中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

數學專業(yè)的心得體會

時間:2022-07-29 14:07:57 心得體會 我要投稿

數學專業(yè)的心得體會范文(通用10篇)

  我們從一些事情上得到感悟后,馬上將其記錄下來,這樣可以幫助我們總結以往思想、工作和學習。一起來學習心得體會是如何寫的吧,以下是小編為大家收集的數學專業(yè)的心得體會范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

數學專業(yè)的心得體會范文(通用10篇)

  數學專業(yè)的心得體會 篇1

  我的本科就讀于北京師范大學信息科學與技術學院電子系,從高等數學(微積分)、離散數學、線性代數、概率論到基礎物理學(可不是像名字那么基礎,還講相對論什么的)、電磁場,理工科目的基礎課程基本上學了個遍:用編程語言將就是for循環(huán)遍歷了一遍理工科這棵二叉樹。不得不說,這么多的疑難課程,到考研的關鍵關頭,很難再全部拿起來。但是又應該客觀承認,多科目讓我對數學這門基礎課程從東南西北上下左右各個角度都審視了一番。我想,這就是在培養(yǎng)學科背景和學科感覺吧。我覺得本科真正學到手的理論還就是數學,其余都是技術,而考研初試注重的只能是理論,基本理論和基本方法,這些如果在大一大二就蒙混過關,那考研前的復習基本上就是從零開始,從絕望開始。

  我和很多人一樣,在大二大三時很不想考慮考研這件事。所有人都懂,保研的人過著豬的生活,工作的人過著狗一樣的生活,考研的人則過著豬狗不如的生活。我的最大興趣并不是本科這個專業(yè),但是同許多平凡家庭一樣,藝術、文藝這些高雅而揮霍金錢的事業(yè)注定和我無緣,只有選擇理工科來“發(fā)家致富”。逼著自己學下去,保研還是功虧一簣。大三早早就準備考研,每天為自習室像豬狗一樣四處游蕩,突然有一天放出消息,如果比你排名高的人再有一個放棄保研出國去,你就能保!但是等啊等,終于等來了噩耗……但是等歸等,我并沒有從自習室和通往自習室的路上消失。只有這樣,提早準備的優(yōu)勢才不至于被小道消息所消解。

  然后就來了關于選擇的問題:報哪個學校、哪個專業(yè)?這段時間就是各種聊,各種傳說,各種扯淡,各種不上自習等真的決定了報什么、要不要跨專業(yè),師姐師兄也找得差不多,這是可能就真的可以收心了,可以沖刺了。我覺得本科大學就不次而且沒有什么病的(比如清華并北大。┚筒挥迷龠x別的地方了?急拘2粌H本校很重視你,而且天時地利人和無一不占,大戰(zhàn)之前這么好的作戰(zhàn)條件真不是每個人都能得到的。

  到最后一個月,要是覺得還天天有事情做、有題要做、有補習班要上,真的是挺不錯的感覺。但更多的人在這時就松懈了,效率下降了。雖然仍然每天seven—eleven(7:00—11:00),但是明顯感覺能做的事情不那么多了,有時看著看著書就發(fā)呆,像高考之前那樣思緒起伏不定,神龍見首不見尾。會抽煙的就不住的往廁所里跑,不會抽煙的就不住的往嘴里塞東西,吃了中飯就覺得晚飯不遠了,晚飯吃飽了就惦記11點回寢室后的宵夜。人真的太奇妙,雖說勝利機制那么像機器,但都是人,都不是機器,根本不是機器,不是輸個輸入就有響應的線性時不變系統(tǒng)……輸入給放大10倍,輸出就有可能給弄成自激了,自激不可怕,可怕的是自激后會一蹶不振,一蹶不振,雖然還是每天6、7點之間起,還是11、12點之間回。

  結束了近似于發(fā)泄訴苦的考研生涯回顧之后,還是說點誨人不倦的關于數學考試的經驗吧。僅限于數一的,但是數二數三可以借鑒,畢竟考數二數三的人號稱數一并不比數二數三難。

  決定了要考什么專業(yè)后,務必先確定是不是要考數學、考數幾。然后就是要有一套權威的教材一遍翻閱求證,因為確實再多的輔導書的權威性都比不上正規(guī)的教材。高等數學(微積分)推薦綠皮兒的同濟大學第五版(或之后更新的)《高等數學》,里面有大量對定理的證明過程;線性代數當然是清華的黃藍相間的教材《線性代數》最權威,但千萬別通讀;而概率論首選浙江大學出版的《概率論與數理統(tǒng)計》,比較通俗易懂。之后就要有一本針對考研數學的總復習叢書。

  如果你像我一樣,是大三下半學期開學就開始張羅考研的復習大計,也像我一樣在沒有很多課的大三下半學期抓緊時間過了一遍復習全書,并且像我一樣覺得暑假不能在荒廢了,那么我鄭重推薦你像我一樣,報個海天的數學強化班。作用有這么幾個。首先你可以通過上這個班看看外面那些同你一樣要考研的同學的實力,和他們交流交流,知道人家什么進度,也許讓你竊喜,也許讓你為自己的緩慢而著急;其次,你也可以通過上課的機會,去別的學校轉轉,發(fā)現發(fā)現不同的世界;當然,最重要的是找個靠譜的人來為你梳理知識,因為一個學期的復習全書向你腦子里灌輸了足夠的原材料,但是在你腦子里就是一團漿糊,需要有人給你加工加工整理整理,所以如果你覺得課上的老師講的你都沒見過、沒看到過、或者講的全停留在知識點上,我的建議是拍拍屁股走人,不用理那老師了。我記得給我上課的老師分別是曹顯兵(概率論)、劉喜波(高數)、施明存(線性代數)、李晉明(高等數學)。我強烈推薦李晉明老師,我覺得他負責最后那幾節(jié)課無時不刻不再告訴你考研數學終究會考什么,他講過的一定會給你講清楚,而且讓你清楚怎么考。劉喜波老師也很不錯,今年考研有一道很難的關于抽象積分計算的大題,做這道題時,我仿佛覺得劉老師就在我眼前,音容笑貌仍然清晰,感覺考場上他一步一步地告訴我這道題該怎么交換積分次序、怎么改變積分區(qū)間。頓時我就覺得數學考試做開了,找到感覺了。所以,我也應該感謝劉喜波老師的神跡。

