《多邊形的面積》的教學(xué)反思(通用16篇)
隨著社會不斷地進(jìn)步,我們要在教學(xué)中快速成長,反思意為自我反省。反思我們應(yīng)該怎么寫呢?以下是小編整理的《多邊形的面積》的教學(xué)反思,希望對大家有所幫助。
《多邊形的面積》的教學(xué)反思 1
《多邊形的面積》是新人教版第六單元內(nèi)容。這單元教學(xué)內(nèi)容包括四部分:平行四邊形的面積,三角形的面積,梯形的面積和組合圖形的面積。
教學(xué)時我注重讓學(xué)生經(jīng)歷面積公式的推導(dǎo)過程,讓學(xué)生親自經(jīng)歷數(shù)、剪、拼、擺的操作活動。在思維訓(xùn)練上注重滲透“轉(zhuǎn)化”思想,引領(lǐng)學(xué)生運用“轉(zhuǎn)化”的方法將新研究圖形轉(zhuǎn)化為已經(jīng)會計算面積的圖形,并通過對比探究新研究圖形與轉(zhuǎn)化后圖形間有什么關(guān)系,從而得出新研究圖形面積計算的方法。對于組合圖形面積的'計算,我則滲透了兩種思維:一是將組合圖形分成若干個已會計算面積的單一圖形(分割法),這幾個單一圖形面積總和便是這個組合圖形面積;二是根據(jù)圖形特征將這個組合圖形補成已學(xué)過的一個單一大圖形(添補法),用這個大圖形面積減去補充部分的圖形面積便是原組合圖形面積。
本以為這樣教下來,學(xué)生掌握很好,等到本單元的綜合測試結(jié)果一出來,讓我大失所望,更感到我班后進(jìn)生輔導(dǎo)工作的嚴(yán)峻與艱辛,也感覺到中下成績學(xué)生學(xué)得很吃力。一是計算單一圖形面積,有個別后進(jìn)生能寫對圖形面積計算公式而不會將數(shù)據(jù)代入公式計算,如果圖形是側(cè)放的則無法找到相應(yīng)的底和高。而組合圖形也就更讓他們感到困難了,即使能將圖形分成幾個單一圖形了,他們也無法正確找到相應(yīng)的數(shù)據(jù)計算對單一圖形面積。二是部分學(xué)生計算失誤嚴(yán)重。三是單位的改寫要么沒有,要么出錯。
以上這些原因讓我不知所措, 可見我在平時教學(xué)中對中下成績學(xué)生關(guān)注得不夠,以至中下成績學(xué)生知識出現(xiàn)脫節(jié)。針對自己的不足以及學(xué)生知識的缺陷,今后在課堂教學(xué)中要注意多關(guān)注中下成績學(xué)生學(xué)習(xí)情況,課后多采取措施輔導(dǎo)他們的學(xué)習(xí),要幫助他們把最基礎(chǔ)的知識補回來,然后再逐漸提高。
《多邊形的面積》的教學(xué)反思 2
本單元教學(xué)中我本著:“以學(xué)生發(fā)展為本,以活動為主線,以創(chuàng)新為主導(dǎo)”的思想。讓學(xué)生親身主動地參與學(xué)習(xí)過程,經(jīng)歷學(xué)習(xí)中的問題的提出,探索解決問題的方法和途徑,在經(jīng)歷中真正理解和掌握知識,體驗成功的快樂,同時學(xué)生的自主學(xué)習(xí)能力、創(chuàng)新能力得到了培養(yǎng)。在教學(xué)策略上,把多邊形面積公式的推導(dǎo)化為學(xué)生剪一剪、拼一拼、說一說的活動,通過小組活動、操作實踐等手段借助多媒體的'演示,幫助學(xué)生理解知識點,使抽象的知識變得直觀形象。
平行四邊形面積計算,是學(xué)習(xí)幾何平面初步知識的基礎(chǔ),尤其是平行四邊形面積公式的推倒,蘊涵著轉(zhuǎn)化的數(shù)學(xué)思想,因此,在本單元教學(xué)中,我把平行四邊形面積計算公式的推導(dǎo)過程作為教學(xué)的重中之重,課內(nèi)給學(xué)生充足的時間進(jìn)行操作和交流,在學(xué)生自主探究的基礎(chǔ)上推導(dǎo)出計算公式。使學(xué)生在學(xué)習(xí)推導(dǎo)三角形、梯形面積公式時已成順?biāo)浦壑畡荩p松、愉悅,學(xué)生在模仿、遷移、推導(dǎo)的過程中,學(xué)會學(xué)習(xí)、學(xué)會思考,真正成為學(xué)習(xí)的主人。
