數(shù)學(xué)知識點(diǎn)總結(jié)整理
總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,因此好好準(zhǔn)備一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編收集整理的數(shù)學(xué)知識點(diǎn)總結(jié)整理,希望對大家有所幫助。
數(shù)學(xué)知識點(diǎn)總結(jié)整理1
1、函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)。
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
(1)(代數(shù)法)求方程的實(shí)數(shù)根;
(2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。
4、二次函數(shù)的零點(diǎn):
二次函數(shù)。
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個交點(diǎn),二次函數(shù)有兩個零點(diǎn)。
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個交點(diǎn),二次函數(shù)有一個二重零點(diǎn)或二階零點(diǎn)。
3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn)。
數(shù)學(xué)知識點(diǎn)總結(jié)整理2
1、用加、減、乘(乘方)、除等運(yùn)算符號把數(shù)或表示數(shù)的字母連接而成的式子,叫做代數(shù)式。(注:單獨(dú)一個數(shù)字或字母也是代數(shù)式)
2、代數(shù)式的寫法:數(shù)學(xué)與字母相乘時,“×”號省略,數(shù)字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數(shù)字與數(shù)字相乘時,“×”號不能省略;式中出現(xiàn)除法時,一般寫成分?jǐn)?shù)形式。式中出現(xiàn)帶分?jǐn)?shù)時,一般寫成假分?jǐn)?shù)形式。
3、分段問題書寫代數(shù)式時要分段考慮,有單位時要考慮是否要();如:電費(fèi)、水費(fèi)、出租車、商店優(yōu)惠。
4、單項(xiàng)式:由數(shù)字和字母乘積組成的式子。單獨(dú)一個數(shù)或一個字母也是單項(xiàng)式。因此,判斷代數(shù)式是否是單項(xiàng)式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,若①分母中不含有字母,②式子中含有加、減運(yùn)算關(guān)系,也不是單項(xiàng)式。
單項(xiàng)式的系數(shù):是指單項(xiàng)式中的數(shù)字因數(shù);(不要漏負(fù)號和分母)
單項(xiàng)數(shù)的次數(shù):是指單項(xiàng)式中所有字母的指數(shù)的和。(注意指數(shù)1)
5、多項(xiàng)式:幾個單項(xiàng)式的和。判斷代數(shù)式是否是多項(xiàng)式,關(guān)鍵要看代數(shù)式中的每一項(xiàng)是否是單項(xiàng)式。每個單項(xiàng)式稱項(xiàng),(其中不含字母的項(xiàng)叫常數(shù)項(xiàng))多項(xiàng)式的次數(shù)是指多項(xiàng)式里次數(shù)最高項(xiàng)的次數(shù)(選代表);多項(xiàng)式的項(xiàng)是指在多項(xiàng)式中每一個單項(xiàng)式。特別注意多項(xiàng)式的項(xiàng)包括它前面的性質(zhì)符號。它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項(xiàng)式和多項(xiàng)式的每一項(xiàng)都包括它前面的符號。
6、代數(shù)式分為整式和分式(分母里含有字母);整式分為單項(xiàng)式和多項(xiàng)式。
數(shù)學(xué)知識點(diǎn)總結(jié)整理3
(1)不等關(guān)系
感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
(2)一元二次不等式
、俳(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。
②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
③會解一元二次不等式,對給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。
(3)二元一次不等式組與簡單線性規(guī)劃問題
①從實(shí)際情境中抽象出二元一次不等式組。
、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組(參見例2)。
、蹚膶(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
(4)基本不等式:
、偬剿鞑⒘私饣静坏仁降淖C明過程。
②會用基本不等式解決簡單的(小)值問題。
數(shù)學(xué)知識點(diǎn)總結(jié)整理4
(一)本單元知識網(wǎng)絡(luò):
1、生活中的數(shù)
(1)認(rèn)、讀、數(shù)、寫10以內(nèi)的數(shù)。
(2)掌握10以內(nèi)數(shù)的順序和大小,初步體會基數(shù)與序數(shù)的含義。
(二)各課知識點(diǎn):
1、可愛的校園(數(shù)數(shù))
知識點(diǎn):
(1)通過觀察情境圖,初步認(rèn)識10以內(nèi)的數(shù)。
(2)在數(shù)數(shù)的活動中,體會有序數(shù)數(shù)的方法。