  上完補習班,大概也就該大四開學了,實習什么的作完,溫習一遍強化班上傳授給我的數學體系,我就要開始花費幾乎是每天的上午3小時做數學的套題了。首推的當然是《歷年考研試題》,基本上要做十年的吧。這十套真真正正的考研題要陪你度過余下的時光。作完第一遍十套真題,開始找權威的《模擬試題》,但是這是要有極好的心理承受能力,因為極有可能模擬試題是在考察你沒有復習到的漏洞,這時要端正態(tài)度,不必過分擔心自己的水平不夠。事實是,把這些漏洞補上,你就是個考研數學的高手了。最后一兩周我有點沒有題做的缺失感,于是又找了海天的最后幾套模擬題來做,雖然心理風險大,但是我確實是個題海戰(zhàn)術的擁躉。沒題做對有些人來說是好事,因為他們在忙著總結所犯過的錯誤。但我覺得,多總結再加上多做題,才能高人不止一等。

  還有一點要建議:考前買本背公式背概念的小冊子,隨時忘隨時翻,尤其是概率論那一塊兒的參數估計、假設檢驗、線性代數的概念性質,確實要既深刻理解又可以快速寫出來。

  最后,要說考滿分不是我的真正實力,運氣占了很大成分。所以真的要在考研的準備期間多攢人品,莫急于求成。

  數學專業(yè)的心得體會 篇2

  11天的數學專業(yè)培訓結束了,對于一部分老師來說,來培訓主要是為了那90分的學分。而有相當多的老師還是希望能從這次培訓中學到一些來提高自身的專業(yè)素養(yǎng)。

  培訓要求上午開始時間是8:00,培訓地點是在蕭山區(qū)銀河小學。每天我都早早地到那,老公說,你不用這么早去的,可我認為,能早到就不遲到,這是一種態(tài)度,會成為一種習慣,不是嗎?

  來給我們培訓的有教授、特級教師、教研員,可以說,都是一批我們眼中的成功人士,他們的成功背后有怎樣的故事,他們的人生經歷怎樣的豐富,我們不得而知。成功當然也靠運氣,但更多的是他們對工作的一種態(tài)度。有的老師說起培訓,總認為這培訓是在浪費時間,收效甚微。而我認為培訓的出發(fā)點是想讓我們從這些名師身上學到一些有幫助的東西,可我們很多老師并不領情,認為聽過就好了。

  8月18日那天來給我們培訓的老師年紀不大,但已是數學特級老師,我們都覺得他年輕有為?稍趯W校里,時常聽到很多三十多歲的老師聲稱自己“老了”。,而他們說的“老”,是指自己在教師這個工作崗位上工作有些年頭了,已經積累了一定的經驗。談到自己剛工作的時候,他們都坦言自己曾經努力過,有些努力也換得了一定的回報,如被評上了“優(yōu)秀教師”、“教壇新秀”等榮譽稱號,有的高級也評上了,就等著“聘”了。許多老師已經悟出了一個道理:在教學工作中,如果領導交給你的任務,你完成得出色,那領導下次還會找你,一次,兩次,做得好,當然皆大歡喜,可萬一做得不夠好,豈不是……為了給自己找一個臺階下,他們會說自己“老”了,把機會讓給年輕的老師。

  鄭水忠老師在談到英語的時候,使我又有了想學英語的愿望。我是97年考進中等師范學校,那時的小學教育中,英語還不被重視,所以在三年的師范生涯中,英語這門學科被拒之門外。初中學的一些英語單詞、語法隨著時間的流逝逐漸淡忘,有些早已想不起來了。學了又忘了,不是白學了嗎?曾一段時間背了許多的單詞,看了一些語法,做了一些題目,就去報了成人考(英語本科)。雖然英語考得分數不算高,但大學語文、政治考得不錯,三門科目的總分到了分數線,就去讀英語本科的函授班了。

  考入英語函授本科班的很多學員是在學校里教英語這門學科的,而我在工作中根本就沒有教過英語,只是憑著對英語的愛好而選擇了函授英語本科。盡管現在英語本科的文憑對我的工作意義不大,但我還保留著那些書和資料,相信總有一天,我會用得到的。正如十年前,我愛好音樂,但偏偏沒有機會教音樂,但我仍舊沒放棄音樂,報考了音樂大專,并取得音樂大專的文憑。工作10年后,我自己提出想教音樂,領導同意了,我成了一名專職的音樂老師,正因為我對音樂的那份執(zhí)著,我終于實現了當一名音樂老師的愿望。在今后的工作中,我會時時激勵自己要抓住青春的尾巴,不斷完善自己,成為一名有理想、有報負的好老師。