《多邊形的面積》的教學(xué)反思 3
在教學(xué)多邊形這一個單元時,在新授課時,強調(diào)了讓學(xué)生自己動手實驗,找出相互之間的聯(lián)系,推導(dǎo)出各自的面積計算公式,因為在這一環(huán)節(jié)中用時較多,常常導(dǎo)致后面安排的練習(xí)題不能全部在課堂上完成;練習(xí)課時,由于時常注重了對后進(jìn)生掌握情況的關(guān)注,比如說多請他們回答問題,尤其讓他們多說說思考過程,這樣的結(jié)果致使事先安排的習(xí)題又一次不能全部完成。
導(dǎo)致出現(xiàn)這種現(xiàn)象的原因是什么呢?經(jīng)過反思,應(yīng)該是“精講多練”做得還不夠。有時候,作為教師時常怕學(xué)生不理解,總是多講、反復(fù)講,自以為講清楚了,學(xué)生也就聽懂了,事實果真會這樣嗎?未必。學(xué)生他有自己的思維方式,有時候老師越講他甚至越糊涂,只有在具體的`練習(xí)中他才會真正掌握。
《多邊形的面積》的教學(xué)反思 4
本單元的主要教學(xué)內(nèi)容包括:平行四邊形的面積、三角形的面積、梯形的面積以及組合圖形的面積。多邊形面積的計算是在學(xué)生學(xué)習(xí)了圖形的平移與旋轉(zhuǎn),掌握了這些平面圖形的特征,以及長方形,正方形面積計算公式的基礎(chǔ)上進(jìn)行教學(xué)的。
回顧xx學(xué)年五年級學(xué)生學(xué)習(xí)本章時,學(xué)生的.問題主要有:
1、學(xué)生多邊形面積公式的推導(dǎo)過程表達(dá)不清。課堂上每一個多邊形面積公式的推導(dǎo)過程都是比較清晰的,無論是把平行四邊形轉(zhuǎn)化成長方形,還是把兩個完全相同的三角形(或梯形)拼成平行四邊形,從操作、比較,到發(fā)現(xiàn)轉(zhuǎn)化前后圖形之間的聯(lián)系,最后得出計算公式,整個過程環(huán)節(jié)分明,條理清楚,學(xué)生都能很快掌握課堂上所學(xué)的內(nèi)容。但是,課后發(fā)現(xiàn),有的學(xué)生對計算公式記得很牢,對多邊形面積公式的推導(dǎo)過程模糊,表達(dá)不清。
2、部分學(xué)生不會分辨底、高(不能正確畫出高),進(jìn)行組合圖形面積計算時候,不能很好利用平行四邊形對邊相等、不能創(chuàng)造性地通過虛線清晰地把圖形進(jìn)行分解,從而引起計算錯誤。
3、審題不清,經(jīng)常不注意單位的異同,面積計算結(jié)果經(jīng)常用長度單位。
為了有效地解決類似問題,我主要采取了以下措施:
1、重視動手操作、觀察與交流匯報
本單元面積公式的推導(dǎo)都是建立在學(xué)生數(shù)、剪、拼、擺的操作活動之上的,所以操作是本單元教學(xué)的重要環(huán)節(jié)。教師既要做好引導(dǎo),又要注意不要包辦代替,一定要學(xué)生在獨立思考和合作交流的基礎(chǔ)上進(jìn)行操作,卻忌由教師帶著做。
2、引導(dǎo)學(xué)生探究,滲透“轉(zhuǎn)化”思想。
本單元面積的推導(dǎo)都采用了轉(zhuǎn)化的方法。在本單元的教學(xué)中,以學(xué)生的探究活動為主要形式,教師加強指導(dǎo)和引導(dǎo)。通過操作,一方面啟發(fā)學(xué)生設(shè)法把所研究的圖形轉(zhuǎn)化為已經(jīng)會計算面積的圖形,滲透“轉(zhuǎn)化”的思想方法,另一方面引導(dǎo)學(xué)生去主動探究所研究的圖形與轉(zhuǎn)化后的圖形之間有什么聯(lián)系,從而找到面積的計算方法。利用討論和交流等形式,要求學(xué)生把自己操作——轉(zhuǎn)化——推導(dǎo)的過程敘述出來,以發(fā)展學(xué)生的思維和表達(dá)能力。
3、注意培養(yǎng)學(xué)生用多種策略解決問題的意識和能力。
