- 相關(guān)推薦
高中數(shù)學(xué)立體幾何知識點總結(jié)最新
總結(jié)是事后對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,因此好好準(zhǔn)備一份總結(jié)吧?偨Y(jié)怎么寫才是正確的呢?以下是小編精心整理的高中數(shù)學(xué)立體幾何知識點總結(jié)最新,僅供參考,歡迎大家閱讀。
高中數(shù)學(xué)立體幾何知識點總結(jié)最新1
1、平面的基本性質(zhì):
掌握三個公理及推論,會說明共點、共線、共面問題。
能夠用斜二測法作圖。
2、空間兩條直線的位置關(guān)系:
平行、相交、異面的概念;
會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3、直線與平面
、傥恢藐P(guān)系:平行、直線在平面內(nèi)、直線與平面相交。
②直線與平面平行的判斷方法及性質(zhì),判定定理是證明平行問題的依據(jù)。
③直線與平面垂直的'證明方法有哪些?
、苤本與平面所成的角:關(guān)鍵是找它在平面內(nèi)的射影,范圍是
⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理。 三垂線定理及其逆定理主要用于證明垂直關(guān)系與空間圖形的度量。如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線。
4、平面與平面
(1)位置關(guān)系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質(zhì)。
(3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據(jù)性質(zhì)定理,可以證明線面垂直。
(4)兩平面間的距離問題→點到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;
、诖咕、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。
、凵溆懊娣e法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法。
高中數(shù)學(xué)立體幾何知識點總結(jié)最新2
數(shù)學(xué)知識點1
柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到
截面距離與高的比的平方。
(3)棱臺:
幾何特征:
、偕舷碌酌媸窍嗨频钠叫卸噙呅
、趥(cè)面是梯形
③側(cè)棱交于原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:
、俚酌媸侨鹊膱A;
、谀妇與軸平行;
③軸與底面圓的半徑垂直;
④側(cè)面展開圖
是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:
、俚酌媸且粋圓;
、谀妇交于圓錐的頂點;
、蹅(cè)面展開圖是一個扇形。
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:
、偕舷碌酌媸莾蓚圓;
、趥(cè)面母線交于原圓錐的頂點;
、蹅(cè)面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的'幾何體
幾何特征:
、偾虻慕孛媸菆A;
②球面上任意一點到球心的距離等于半徑。
數(shù)學(xué)知識點2
空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、 俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度。
數(shù)學(xué)知識點3
空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
【高中數(shù)學(xué)立體幾何知識點總結(jié)最新】相關(guān)文章:
立體幾何的知識點總結(jié)03-29
高中立體幾何知識點總結(jié)01-15
高一數(shù)學(xué)立體幾何知識點總結(jié)08-03
高中數(shù)學(xué)導(dǎo)數(shù)知識點總結(jié)03-29
高中數(shù)學(xué)幾何知識點總結(jié)10-31