  數學專業(yè)的心得體會 篇3

  20xx年11月28日至11月30日,我有幸參加了山東省小學數學教師專業(yè)成長研討會。作為一名初出茅廬的青年教師,這次的學習機會對我來說非常難得,我很珍惜這次學習的機會。這次學習的內容是聽取各市優(yōu)秀教師的優(yōu)質課及他們的專業(yè)成長故事,短短三天,讓我收獲頗豐,受益匪淺,也讓我在學習之余有了更多的反思。下面是我在學習中的一些收獲和體會:

  一、重視學生的主體地位。

  十八節(jié)課,課課精彩,而讓我感受最深的是,這些優(yōu)秀的教師在課堂中對學生的信任,完全相信學生有探索、學習的能力。課堂中教師充分放手,讓學生自由發(fā)揮,而教師僅起引導作用。學生在課堂中表現出來的自信和探索能力讓我贊嘆不已。

  二、數學課堂也可以“好玩”

  通過學習,我知道了如何設計一堂精彩的數學課,讓學生覺得數學很有趣。給我印象最深刻的一節(jié)是由鄭生志老師執(zhí)教的《用分數大小表示可能性》。鄭老師這節(jié)課充分抓住了學生的年齡特點,用一句“我有超能力”,深深地吸引著學生,激發(fā)學生的學習興趣,然后以游戲貫穿整堂課,師生互動,生生互動的方式,讓學生充分掌握本節(jié)課的知識,最后的練習更是讓我眼前一亮,采用的是商場抽獎和砸金蛋的游戲,請學生說一說可能性是多少,課堂氣氛異;钴S。

  三、構建高效課堂。

  數學課堂教學是在教師的引領下,學生積極主動的完成教學任務,所謂的高效課堂,以我的理解就是學生基本能掌握當堂所學知識,完成教學目標。這十八節(jié)課,讓我學習到了教師要學習、要思考、要創(chuàng)新。課堂上要給學生創(chuàng)造一個良好的學習氛圍,會引導,讓他們主動發(fā)現問題、解決問題。

  四、不斷學習、不斷思考。

  聽了這些老師的專業(yè)成長故事,我深深地佩服。他們身上散發(fā)出的光芒,并不是一朝一夕形成的,所謂“臺上一分鐘,臺下十年功”。一名優(yōu)秀的教師,正是從不斷學習和思考中磨練出的。讓我印象很深的是呂健老師。她在學習上的堅持刻苦精神讓我折服。堅持讀書,堅持寫隨筆,短短幾年,積累了大量的讀書日記,除此之外,還把自己所學知識運用到平時的教學實踐之中,并努力探索新的教育教學方法。我發(fā)現,想成為一名優(yōu)秀的教師,除了努力提高業(yè)務水平以外,還需要積累大量的知識,增加內涵。

  最后,我還學習到了一些老師在教學中的寶貴經驗,如:鄭生志老師提到的心愿卡、整合練習本和課堂本、滕云老師的創(chuàng)編課外讀物、成玉麗老師的數學故事、數學論文等等,都給了我很大的啟發(fā)。在今后的工作中,我一定不斷學習,聆聽專家講座,向優(yōu)秀教師學習好的方法,提高自己的教學能力,讓我的學生愛上我的數學課!

  數學專業(yè)的心得體會 篇4

  20xx年8月18日——19日,我參加了“20xx普陀教學文化節(jié)”小學數學學科教師專業(yè)發(fā)展高端研修培訓。在這段時間的學習中,我認真聆聽了很多專家的精彩講座,有省教研員斯苗兒老師的講座《關注經驗重視習慣》解讀了20xx年版《數學課程標準》學習體會,有沈家門小學戚南鳳老師的講座《順應變革,扎實常態(tài)教學》,有沈一小翁飛萍老師的講座《小學數學課堂教學的一點思考——選擇有效材料促進有效教學》,更有幸聆聽了南海實驗學校蘇明杰老師和杭州崇文實驗學校徐衛(wèi)國老師的現場教學《圓的認識》以及他們各自課后對教學的反思與理解。更積極做好學習筆記,努力用新知識來提高自己。專家們精湛的教藝,先進的理念,獨特的設計給我留下了深刻的印象,使我受益匪淺,有了質的飛躍,F簡要總結如下:

  一、培訓學習非常必要。

  整個培訓活動安排合理,內容豐富,專家們的解惑都是我們教師所關注和急需的領域,是我們發(fā)自內心想在這次培訓中能得到提高的內容,可以說是“人心所向”。作為一名新課改的實施者,我們應積極投身于新課改的發(fā)展之中,成為新課標實施的引領者,與全體教師共同致力于新課標的研究與探索中,共同尋求適應現代教學改革的心路,切實以新觀念、新思路、新方法投入教學,適應現代教學改革需要,切實發(fā)揮新課標在新時期教學改革中的科學性、引領性,使學生在新課改中獲得能力的提高。

  二、知識更新非常必要。

  “活到老,學到老,知識也有保質期”、“教師不光要有一桶水,更要有流動的水”作為教師,實踐經驗是財富,同時也可能是羈絆,骨干教師都有熟練駕馭課堂的能力,那是在應試教育的模式下形成的,在實施新課程中會不自覺地走上老路。新課程標準出臺后,教材也做了很大的修改,教材體系打亂了,熟悉的內容不見了,造成許多的不適應,教師因此對課程改革產生了抵觸情緒,這種抵觸情緒我也有過,所幸沒有持續(xù)很久,F在20xx年版《數學課程標準》在原來新課程實施的過程中,總結經驗,適當調整教學內容,相信新的教材會更適合學生的學習,有利于學生數學能力的提高。