2、快樂的家園(10以內(nèi)數(shù)的認(rèn)識)
知識點(diǎn):
(1)初步認(rèn)識1~10各數(shù)的符號表示方法。
(2)在具體情境活動中,學(xué)習(xí)運(yùn)用數(shù)字符號表示日常生活中的一些物體的量。
3、玩具(1~5的認(rèn)識與書寫)
知識點(diǎn):
能正確數(shù)出5以內(nèi)物體的個數(shù),能用數(shù)表示日常生活的一些事物,會正確書寫1~5的數(shù)字。
4、小貓釣魚(0的認(rèn)識)
知識點(diǎn):
(1)知道在生活中“0”所表示的幾種常見的意義,知道“0”和1,2,3,…一樣也是一個數(shù),“0”比1,2,3,…小。
(2)會正確書寫“0”
5、文具(6~10的認(rèn)識與書寫)
知識點(diǎn):
(1)能夠正確地?cái)?shù)出數(shù)量是6~10的物體個數(shù)。
(2)學(xué)會6~10各數(shù)的讀寫方法。
數(shù)學(xué)知識點(diǎn)總結(jié)整理5
函數(shù)
、傥恢玫拇_定與平面直角坐標(biāo)系
位置的確定
坐標(biāo)變換
平面直角坐標(biāo)系內(nèi)點(diǎn)的特征
平面直角坐標(biāo)系內(nèi)點(diǎn)坐標(biāo)的符號與點(diǎn)的象限位置
對稱問題:P(x,y)→Q(x,- y)關(guān)于x軸對稱P(x,y)→Q(- x,y)關(guān)于y軸對稱P(x,y)→Q(- x,-y)關(guān)于原點(diǎn)對稱
變量、自變量、因變量、函數(shù)的定義
函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數(shù)的圖象:變量的變化趨勢描述
②一次函數(shù)與正比例函數(shù)
一次函數(shù)的定義與正比例函數(shù)的定義
一次函數(shù)的圖象:直線,畫法
一次函數(shù)的性質(zhì)(增減性)
一次函數(shù)y=kx+b(k≠0)中k、b符號與圖象位置
待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)
一次函數(shù)的平移問題
一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)
一次函數(shù)的`實(shí)際應(yīng)用
一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合
數(shù)學(xué)知識點(diǎn)總結(jié)整理6
圓的定理:
1不在同一直線上的三點(diǎn)確定一個圓。
2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
圓的兩條平行弦所夾的弧相等
3圓是以圓心為對稱中心的中心對稱圖形
4圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7同圓或等圓的半徑相等
8到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
中考數(shù)學(xué)知識點(diǎn)復(fù)習(xí)口訣
有理數(shù)的加法運(yùn)算
同號相加一邊倒;異號相加“大”減“小”,
符號跟著大的跑;絕對值相等“零”正好。
合并同類項(xiàng)
合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號法則
去括號、添括號,關(guān)鍵看符號,
括號前面是正號,去、添括號不變號,
括號前面是負(fù)號,去、添括號都變號。
一元一次方程
已知未知要分離,分離方法就是移,加減移項(xiàng)要變號,乘除移了要顛倒。
平方差公式
平方差公式有兩項(xiàng),符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方公式
完全平方有三項(xiàng),首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項(xiàng)符號隨中央。
因式分解
一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,
兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,
四項(xiàng)仔細(xì)看清楚,若有三個平方數(shù)(項(xiàng)),
就用一三來分組,否則二二去分組,
五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,
以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
單項(xiàng)式運(yùn)算
加、減、乘、除、乘(開)方,三級運(yùn)算分得清,
系數(shù)進(jìn)行同級(運(yùn))算,指數(shù)運(yùn)算降級(進(jìn))行。
一元一次不等式解題步驟
去分母、去括號,移項(xiàng)時候要變號,同類項(xiàng)合并好,再把系數(shù)來除掉,
兩邊除(以)負(fù)數(shù)時,不等號改向別忘了。
一元一次不等式組的解集
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。
一元二次不等式、一元一次絕對值不等式的解集
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運(yùn)算法則
分式四則運(yùn)算,順序乘除加減,乘除同級運(yùn)算,除法符號須變(乘);
乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結(jié)果要求最簡。
中考數(shù)學(xué)知識點(diǎn)歸納:平面直角坐標(biāo)系
平面直角坐標(biāo)系
1、平面直角坐標(biāo)系
在平面內(nèi)畫兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn),不屬于任何象限。