運用轉(zhuǎn)化的方法推導(dǎo)面積計算公式和計算多邊形面積,可以有多種途徑和方法。教師要鼓勵學(xué)生從不同的途徑和角度去思考和探索解決問題。引導(dǎo)學(xué)生通過觀察,作虛線等方法,清晰地認(rèn)識一個簡單圖形、組合圖形的構(gòu)成,并能正確地進(jìn)行計算。
4、在教學(xué)中培養(yǎng)審題習(xí)慣、檢查習(xí)慣等等
學(xué)生出現(xiàn)審題不清,單位出錯,原因主要有兩點:一是學(xué)習(xí)習(xí)慣不好;二是學(xué)習(xí)態(tài)度不端正。要改變這樣的情況并非一朝一夕所能成的,教師應(yīng)有意識地培養(yǎng)學(xué)生認(rèn)真審題的意識,糾正不良習(xí)慣,并強調(diào)學(xué)生完成計算后,應(yīng)該對答案和單位進(jìn)行檢查,從而杜絕不寫單位和寫錯單位的不良行為。
《多邊形的面積》的教學(xué)反思 5
(一)多機械記憶,缺靈動思考
應(yīng)該說,課堂上每一個多邊形面積公式的推導(dǎo)過程都是比較清晰的。在推導(dǎo)平行四邊形、梯形和三角形的面積公式時,學(xué)生的參與度是很高的。在課堂上也能從操作、比較到發(fā)現(xiàn)前后圖形之間的聯(lián)系,最后得出計算公式。但是,課后發(fā)現(xiàn),有的學(xué)生對計算公式記得很牢,對多邊形面積公式的推導(dǎo)過程卻表達(dá)不清。不能很清楚的知道平行四邊形的底和高與拼成的長方形的長和寬是對應(yīng)相等的。更有甚者,當(dāng)老師提問:“我們是怎樣推導(dǎo)出平行四邊形的面積公式的?”他回答道:“平行四邊形的面積等于底乘高!眴柌粚︻}!當(dāng)一個圖形里面出現(xiàn)幾條高和底時,有較多的學(xué)生不能正確的選擇數(shù)據(jù)進(jìn)行計算。有些學(xué)生甚至把題目中所有的數(shù)據(jù)都用上了。學(xué)生的反應(yīng),促使我對課堂教學(xué)進(jìn)行思考:排除一些學(xué)生的領(lǐng)悟能力不強這一客觀因素,作為老師,我有沒有引導(dǎo)學(xué)生把探索活動真正落到實處,有沒有關(guān)注學(xué)生在活動中是否有深刻的體會?而學(xué)生,對學(xué)習(xí)所表現(xiàn)出來的主動意識如何?是積極地自主探索和思考,還是墨守成規(guī)地接受書本知識呢?
反思課堂教學(xué),我覺得要在以下幾個方面進(jìn)行改進(jìn)。首先,要引導(dǎo)學(xué)生進(jìn)入主動學(xué)習(xí)的狀態(tài)。對于多邊形面積公式的推導(dǎo),能讓學(xué)生探索的,教師盡量少干預(yù),使學(xué)生通過動手剪拼、猜想面積公式、對比歸納轉(zhuǎn)化前后的情況,最后抽象出面積公式等實踐活動,理解相關(guān)面積公式的來龍去脈,并且產(chǎn)生深刻的體會;
其次,在教學(xué)的過程也要讓學(xué)生明白多邊形的面積計算公式要選擇對應(yīng)的底和高的,并且可以在教學(xué)的過程中適當(dāng)出一些有關(guān)這方面的練習(xí)。加深學(xué)生對公式的理解。
最后,學(xué)生能夠說出來的,作為老師盡量不要代替學(xué)生說出來。這是作為新老師的自己所沒有注意到的。老是在擔(dān)心學(xué)生學(xué)生,代替學(xué)生給說出來了。在以后的.教學(xué)中需要特別注意了。
。ǘ┟娣e單位進(jìn)率嚴(yán)重遺忘
有關(guān)面積單位的進(jìn)率是在學(xué)生三年級時教學(xué)的,現(xiàn)在五年級再用到,學(xué)生基本都忘了。作業(yè)中發(fā)現(xiàn)問題后,我在評講作業(yè)時,重新進(jìn)行了面積進(jìn)率的推導(dǎo),以其幫助學(xué)生回憶以前的知識。但是作業(yè)中的情況反應(yīng),仍有錯誤存在。因此,在平時的練習(xí)中,需要引導(dǎo)學(xué)生復(fù)習(xí)容易遺忘的知識點,達(dá)到常溫常新的目的,以減少遺忘。
。ㄈ⿲忣}不清,甚至不會審題