  三、注重方法非常必要。

  教師在實際教學中,只有多聯系生活,多創(chuàng)設情境,多動手操作,注重教學方法和學習方法,課堂才有實效。

  新課程標準要求學生的學習內容是現實的,有意義的,富有挑戰(zhàn)性的。講座中專家也講到,教師要重視創(chuàng)設貼近學生生活實際的教學情境,選擇有效的學習材料,激發(fā)學生探究的興趣和欲望,使學生體會到數學知識就在我們身邊,理解數學與生活的聯系,有利于學生主動地進行觀察,實踐,猜測,驗證,推理與交流等數學活動。同時還要注意激發(fā)學生學習的興趣,體現學生學習的主動性,重視學生的動手操作,重視實踐活動的應用。更要順應變革,扎實常態(tài)教學,立足課堂,提高效率。這一點在南海實驗學校蘇明杰老師的《圓的認識》一課中體現的淋漓盡致,蘇老師在課堂上將自己的引導地位體現得很到位。同樣干練、簡潔的語言則體現了數學學科的嚴謹性。

  培訓活動雖然是短暫的,但無論是從思想上,還是專業(yè)上,對我而言,都是一個很大的提高。在今后的工作中,我會努力學習,做好后續(xù)研修,在實踐、學習中不斷進步。

  數學專業(yè)的心得體會 篇5

  作為一個過來人,我覺得這是比較正常的,題主不需要有多余焦慮。在我大一剛開始學數分和高代時,整個思維模式也受到了“新數學”的洗禮,有一個適應的過程?赡埽瑢τ诖髮W之前沒怎么接觸過這些課程的大部分人,都會有與你類似的感受。

  反正我們班在大一之后,有好多棄坑轉專業(yè)的,認為大學“數學”跟想象的不一樣,整天就是概念證明啥的,有些枯燥無味。

  我想這主要是因為我們被中學的數學束縛太久,習慣了“計算式”的數學。

  想一想,我們在大學之前所接觸的數學,主要是初等代數,平面和立體幾何,三角函數和圓錐曲線,多項式和不等式等內容,課上所學也注重技巧的運用,和形式的計算及簡單的推導。事實上,這些絕大多數是三百年前甚至兩千年前的知識,關于現代數學的涉及基本沒有。

  即使高中時接觸到了導數,極值等有關極限的概念,但沒有講更深。很多概念,還是停留在特定模式的計算和“只可意會不可言傳”的理解層次上。

  而近代數學的發(fā)展,特別是分析的嚴謹化以來,“數學的本質已經不是計算,對數學的精通不意味著能夠做復雜計算或者熟練推演符號。近代數學的重心已從計算求解轉變?yōu)樽⒅乩斫獬橄蟮母拍詈完P系。

  證明不僅僅是按照規(guī)則變換對象,而是從概念出發(fā)進行邏輯推演!彼,從高中到大學,所學的數學,內容上可以說是有了質的提升和深化。尤其數分里,很多知識點的定義,真真表現了分析的嚴謹和自成體系的理論。像極限的表述,就把一個腦海里變動的過程所導致的結果,合理地用定性的語言作了描述。

  這很“數學”,不再是意會的說不清道不明。雖然會遇到困難,但是我相信當你耐心地鉆進去,體會概念之間的聯系,證明的精巧和嚴謹會極大地刺激你的求知欲,這是數學專業(yè)學生的必經之路。

  我認為你目前的狀態(tài),首先要能清楚地理解每一個概念和定義。如果有不清晰的點,請教一下老師,這是事半功倍的,因為以老師多年的數學功底和教學經驗,可以幫助你更準確地把握一些關鍵知識點和定理的運用,平時要及時地多做練習,掌握一些解題的技巧。

  可以買一些教材配套的參考書啥的,遇到不會的,學習一下標準的解答,也不要死磕,畢竟沒有那么多時間和精力。一切學習,都是從模仿開始的,根據書上定理或者例題的證明思路,要學著去嘗試證明別的題。

  總之,要多讀,多想,多做,這樣你的學習能力的積累和理解力才能提升。學好這些基礎課是極其重要的,后續(xù)的很多課程:像實變函數、泛函分析,抽象代數等都是數分高代的抽象版,如果一開始的學習里積攢很多不扎實的點,會讓以后變得更加難以捉摸。

  我自己現在就是,當開始真正研究問題時,不得不耗費精力去彌補之前的不足之處。

  守得云開見月明,我覺得如果你是真正愛數學,能作為一名數學專業(yè)的學生去感受數學所表現出的優(yōu)美和深刻是很幸運的,你有機會去真正理解數學是什么?加油,我相信你會做的越來越好

  數學專業(yè)的心得體會 篇6

  當你們正在《數學分析》5261課程時,同時又要學《高4102等代數》課程。1653覺得高等代數與數學分析不太一樣,比較“另類”。不一樣在于它研究的方法與數學分析相差太大,數學分析是中學數學的延續(xù),其內容主要是中學的內容加極限的思想而已,同學們接受起來比較容易。高等代數則不同,它在中學基本上沒有“根”。其思維方式與以前學的數學迥然不同,概念更加抽象,偏重思辨與證明。尤其是下學期,證明是主要部分,雖然學時不少,但是理解起來仍困難。它分兩個學期。我們上學期學的內容,可以歸結為“一個問題”和“兩個工具”。一個問題是指解線性方程組的問題,兩個工具指的是矩陣和向量。你可能會想:線性方程組我們學過,而且解它用得著講一門課嗎?大家一定要明白,首先我們的方程組不像中學所學僅含2到3個方程,它只要用消元法即可容易地求出,這里的研究的是所有方程組的規(guī)律,也就是所必須找到4個以上方程組成的方程組的解的規(guī)律,這樣就比較難了,需要對方程組有個整體的認識;再者,數學的宗旨是將看似不同的事物或問題將它們聯系起來,抽象出它們在數學上的本質,然后用數學的工具來解決問題。實際上,向量、矩陣、線性方程組都是基本數學工具。三者之間有著密切的聯系!它們可以互為工具,在今后的學習中,你們只要緊緊抓住三者之間的聯系,學習就有了主線了。向量我們在中學學過一些,物理課也講。