2、點(diǎn)的坐標(biāo)的概念
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)時,(a,b)和(b,a)是兩個不同點(diǎn)的坐標(biāo)。
數(shù)學(xué)知識點(diǎn)總結(jié)整理7
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:
、僭谕黄矫
、趦蓷l數(shù)軸
、刍ハ啻怪
、茉c(diǎn)重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
數(shù)學(xué)知識點(diǎn)總結(jié)整理8
1.知識網(wǎng)絡(luò)圖
復(fù)數(shù)知識點(diǎn)網(wǎng)絡(luò)圖
2.復(fù)數(shù)中的難點(diǎn)
(1)復(fù)數(shù)的向量表示法的運(yùn)算。對于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對向量的運(yùn)算的幾何意義的靈活掌握有一定的困難。對此應(yīng)認(rèn)真體會復(fù)數(shù)向量運(yùn)算的幾何意義,對其靈活地加以證明。
(2)復(fù)數(shù)三角形式的乘方和開方。有部分學(xué)生對運(yùn)算法則知道,但對其靈活地運(yùn)用有一定的困難,特別是開方運(yùn)算,應(yīng)對此認(rèn)真地加以訓(xùn)練。
(3)復(fù)數(shù)的輻角主值的求法。
(4)利用復(fù)數(shù)的幾何意義靈活地解決問題。復(fù)數(shù)可以用向量表示,同時復(fù)數(shù)的模和輻角都具有幾何意義,對他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會。
3.復(fù)數(shù)中的重點(diǎn)
(1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn)。
(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角。復(fù)數(shù)有代數(shù),向量和三角三種表示法。特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時經(jīng)常用到,是一個重點(diǎn)內(nèi)容。
(3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì)。復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容。
(4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法。
數(shù)學(xué)知識點(diǎn)總結(jié)整理9
數(shù)軸
⒈.數(shù)軸的概念
規(guī)定了原點(diǎn),正方向,單位長度的直線叫做數(shù)軸。
注意:
、艛(shù)軸是一條向兩端無限延伸的直線;
、圃c(diǎn)、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;
⑶同一數(shù)軸上的單位長度要統(tǒng)一;
、葦(shù)軸的三要素都是根據(jù)實(shí)際需要規(guī)定的。
2.數(shù)軸上的點(diǎn)與有理數(shù)的關(guān)系
⑴所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示,正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,0用原點(diǎn)表示。
、扑械挠欣頂(shù)都可以用數(shù)軸上的點(diǎn)表示出來,但數(shù)軸上的點(diǎn)不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點(diǎn)不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點(diǎn)π不是有理數(shù))
3.利用數(shù)軸表示兩數(shù)大小
⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
、普龜(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);
⑶兩個負(fù)數(shù)比較,距離原點(diǎn)遠(yuǎn)的數(shù)比距離原點(diǎn)近的數(shù)小。
4.數(shù)軸上特殊的(小)數(shù)
、抛钚〉淖匀粩(shù)是0,無的自然數(shù);
、谱钚〉恼麛(shù)是1,無的正整數(shù);
⑶的負(fù)整數(shù)是-1,無最小的負(fù)整數(shù)
5.a可以表示什么數(shù)
、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;
⑵a<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0
⑶a=0表示a是0;反之,a是0,,則a=0
數(shù)學(xué)知識點(diǎn)總結(jié)整理10
一、同余的定義:
、偃魞蓚整數(shù)a、b除以的余數(shù)相同,則稱a、b對于模同余。
②已知三個整數(shù)a、b、,如果|a-b,就稱a、b對于模同余,記作a≡b(d ),讀作a同余于b模。
二、同余的性質(zhì):
、僮陨硇裕篴≡a(d );
②對稱性:若a≡b(d ),則b≡a(d );
、蹅鬟f性:若a≡b(d ),b≡c(d ),則a≡ c(d );
、芎筒钚裕喝鬭≡b(d ),c≡d(d ),則a+c≡b+d(d ),a-c≡b-d(d );
、菹喑诵裕喝鬭≡ b(d ),c≡d(d ),則a×c≡ b×d(d );
、蕹朔叫裕喝鬭≡b(d ),則an≡bn(d );