批改學(xué)生作業(yè)時,感受很深的一點是,很多學(xué)生都沒有仔細(xì)審題的習(xí)慣。在寫作業(yè)的時候常常不注意單位。遇到單位名稱不統(tǒng)一時,應(yīng)轉(zhuǎn)化后再計算,結(jié)果,很多學(xué)生拿起來就做,根本沒注意到這個問題。出現(xiàn)這樣的情況,我分析原因主要有兩點:一是學(xué)習(xí)習(xí)慣不好;二是學(xué)習(xí)態(tài)度不端正。要改變這樣的情況并非一朝一夕所能成的,教師應(yīng)有意識地培養(yǎng)學(xué)生認(rèn)真審題的意識,糾正不良習(xí)慣。
當(dāng)然,關(guān)鍵還是要讓學(xué)生發(fā)現(xiàn)自己存在的問題,主動產(chǎn)生糾正不良習(xí)慣的需求。如針對學(xué)生的作業(yè)錯誤,讓學(xué)生自己分析錯誤原因,想想解決辦法,使學(xué)生明白,做作業(yè)一定要靜下心來,從認(rèn)真讀題開始,不讀清楚題目不動筆,只有付出細(xì)心、耐心,才能把作業(yè)做好等。
總之,從這個單元的教學(xué)中,發(fā)現(xiàn)了很多值得反思的問題,有待于今后改進(jìn)。在以后的教學(xué)中,我還準(zhǔn)備把做好預(yù)習(xí)作為培養(yǎng)學(xué)生自主學(xué)習(xí)的一種策略,并且結(jié)合學(xué)生實際情況,安排“每日一題”的練習(xí),拓展書本知識,激發(fā)學(xué)生的興趣,培養(yǎng)學(xué)生的學(xué)習(xí)能力,以確保學(xué)生扎實、有效地學(xué)好知識
《多邊形的面積》的教學(xué)反思 6
1、平行四邊形面積計算,是學(xué)平面幾何初步知識的基礎(chǔ),要讓學(xué)生通過剪、拼等方法了解平行四邊形的底相當(dāng)于長方形的長,平行四邊形的高相當(dāng)于長方形的寬,所以其面積公式是底乘以高,還要讓學(xué)生理解高是底對應(yīng)的高,以免計算是發(fā)生錯誤。
2、三角形面積計算,是在平行四邊形面積計算的基礎(chǔ)上得出來的,教學(xué)時要讓學(xué)生知道三角形面積計算的推導(dǎo)過程,這樣,學(xué)生在今后的答題中不會把三角形面積計算與平行四邊形面積計算混淆。要讓學(xué)生知道兩個一樣的三角形可以拼成一個平行四邊形,因此,就可以得到:三角形的'面積等于底乘以高除以2。
3、梯形面積計算,也是在平行四邊形面積計算的基礎(chǔ)上得出來的,教學(xué)時也要讓學(xué)生同樣知道推導(dǎo)過程,可以嘗試讓學(xué)生自己推導(dǎo)。學(xué)生通過推導(dǎo)了解兩個一樣的梯形也可以拼成一個平行四邊形,梯形的上底和下底的和相當(dāng)于平行四邊形的底,梯形的高相當(dāng)于平行四邊形的高。因此,也可以得到:梯形的面積等于上底加下底的和乘以高除以2。
4、組合圖形的面積計算。讓學(xué)生先要觀察組合圖形由哪些基本圖形組合起來的,這樣可以讓學(xué)生把組合圖形分割成幾個基本圖形,計算每個基本圖形的面積,然后把每個基本圖形的面積相加。這種方法稱之為直接法。還要教給學(xué)生,如果計算每個基本圖形的面積,由于受到已知條件的限制,無法計算時,應(yīng)補組合圖形,使它變成一個大的基本圖形,然后通過計算大的基本圖形的面積減去補的小的基本圖形的面積,就可以得到組合圖形的面積。這種方法稱之為間接法,有時候也挺管用的。
總之,在計算圖形的面積時要根據(jù)具體的條件靈活運用,方法應(yīng)該是多種多樣的,哪種簡便就用哪一種,切忌一刀切,把方法教死了,這樣學(xué)生的思維被框死了,得不到鍛煉,不利于學(xué)生的發(fā)展。
《多邊形的面積》的教學(xué)反思 7
《多邊形的面積》這單元教學(xué)內(nèi)容包括四部分:平行四邊形的面積,三角形的面積,梯形的面積和組合圖形的面積。
教學(xué)時要注重讓學(xué)生經(jīng)歷面積公式的推導(dǎo)過程,讓學(xué)生親自經(jīng)歷思索、剪、拼、擺的操作活動。在思維訓(xùn)練上注重滲透“轉(zhuǎn)化”思想,引領(lǐng)學(xué)生運用“轉(zhuǎn)化”的方法,通過對比探究圖形與轉(zhuǎn)化后圖形間有什么關(guān)系,從而得出圖形面積計算的方法。