  中學學的是三維向量,在幾何中用有向線段表示,代數上用三個數的有序數組表示。那么我們線性代數中的向量呢,是將中學所學的向量進行推廣,由三維到n維(n是任意正整數),由三個數的有序數組推廣到n維有序數組,中學的向量的性質盡可能推廣到n維,這樣,可以解決更多的問題;矩陣呢?就是一個方形的數表,有若干行、列構成,這樣看起來,概念上很好理解啊?墒茄芯科饋砜刹荒敲春唵,我們以前的運算是兩個數的運算,而現在的運算涉及的可是整個數表的運算!可以想象,整個數表的運算必然比兩個數的運算難。但是我們不必怕,先記住并掌握運算,運算再難,多練幾遍必然就會了。關鍵是要理解概念與概念間的聯系。再進一步說吧:中學解方程組,有一個原則,就是一個方程解一個未知量。對于線性代數的線性方程組,方程的個數不一定等于未知量的個數。比如4個方程5個未知量,這樣就不可能有唯一的解,需要將一個未知量提出來作為“自由未知量”,也就是將之當做參數(可以任意取值的常數);還有,即使是方程個數與未知量個數相同,也未必有唯一的解,因為有可能出現方程“多余”的情況。(比如第三個方程是前兩個方程相加,那么第三個方程可以視為“多余”)

  總之,解方程可以先歸納出以下三大問題:第一,有無多余方程;第二,解決了這三大問題,方程組的解迎刃而解。我們結合矩陣、向量可以提出完全對應的問題。剛才講了,三者聯系緊密,比如一個方程將運算符號和等號除去,就是一個向量;方程組將等號和運算除去,就是一個矩陣!你們說它們是不是聯系緊密?大家可不要小看這三問,我認為它們可以作為學習上學期高代的提綱挈領。下學期主要講“線性空間”和“線性變換”。所謂線性空間,就是將上學期所學的數域上的向量空間加以推廣,很玄是吧?首先數域上的向量空間,是將向量作為整體來研究,這就是我們大學所學的第一個“代數結構”。所謂代數結構,就是由一個集合、若干種運算構成的數學的“大廈”,運算使得集合中的元素有了聯系。中學有沒有涉及代數結構。坑械,比如實數域、復數域中的“域”就是含有四則運算的代數結構。

  而向量空間的集合是向量,運算就兩個:加法和數乘。起初向量及其運算和上學期學的一樣?墒,它的形式有局限啊,數學家就想到,將其概念的本質抽取出來,他們發(fā)現,向量空間的本質就是八條運算律,因此將它作為線性空間(也稱向量空間)的公理化定義,作為原始的向量、加法、數乘未必再有原來的形式了。比如上學期學的數域上的多項式構成的線性空間。繼而,我們將數學中的“映射”用在線性空間上,于是有了“線性變換”的概念。說到底,線性變換就是線性空間保持線性運算關系不變的自身到自身的“映射”。正因為保持線性關系不變,所以線性空間的許多性質在映射后得以保持。研究線性空間與線性變換的關鍵就是找到線性空間的“基”,只要通過基,可以將無數個向量的運算通過基線性表示,也可以將線性變換通過基的變換線性表示!于是,線性空間的元素真正可以用上學期的“向量”表示了!線性變換可以用上學期的“矩陣”表示了!這是代數中著名的“同構”的思想!通過這樣,將抽象的問題具體化了,這也就是我們前邊說的“矩陣”和“向量”是兩大工具的原因。同學們要記住,做線性空間與線性變換的題時這樣的轉化是主方向!進一步:既然線性變換可以通過取基用矩陣表示,不同的基呢,對應不同的矩陣。我們自然想到,能否適當的取基,使得矩陣的表示盡可能簡單。簡單到極致,就是對角型。經研究,發(fā)現若能轉成對角型的話,那么對角型上的元素是這樣變換(稱相似變換)的不變量,這個不變量很重要,稱為變換的“特征值”。矩陣相似變換成對角型是個很實用的問題,結果,不是所有都能化對角,那么退一步,于是有了“若當標準型“的概念,只要特征多項式能夠完全分解,就可以化若當標準型,有一章的內容專門研究它。這樣的對角型與若當標準型有什么用呢?我們利用它是同一個變換在不同基下的矩陣表示,可以通過改變基使得研究線性變換變得簡單。最后的“歐氏空間”許多人不理解,一句話,就是仿照我們可見的三維空間,對線性空間引進度量,向量有長度、有夾角、有內積。歐氏空間有了度量后,線性空間的許多性質變得很直觀且奇妙。我們要比較兩者的聯系與差別。此章主要講了兩種變換:對稱變換與正交變換,正交變換是保持度量關系不變,對稱變換在正交基下為對稱陣。相似變換對角化問題到了這里變成正交變換對角化問題,在涉及對角化問題時,能用正交變換的盡量用正交變換,可以使得問題更加的容易解決。說到這里,大家對高代有了宏觀的認識了。最后總結出高代的特點,一是結構緊密,整個課程的知識點互相之間有著千絲萬縷的聯系,無論從哪一個角度切入,都可以牽一發(fā)而動全身,整個課程就是鐵板一塊。二是它解決問題的方法不再是像中學那樣的重視技巧,以“點”為主,而是從代數的“結構”上,從宏觀上把握解決問題的方案。這對大家是比較抽象,但是,沒有宏觀的理解,對此課程必然學不透徹!建議同學們邊比較變學習,上學期的向量用中學的向量比較,下學期的向量用上學期的比較。在計算上理解概念,證明時注重整體結構。關于證明,這里一時無法盡言,請看我的《證明題的證法之高代篇》

