中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高等傳熱學(xué)課件對流換熱

時間:2021-06-12 11:15:34 課件 我要投稿

高等傳熱學(xué)課件對流換熱

  一、概述

高等傳熱學(xué)課件對流換熱

  湍流模型是半經(jīng)驗(yàn)、半理論的研究方法,其目的是將湍流的脈動相關(guān)項(xiàng)與時均量聯(lián)系起來,使時均守恒方程封閉。

  自1925年P(guān)randtl提出混合長度理論,各國學(xué)者對湍流模型進(jìn)行了大量研究,提出了許多模型。W.C.Regnolds建議按模型中所包含的微分方程數(shù)目進(jìn)行分類,成為目前適用的湍流模型分類方法。 一般將湍流模型分為:

  z 零方程模型(代數(shù)方程模型)

  z 一方程模型

  z 二方程模型

  z 多方程模型

  研究(Morkovin 莫爾科文)表明:當(dāng)M<5時,流體的可壓縮性對湍流結(jié)構(gòu)不起主導(dǎo)影響,因此我們僅參考不可壓縮情況。

  根據(jù)大量的實(shí)驗(yàn)研究結(jié)果,湍流邊界層對流換熱的強(qiáng)弱主要取決在內(nèi)層區(qū):由相似原理分析得出,Prt近似是一個常數(shù)(Prt≈0.9)這樣,只要確定了νt,即可容易地得到αt,所以在介紹湍流模型時,只給出νt或t時均量的.關(guān)系式。

  二、零方程模型(代數(shù)方程模型) 零方程模型中不包含微分方程,而用代數(shù)關(guān)系式將νt與時均量關(guān)聯(lián)起來。Prandtl混合長度理論是最早的代數(shù)方程模型。它適用于:充分發(fā)展的湍流剪切流邊界層內(nèi)層,y≤0.2δ。對外層區(qū),一些學(xué)者研究后仍沿用Prandtl混合長度的模型關(guān)系式:但,L=λ δ (3.7.1) 實(shí)驗(yàn)常數(shù)λ在0.08~0.09之間。

  Von Kármán、Deissler、Van Driest、Taylor等人先后提出了更完善的代數(shù)方程模型。

  (1) Von Kármán模型

  Von Kármán假設(shè)湍流內(nèi)各點(diǎn)的脈動相似(局部相似),即各點(diǎn)之間只有長度尺度與空間尺度的差別。對平行流流場,若對某點(diǎn)(y0處)附近的時均速度進(jìn)行Taylor展開:

 。╝)

  若流動相似,則必有尺度L與速度u0(u0=u(y0))使上式無量綱后成為通用分布。

  u(y0)y令 Y=; U(Y)= u0L

  則有無量綱形式:

 。╞) 若上式是相似的通用速度分布,則式中各系數(shù)之比應(yīng)與位置無關(guān),而是一個常數(shù)。則令:

  得出:

  其中:K

 。3.7.2) =0.4~0.41。

  (2) Deissler模型與Van Driest模型

  Deissler與Van Driest均認(rèn)為,在靠近壁面的粘性底層,脈動并不為零,而是逐漸衰減,只在壁面上才嚴(yán)格為零。建議采用指數(shù)函數(shù)阻尼因子的形式。

  Deissler模型:式中,n=0.124.

  (3.7.4)

【高等傳熱學(xué)課件對流換熱】相關(guān)文章:

熱雷雨是對流雨嗎10-10

高等數(shù)學(xué)教學(xué)課件03-21

高等數(shù)學(xué)優(yōu)秀課件03-25

高等數(shù)學(xué)學(xué)習(xí)課件03-26

關(guān)于高等數(shù)學(xué)課件03-31

大學(xué)高等數(shù)學(xué)課件03-01

高職高等數(shù)學(xué)課件03-31

空氣對流原理10-10

完整版的高等數(shù)學(xué)課件03-02