓學生說出本題中a,b分別表示什么.
例2 計算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)
。(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
。4a6-b4.
教師引導(dǎo)學生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用進行計算.
課堂練習
運用計算:
(l)(x+a)(x-a); (2)(m+n)(m-n);
(3)(a+3b)(a-3b); (4)(1-5y)(l+5y).
例3 計算(-4a-1)(-4a+1).
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演.
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根據(jù)學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用,寫出結(jié)果.解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學比較注意的特征,能看到問題的本質(zhì),運算簡捷.因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用,就能比較簡捷地得到答案.
課堂練習
1.口答下列各題:
(l)(-a+b)(a+b); (2)(a-b)(b+a);
(3)(-a-b)(-a+b); (4)(a-b)(-a-b).
2.計算下列各題:
(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);
教師巡視學生練習情況,請不同解法的學生,或發(fā)生錯誤的學生板演,教師和學生一起分析解法.
三、小結(jié)
1.什么是?
2.運用公式要注意什么?
(1)要符合公式特征才能運用;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形.
四、作業(yè)
1.運用計算:
(l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);
(5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);
2.計算:
(1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);
(3)x(x-3)-(x+7)(x-7); (4)(2x-5)(x-2)+(3x-4)(3x+4).
熱門文章青少年思想道德建設(shè)當前我國作文教學改革的新趨勢古詩三首(墨梅竹石石灰吟)第一場雪Unit2Lookatme第五課時植物媽媽有辦法威尼斯的小艇等比數(shù)列的前n項和相關(guān)文章·多項式的乘法·單項式與多項式相乘·單項式的乘法·冪的乘方與積的乘方(二)·冪的乘方與積的乘方·同底數(shù)冪的乘法(二)·同底數(shù)冪的乘法·一元一次不等式組和它的解法中“ 課件”中“ 課件”
【平方差公式教學設(shè)計】相關(guān)文章:
平方差公式的教學設(shè)計07-13
《平方差公式》教學設(shè)計06-30
平方差公式教學設(shè)計范文02-19
《平方差公式》優(yōu)質(zhì)教學設(shè)計03-15
《乘法公式——平方差公式》教學反思04-05
《乘法公式——平方差公式》教學反思12-08
利用平方差公式分解因式教學設(shè)計12-18
平方差公式教學課件03-29
平方差公式教學反思07-04