  數學專業(yè)的心得體會 篇7

  雖然不是數學系學生(化學系學生),但是覺得也勉強可以回答一下。

  數學分析我也坐等大佬填坑,我數學分析學的并不好;高等代數倒是可以說說一點一孔之見,有點長,歡迎友好交流。

  高等代數是研究線性關系的代數學,是當代代數學的基礎。那么既然提到線性關系,那么最容易想到的一定是一次齊次多項式(不論是一元多項式,或者多元多項式),你可以想一下,在同一平面內的兩條直線,有哪幾種關系?

  這個我想大家都想的明白:相交、平行或者重合。相互“平行”的幾個一次齊次多項式組成的方程(條件獨立)不就是線性方程組嗎?相互“相交”的不就是多項式環(huán)(幾個多項式依賴于乘法結合)?相互“重合”的不就是重因式嗎?(重合可以看做相交的特殊情況,就是有解的情況下有無窮解,所以劃到多項式環(huán)一點問題沒有)

  所以,國內較為常見的打開思路是要么先講一元多項式環(huán)(或者多項式環(huán)),以張賢科先生《高等代數學》和孟道驥先生《高等代數與解析幾何》的`書為例;要么先講線性方程組,以丘維聲先生《高等代數》為例。姚慕生老師的書《高等代數學》開篇就是行列式,按照個人觀點來看其實有問題的。從行列式的三種定義(從線性變換對應矩陣表示的角度來講,明顯不合適,觀點太超前了;從映射的角度來講,對初學者太抽象;從逆序數組合乘積再求和來講,沒有直觀意義,只是淪為計算工具)來看,其十分不適合放在開篇第一章的位置。相應的,我是非常不待見考研數學線性代數經典書籍同濟版本的線性代數的,這書我相信開篇行列式的打開方式令無數考研同學對于代數從此一葉障目,不見泰山。

  個人比較推崇丘維聲老師的思路。原因有以下幾點:

  第一,不僅結構相對清晰,而且思路敘述相對完備。舉個例子,從線性方程組的完全求解(即完全解決線性方程組的求解方法——Gauss-Jordan算法和解的結構)開始,第一章敘述求解方法,(第二章敘述行列式,我覺得這是一個敗筆。我本人也曾用他的教材授過一次課,跳過完全沒問題,一個跳過去完全不影響以后發(fā)展的章節(jié)說明其在結構上是贅余的,所以說是敗筆)第三章通過n維向量空間作為腳手架來解決解的結構問題,接著引出矩陣(系數矩陣)的表示方法,引出矩陣解法。這一系列線性代數的基本概念都在解決線性方程組求解的問題中產生,并發(fā)揮作用,證明也很大程度上依賴線性方程組的基本理論,可以說結構相對清晰,中間為什么引入向量敘述也算是比較充分(但是個人在授課時依然傾向于讓學生在觀察求解線性方程組時系數的變化情況而引入,而不是先引入再告訴你聯系,覺得這樣更有邏輯些,但是畢竟有所提及,解釋問題)。

  我同意這樣的看法:代數學是“生產定理的機器”,是研究結構的學科。有一個清晰的結構很重要,但敘述思想與概念的來源同樣非常重要,因為這樣的想法可以指導以后的認知,這是真正的授之以漁。

  第二,定理內容深刻,進行了很大推廣,在推廣過程中讓讀者意識到每個條件的意義。第五章是特征值與特征向量,第六章是二次型(后二章里面用了大量一元多項式環(huán)的內容,雖然結論深刻了,但是要求提高了)(至此線性代數部分結束,轉入高等代數部分),僅靠上半本和下半本的第七章就可以對于矩陣的特征值和特征向量有相對充分的認識了(當然,有些問題還是沒能夠解決,比如怎樣的多項式的特征值重數不變)。之后的第十章討論了具有度量的線性空間,并不限于實數域與復數域,還推廣到了一般域(通常這個域的特征不為2)的情況,敘述正交空間與辛空間,這其實對于矢量與場論分析基礎有幫助(比如,正交變換作用于一個標準正交基可得到另一個標準正交基等價于兩個標準正交基做的非退化線性變換必為正交變換,這在有限維實內積空間或酉空間不可以如此論述,因為這兩個基不是數域上的向量,是一般域上的),這個是很好的,也幫助讀者更好認識從實數域、經過復數域再到一般數域,因為正定性這一關鍵(不然就沒有辦法定義內積)而不斷放低條件的過程。

  第三,例題豐富,便于自學,并至少試圖進行廣泛應用。表明所學的意義和用法,這一點也非常重要。我們當下很多的學生只是單純的學習數學知識,但是對于學科的基本思想與方法全然無睹,導致的嚴重后果是當需要用到這些知識的時候學生們要么根本不記得多少,要么根本想不起來用。個人認為大學最重要的是培養(yǎng)的是人的思維方式,而不是知識(當然不是不重要,只是有了這些才有真正意義上的知識)。讓讀者能夠學以致用,這一點上,在國內的基礎教材內,丘維聲老師的書確實做的非常好。

  以上既是丘老師書的優(yōu)點,也是在閱讀的時候需要注意的:注意敘述的時候課程或者教材結構的合理性;注重每個定理的意義和條件的意義;進行應用和推廣時應注意什么。

