等差數(shù)列是常見數(shù)列的一種,可以用AP表示,如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,而這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差數(shù)列{an}的通項公式為:an=a1+(n-1)d。前n項和公式為:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意: 以上n均屬于正整數(shù)。
等差數(shù)列公式
an=a1+(n-1)d
前n項和公式為:Sn=na1+n(n-1)d/2
若公差d=1時:Sn=(a1+an)n/2
若m+n=p+q則:存在am+an=ap+aq
若m+n=2p則:am+an=2ap
以上n均為正整數(shù)
文字翻譯
第n項的值an=首項+(項數(shù)-1)×公差
前n項的和Sn=首項+末項×項數(shù)(項數(shù)-1)公差/2
公差d=(an-a1)÷(n-1)
項數(shù)=(末項-首項)÷公差+1
等差數(shù)列中項求和公式
數(shù)列為奇數(shù)項時,前n項的和=中間項×項數(shù)
數(shù)列為偶數(shù)項,求首尾項相加,用它的和除以2
等差中項公式2an+1=an+an+2其中{an}是等差數(shù)列