中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)

時(shí)間:2024-09-27 08:04:31 知識點(diǎn)總結(jié) 我要投稿
  • 相關(guān)推薦

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)

  總結(jié)在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它能使我們及時(shí)找出錯(cuò)誤并改正,讓我們一起來學(xué)習(xí)寫總結(jié)吧。那么我們該怎么去寫總結(jié)呢?以下是小編為大家整理的高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)1

  1.定義法:

  判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可。

  2.轉(zhuǎn)換法:

  當(dāng)所給命題的充要條件不易判斷時(shí),可對命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷。

  3.集合法

  在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:

  若AB,則p是q的充分條件。

  若AB,則p是q的'必要條件。

  若A=B,則p是q的充要條件。

  若AB,且BA,則p是q的既不充分也不必要條件。

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)2

  1.萬能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)

  2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a

  3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:單位向量a0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]

  4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(x1平方+y1 平方)*根號(x2 平方+y2 平方)

  5.空間向量:同上推論 (提示:向量a={x,y,z})

  6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2

  7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)3

  一、集合、簡易邏輯(14課時(shí),8個(gè))

  1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

  二、函數(shù)(30課時(shí),12個(gè))

  1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運(yùn)算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

  三、數(shù)列(12課時(shí),5個(gè))

  1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。

  四、三角函數(shù)(46課時(shí),17個(gè))

  1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

  五、平面向量(12課時(shí),8個(gè))

  1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。

  六、不等式(22課時(shí),5個(gè))

  1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

  七、直線和圓的方程(22課時(shí),12個(gè))

  1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。

  八、圓錐曲線(18課時(shí),7個(gè))

  1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì)。

  九、直線、平面、簡單何體(36課時(shí),28個(gè))

  1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的`射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

  十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))

  1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì)。

  十一、概率(12課時(shí),5個(gè))

  1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。

  選修Ⅱ(24個(gè))

  十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))

  1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。

  十三、極限(12課時(shí),6個(gè))

  1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。

  十四、導(dǎo)數(shù)(18課時(shí),8個(gè))

  1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。

  十五、復(fù)數(shù)(4課時(shí),4個(gè))

  1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)4

  1.定義:

  用符號〉,=,〈號連接的式子叫不等式。

  2.性質(zhì):

 、俨坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號方向不變。

 、诓坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數(shù),不等號方向不變。

 、鄄坏仁降膬蛇叾汲艘曰虺酝粋(gè)負(fù)數(shù),不等號方向相反。

  3.分類:

 、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的`不等式叫一元一次不等式。

 、谝辉淮尾坏仁浇M:

  a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

  b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

  4.考點(diǎn):

 、俳庖辉淮尾坏仁(組)

 、诟鶕(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實(shí)際問題

  ③用數(shù)軸表示一元一次不等式(組)的解集

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)5

  1.拋物線是軸對稱圖形。對稱軸為直線

  x=-b/2a。

  對稱軸與拋物線的交點(diǎn)是拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對稱軸為y軸(即直線)x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0點(diǎn),拋物線向下開口。

  |a|拋物線越大,開口越小。

  對稱軸的位置由一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定。

  當(dāng)a與b同號時(shí)(即ab>對稱軸在y軸左側(cè);

  當(dāng)a與b異號時(shí)(即ab<對稱軸在y軸右側(cè)。

  4.常數(shù)項(xiàng)C決定拋物線與y軸的交點(diǎn)。

  拋物線與y軸交于(0,c)

  5.拋物線與x軸交點(diǎn)的`數(shù)量

  Δ=b^2-4ac>0時(shí),拋物線與x軸有兩個(gè)交點(diǎn)。

  Δ=b^2-4ac=0時(shí),拋物線與x軸有一個(gè)交點(diǎn)。

  Δ=b^2-4ac<0時(shí),拋物線與x軸。X取值為虛數(shù)(x=-b±√b^2-4ac乘以虛數(shù)的相反數(shù)i,除以2a)

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)6

  一、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義

  2、函數(shù)單調(diào)性的判斷和證明:

  (1)定義法

  (2)復(fù)合函數(shù)分析法

  (3)導(dǎo)數(shù)證明法

  (4)圖象法

  二、函數(shù)的奇偶性和周期性

  1、函數(shù)的奇偶性和周期性的定義

  2、函數(shù)的奇偶性的判定和證明方法

  3、函數(shù)的周期性的`判定方法

  三、函數(shù)的圖象

  1、函數(shù)圖象的作法

  (1)描點(diǎn)法

  (2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)7

  1.萬能公式

  令tan(a/2)=t

  sina=2t/(1+t^2)

  cosa=(1-t^2)/(1+t^2)

  tana=2t/(1-t^2)

  2.輔助角公式

  asint+bcost=(a^2+b^2)^(1/2)sin(t+r)

  cosr=a/[(a^2+b^2)^(1/2)]

  sinr=b/[(a^2+b^2)^(1/2)]

  tanr=b/a

  3.三倍角公式

  sin(3a)=3sina-4(sina)^3

  cos(3a)=4(cosa)^3-3cosa

  tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]

  4.積化和差

  sina*cosb=[sin(a+b)+sin(a-b)]/2

  cosa*sinb=[sin(a+b)-sin(a-b)]/2

  cosa*cosb=[cos(a+b)+cos(a-b)]/2

  sina*sinb=-[cos(a+b)-cos(a-b)]/2

  5.積化和差

  sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

  sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

  cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

  cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)8

  三角函數(shù):

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  四倍角公式:

  sin4A=-4*(cosA*sinA*(2*sinA^2-1))

  cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

  五倍角公式:

  sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosA

  tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

  六倍角公式:

  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)

  七倍角公式:

  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

  tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

  八倍角公式:

  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

  tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:

  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

  十倍角公式:

  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)·

  萬能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  半角公式

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

【高二下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

高二下學(xué)期化學(xué)重要知識點(diǎn)總結(jié)歸納04-21

初二數(shù)學(xué)期末知識點(diǎn)總結(jié)11-05

數(shù)學(xué)的知識點(diǎn)總結(jié)04-16

初一數(shù)學(xué)下學(xué)期知識點(diǎn)總結(jié)08-11

高二數(shù)學(xué)下學(xué)期教學(xué)總結(jié)數(shù)學(xué)高二下學(xué)期教學(xué)計(jì)劃04-18

初中數(shù)學(xué)的知識點(diǎn)總結(jié)06-21

數(shù)學(xué)重要知識點(diǎn)總結(jié)08-23

初中數(shù)學(xué)的知識點(diǎn)總結(jié)03-11

數(shù)學(xué)知識點(diǎn)總結(jié)09-09