  這個其實也是是學習數學的一般思維。當然針對于代數,我也有其他的一些想法與認識,(敲黑板),以下是學習代數時應該注意的想法和方式:

  第一,注意有限與無限的區(qū)別。無限和有限的意義往往不一樣,這個在有限維里成立的命題,未必可以推廣到無限維。比如伴隨變換在有限維酉空間里一定有,但是在無限維酉空間里就不一定有了。但是線性空間的補空間在有限維和無限維空間里都是有的。

  第二,要有“基”和維數的意識,這是(有限維的)線性代數獨有的。研究一個有限維的線性空間只需要找到一個基,研究一個有限維線性空間上的線性變換除了找對應關系,還是要找一個基(線性映射找兩個)。有了基才有坐標的意義,度量才有了意義。與基相關聯的還有維數,這同樣是描述線性空間的核心數學量(比如,兩個有限維實內積空間同構當且僅當二者同維)。我所指的基,可不僅僅指線性空間中的基,還有多項式環(huán)中的不可約多項式(這往往倒是無限多的),不可約多項式和線性空間的基看似是不同的概念,卻都是構筑相應結構(基域上多項式環(huán)和基域上有限維線性空間)的“磚石”。這個觀點非常重要,以后講述抽象代數,這個“磚石”有名字的,叫做“生成元”,甚至于學習群表示論,我們更關心群的不可約表示,就是因為這個。

  第三,以研究態(tài)射為高等代數的核心。當然這也是后續(xù)課程抽象代數學的核心。高等代數的重難點就是線性空間與線性映射,搞不清楚這一點就沒辦法弄清楚結構問題,或者“作用效果”。解決問題一定要抓住要解決所需的必要條件,比如做一個矩陣分解,我得知道矩陣分解能夠體現什么特征。比如,我做一個極分解,結果相當于做第一類正交變換和仿射變換這說明我作用這個矩陣可以得到這樣的效果(類比于經典力學中曲線運動,我將力分解為切向力和法向力,每個分力都要承擔效果的)。

  第四,學習抓臨界條件來解決關鍵問題,不要隨意丟棄“腳手架”。秩的概念的本質就是向量集合的最小的生成元集中元素的個數,最小多項式更是如此(次數最低的零化多項式)。最小本質就是一種臨界條件(有點類似于物理中的臨界問題,或者邊界條件?),臨界狀態(tài)往往是突破口;還有一些用過的工具用過了不代表沒用,比如向量組提出其實可以看做是用來解決線性方程組問題的,但是解決了不代表就沒其他用了,相應的,在度量上,其依然發(fā)揮著重要作用。

  這就是個人的一點觀點,不局限于高等代數(也一定不能局限,否則難以提出真正的高觀點),再次表示歡迎真正的大佬前來指教,姑且作為拋磚引玉了。

  數學專業(yè)的心得體會 篇8

  高等數2113學與高中數學相比有很大的不同,內5261容上主要是引進了一些4102全新的數學思想,特別是無限分1653割逐步逼近,極限等;從形式上講,學習方式也很不一樣,特別是一般都是大班授課,進度快,老師很難個別輔導,故對自學能力的要求很高。具體的學習方法因人而異,但有些基本的規(guī)律大家都得遵守。我具體說一下列在下面:

  1、書:課本+習題集(必備),因為學好數學絕對離不開多做題(跟高中有點像,呵呵);建議習題集最好有本跟考研有關的,這樣也有利于你將來可能的考研準備。

  2、筆記:盡量有,我說的筆記不是指原封不動的抄板書,那樣沒意思,而且不必非單獨用個小本,可記在書上。關鍵是在筆記上一定要有自己對每一章知識的總結,類似于一個提綱,(有時老師或參考書上有,可以參考),最好還有各種題型+方法+易錯點。

  3、上課:建議最好預習后聽聽。(其實我是從來不聽課的,除非習題課),聽不懂不要緊,很多大學的課程都是靠課下結合老師的筆記自己重新看。但remember,高數千萬別搞考前突擊,絕對行不通,所以平時你就要跟上,步步盡量別斷層。

  4、學好高數=基本概念透+基本定理牢+基本網絡有+基本常識記+基本題型熟。數學就是一個概念+定理體系(還有推理),對概念的理解至關重要,比如說極限、導數等,小弟你既要有形象的對它們的理解,也要熟記它們的數學描述,不用硬背,可以自己對著書舉例子,畫個圖看看(形象理解其實很重要),然后多做題,做題中體會。建議你用一只彩筆專門把所有的概念標出來,這樣看書時一目了然(定理用方框框起來)。

  基本網絡就是上面說的筆記上的總結的知識提綱,也要重視。

  基本常識就是高中時老師常說的“準定理”,就是書上沒有,在習題中我們總結的可以當定理或推論用的東西,還有一些自己小小的經驗。這些東西不正式但很有用的。

  題型都明白了,比如各種極限的求法。

  好了,這些都做到了,高數應該學得不會差了,至少應付考試沒問題。如果你想提高些,可以做些考研的數學題,體會一下,其實也不過如此若時間充裕還可以學習一下數學軟件,如matlab、mathematic,比如算積分都有現成的函數,通過練習可以加強對概念的掌握;此外還看些關于高數應用的書,其實數學本來就是從應用中來的,你會知道真的很有用(不知你學的什么專業(yè))

  最后再說說怎么提高理解能力的問題(一家之言)

  1、舉例具體化。如理解導數時,自己也舉個例子,如f(x)=X^2+8。

  2、比喻形象化。就是打比方,比如把一個二元函數的圖形想成鄰家女孩的頭上的草帽。

  3、類比初級化。比如把二元函數跟一元函數類比,泰勒公式想成二次函數,好理解。

  4、多書參考法。去你們圖書管借幾本不是一個作者寫的高數教材,雖然講的內容都一樣,但不同的作者往往對同一個問題從不同的角度表述,對你來說,從很多不同的角度、例子理解同一個問題,往往就容易多了。Justhaveatry!

