高一數(shù)學課本下冊知識點歸納
高一數(shù)學課本下冊知識點歸納1
集合的運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
高一數(shù)學課本下冊知識點歸納2
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。
意義:
、僦本的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;
、谠谄矫嬷苯亲鴺讼抵,每一條直線都有一個確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時α∈(0°,90°)
k<0時α∈(90°,180°)
k=0時α=0°
當α=90°時k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當a≠0時,
傾斜角為90度,即與X軸垂直
高一數(shù)學課本下冊知識點歸納
高一數(shù)學課本下冊知識點歸納3
函數(shù)圖象知識歸納
(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上.
(2)畫法
A、描點法:
B、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對稱變換
4.高中數(shù)學函數(shù)區(qū)間的概念
(1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無窮區(qū)間
5.映射
一般地,設A、B是兩個非空的函數(shù),如果按某一個確定的對應法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應關系):A(原象)B(象)”
對于映射f:A→B來說,則應滿足:
(1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;
(2)函數(shù)A中不同的元素,在函數(shù)B中對應的象可以是同一個;
(3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。
6.高中數(shù)學函數(shù)之分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數(shù)
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。
高一數(shù)學課本下冊知識點歸納4
復數(shù)定義
我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當虛部等于零時,這個復數(shù)可以視為實數(shù);當z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復系數(shù)多項式在復數(shù)域中總有根。
復數(shù)表達式
虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達式為:
a=a+ia為實部,i為虛部
復數(shù)運算法則
加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結果還是0,也就在數(shù)字中沒有復數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。
復數(shù)與幾何
、賻缀涡问
復數(shù)z=a+bi被復平面上的'點z(a,b)確定。這種形式使復數(shù)的問題可以借助圖形來研究。也可反過來用復數(shù)的理論解決一些幾何問題。
、谙蛄啃问
復數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復數(shù)四則運算得到恰當?shù)膸缀谓忉尅?/p>
、廴切问
復數(shù)z=a+bi化為三角形式
高一數(shù)學課本下冊知識點歸納5
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);
排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。
總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);
如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。
在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
而只有a為正數(shù),0才進入函數(shù)的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。
(3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。
(4)當a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。
(6)顯然冪函數(shù)無界。
【高一數(shù)學課本下冊知識點歸納】相關文章:
《雨巷》高一語文課本知識點歸納12-27
高一數(shù)學學習方法歸納08-03
《觀潮》知識點歸納09-01
高一語文課本作文10-05
高一數(shù)學學習方法歸納9篇01-05
高一數(shù)學學習方法歸納7篇12-31
高一數(shù)學學習方法歸納(9篇)01-05
高一數(shù)學知識點總結07-20
《觀滄海》知識點歸納11-07
采薇知識點歸納09-02