、咄缎裕喝鬭≡ b(d ),整數(shù)c,則a×c≡ b×c(d ×c);
三、關(guān)于乘方的預(yù)備知識:
、偃鬉=a×b,則MA=Ma×b=(Ma)b
、谌鬊=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除后的余數(shù)特征:
①一個自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則M≡n(d 9)或(d 3);
②一個自然數(shù)M,X表示M的各個奇數(shù)位上數(shù)字的和,表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則M≡-X或M≡11-(X-)(d 11);
五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(d p)。
數(shù)學(xué)知識點(diǎn)總結(jié)整理11
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
。1)解析法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做解析法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值。
(2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。
。3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
數(shù)學(xué)知識點(diǎn)總結(jié)整理12
第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。
第二章:數(shù)列?荚嚤乜。等差等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和及一些性質(zhì)。這一章屬于學(xué)起來很容易,但做題卻不會做的類型?荚囶}中,一般都是要求通項(xiàng)公式、前n項(xiàng)和,所以拿到題目之后要帶有目的的去推導(dǎo)。
第三章:不等式。這一章一般用線性規(guī)劃的形式來考察。這種題一般是和實(shí)際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖。然后再根據(jù)實(shí)際問題的限制要求求最值。
選修中的簡單邏輯用語、圓錐曲線和導(dǎo)數(shù):邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的區(qū)別,考試一般會用選擇題考這一知識點(diǎn),難度不大;圓錐曲線一般作為考試的壓軸題出現(xiàn)。而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的表達(dá)式難度就不大。后面兩到三問難打一般會很大,而且較費(fèi)時間。所以不建議做。
這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導(dǎo)數(shù),導(dǎo)數(shù)公式、運(yùn)算法則、用導(dǎo)數(shù)求極值和最值的方法。一般會考察用導(dǎo)數(shù)求最值,會用導(dǎo)數(shù)公式就難度不大。
數(shù)學(xué)知識點(diǎn)總結(jié)整理13
一、求導(dǎo)數(shù)的方法
(1)基本求導(dǎo)公式
。2)導(dǎo)數(shù)的四則運(yùn)算
(3)復(fù)合函數(shù)的導(dǎo)數(shù)
設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即
二、關(guān)于極限
1、數(shù)列的極限:
粗略地說,就是當(dāng)數(shù)列的項(xiàng)n無限增大時,數(shù)列的項(xiàng)無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2、函數(shù)的極限:
當(dāng)自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當(dāng)x趨近于時,函數(shù)的極限是,記作
三、導(dǎo)數(shù)的概念
1、在處的導(dǎo)數(shù)。
2、在的導(dǎo)數(shù)。
3、函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:
函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,
即k=,相應(yīng)的切線方程是
注:函數(shù)的導(dǎo)函數(shù)在時的函數(shù)值,就是在處的導(dǎo)數(shù)。
例、若=2,則=()A—1B—2C1D
四、導(dǎo)數(shù)的綜合運(yùn)用
。ㄒ唬┣的切線
函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:
。1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=
。2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。
【數(shù)學(xué)知識點(diǎn)總結(jié)整理】相關(guān)文章:
中考知識點(diǎn)總結(jié)數(shù)學(xué)整理01-26
高考數(shù)學(xué)知識點(diǎn)總結(jié)整理01-24
小學(xué)數(shù)學(xué)必備知識點(diǎn)總結(jié)整理03-01
高考數(shù)學(xué)知識點(diǎn)歸納總結(jié)整理12-23
高考數(shù)學(xué)遺漏知識點(diǎn)整理02-22
高考數(shù)學(xué)復(fù)習(xí)知識點(diǎn)整理02-17
高二數(shù)學(xué)的知識點(diǎn)整理02-24