  5、不懂暫跳法。對一些定理的證明、推導過程等,如果一時不明白沒關系,暫時放過,記下這個疑點待以后解決就可以了。

  數學專業(yè)的心得體會 篇9

  早些年的時候,是進修八字術數的,剛開始看周易,便率先接觸到八八六十四卦,那個時候沒有耐心看,覺得演變的頭暈腦混的。再加上覺得四柱八字預測得先讓來人報“生辰八字”很麻煩,有的甚至還不知道自己的生辰八字,覺的此項預測術不適合我,所以學了沒多久,就跑到奇門遁甲的世界里。然后再奇門遁甲里旁觸到“梅花易數”,說是深研究,其實也不過是照卦說卦,相當的死板了。

  奇門遁甲的實戰(zhàn)中,總結出“申家奇門”的思路,奇門遁甲可以讓我“玩的全盤轉”,那么梅花易數是不是也可以改變研究策略?扔掉電子書、筆記,來個活學活用?奇門遁甲是風火輪,可以全盤轉,那梅花易數能不能把大自然變成“游樂場”?隨處可“點”可“用”呢?

  上網搜索了有關“梅花易數“的資料,以“梅花易數入門”、“梅花易數如何學習”、“梅花易數筆記”等相關字眼進行搜索,也因此注冊了很多易學論壇,為的是下載相關的“梅花易數”資料,看了看,基本上跟我買回來的“梅花易數”書說的一樣,更是神秘莫測了,有關的測例也是少的可憐,怪不得“梅花易數”給人感覺那么“深”,那么“玄”了。

  其實那些資料“看了等于白看”,根本不會有什么長進,頂多教你個怎么排卦而已,解卦的過程你根本摸不到。“梅花易數”分體用卦,體用兩個卦變來變去,最后一錘定音出了個變卦,而變卦并不是事情的最終結果,最經典的部分在于那變化之間。6個爻再加上六個爻,上卦加下卦,單獨來看又是八卦中的一個小卦。就是兩個小碗跟一個紙團的游戲,類似考眼力的游戲。

  數學專業(yè)的心得體會 篇10

  數學學科發(fā)展到現在,已成為了分支眾多的學科之一,復變函數則是其中一個非常重要的分支,是19世紀,Cauchy, Riemann, Weierstrass 等數學家分別從不同角度建立了復變函數的系統(tǒng)理論,使復變函數真正成為分析數學的一個重要分支。

  復變函數是復數域上的微積分,是基于解決數學內部矛盾的間接需要而產生的,是由于在生產實際和科學研究中發(fā)現了應用原型而發(fā)展起來的!

  復變函數現在是大學理工科專業(yè)和數學院系數學類專業(yè)的一門重要的基礎課,但是復變函數的學習要有高等數學的基礎,如果沒有這方面的知識,學習復變函數無疑會非常困難,因為這門課程在初學者看來非常抽象,理論性太強。作為復變函數的教學工作者,如何使得這門課程的課堂變得生動有趣,而且使學生在學習過程中容易理解,是我們不得不思考的問題。

  由于復變函數的導數與可導性、微分與可微性是利用類比的方法從一元實變函數相應概念推廣到復數域后得到的,它們在形式上與一元實變函數的導數、可導性與微分一致,因此在教學中應當勤于和善于比較,既要重視共性,更要注意不同點,切實關注在推廣到復數域后出現了什么新情況和新問題,探討出現新問題的原因何在。

  在這篇報告中,王錦森先生非常生動地介紹了復變函數課程的改革思路和分別討論了復變函數教學中的難點和重點,并且這些難點和重點的教學方法。

  難點和重點介紹方面:討論了“在復變函數可導性(從而判斷函數解析性)的充要條件中,為什么要求函數的實部和虛部必須滿足Cauchy-Riemann方程?”內在含義,復變函數的導數的幾何意義是否跟實變函數導數的幾何意義相同?,一元實函數的微分中值定理能不能推廣到復變函數中來?,復變初等函數與相應的實變初等函數之間的關系與差別,復變函數的積分與一元實變函數的第二型曲線積分的不同之處,即,它們積分和式的結構不同,積分的表達形式不同,物理意義不同等等,還討論了學習Cauchy-Goursat 基本定理應當注意的幾個問題,復變函數積分中有沒有與一元實變函數微積分中的微積分基本定理和Newton-Leibniz公式相對應的結論等等。

  這些難點和重點教學法方面介紹了類比教學法,化“復”為“實”,用“已知”解決“未知”的思想等教學法。

  參加培訓之前我沒有考慮過這些問題,通過這次學習,我對這些難點與重點的認識進一步深入了。以后的教學過程中用到所學的知識,為提高教學質量而努力。

【數學專業(yè)的心得體會】相關文章:

數學專業(yè)實習心得體會11-11

數學與應用數學專業(yè)代碼09-28

數學與應用數學專業(yè)考研科目08-20

數學專業(yè)就業(yè)前景慘淡數學專業(yè)好就業(yè)嗎09-27

數學與應用數學專業(yè)學生的實習報告02-05

數學與應用數學專業(yè)學生自我評價12-19

數學與應用數學專業(yè)自薦書12-10

數學與應用數學專業(yè)的自薦書12-26

數學與應用數學專業(yè)的自薦信08-19