同時也要注重同一個圖形不同的推導(dǎo)方法,像梯形的面積計算公式,除了可以用兩個完全一樣的梯形拼成一個平行四邊形,其中一個梯形的面積是這個平行四邊形面積的.一半,我引導(dǎo)學(xué)生思索另外的推導(dǎo)方法。有的學(xué)生想出了可以沿對角線連接,把梯形分成兩個三角形,還有的同學(xué)想出了把梯形分成一個平行四邊形和一個三角形等。這樣多種方法的推導(dǎo),開闊了學(xué)生的思路,進(jìn)一步鞏固了“轉(zhuǎn)化”的思想。
對于組合圖形面積的計算,我則滲透了兩種思維:一是分割法,將組合圖形分成若干個已會計算面積的單一圖形,這幾個單一圖形面積總和便是這個組合圖形面積;二是添補法,根據(jù)圖形特征將這個組合圖形補成已學(xué)過的一個單一大圖形,用這個大圖形面積減去補充部分的圖形面積便是原組合圖形面積。
《多邊形的面積》的教學(xué)反思 8
在教授多邊形的面積時,我們應(yīng)該注重學(xué)生的實際操作經(jīng)驗。不僅要讓學(xué)生理解公式的推導(dǎo)過程,還要幫助學(xué)生理解公式的應(yīng)用及其意義。通過讓學(xué)生實際測量幾何圖形的長、寬、高等參數(shù),讓學(xué)生親身感受多邊形面積計算的實際意義,同時還可以幫助學(xué)生提高計算的準(zhǔn)確性。
此外,我們還應(yīng)該注重激發(fā)學(xué)生的興趣和創(chuàng)造力。在講解多邊形面積計算方法時,可以引入一些實際生活中的例子,讓學(xué)生了解多邊形面積計算的實際應(yīng)用。同時,鼓勵學(xué)生嘗試用不同的`方法計算多邊形面積,培養(yǎng)學(xué)生的創(chuàng)造力。
最后,我們也需要注意多邊形面積教學(xué)的差異性。不同年齡段的學(xué)生對于多邊形面積的理解和運用能力有所不同,因此在教學(xué)中需要根據(jù)不同的年齡段設(shè)置不同的難易程度和教學(xué)方式,讓學(xué)生更好地理解多邊形面積的計算方法。通過創(chuàng)新的教學(xué)方法和靈活多樣的教學(xué)方式,我們可以更好地幫助學(xué)生掌握多邊形面積的計算方法。
《多邊形的面積》的教學(xué)反思 9
本節(jié)課教學(xué)中,我采用通過“回憶整理——構(gòu)建網(wǎng)絡(luò)——綜合應(yīng)用——拓展提高”四個環(huán)節(jié)的教學(xué),讓學(xué)生通過回憶、觀察、思考、實踐等,在自主探索和合作交流中理清舊知識、練習(xí)鞏固并拓展提升,從而提高學(xué)生自主學(xué)習(xí)和解決問題的能力。
一、創(chuàng)設(shè)生活情境,探究“轉(zhuǎn)化”思想。
這一環(huán)節(jié),我充分利用現(xiàn)代信息技術(shù),把生活實景與虛擬動畫相結(jié)合,通過長方形、平行四邊形、三角形、梯形的動態(tài)畫面,以新穎的設(shè)計吸引學(xué)生的注意力,點燃學(xué)生的求知欲望。
二、通過綜合練習(xí),構(gòu)建知識網(wǎng)絡(luò)。
復(fù)習(xí)課的練習(xí)題在于精而不在于多,在于題目的思維含量,而不在于盲目地為練習(xí)而練習(xí)。根據(jù)小學(xué)生“形象思維活躍,好勝心強”這一特點,我在每一階段的練習(xí)都創(chuàng)設(shè)一個問題情境,而且把這三個情境以“游玩數(shù)學(xué)樂園”為主線貫穿起來,其目的.是:利用生動的故事情節(jié),讓枯燥的練習(xí)變得生動有趣,消減學(xué)生的疲憊心理,從而改善了復(fù)習(xí)課堂的結(jié)構(gòu);有效構(gòu)建知識網(wǎng)絡(luò)。
三、利用分享練習(xí),促進(jìn)思維拓展。
利用知識之間的緊密聯(lián)系,在學(xué)生對平面幾何圖形面積公式的網(wǎng)絡(luò)形成之后,及時抓住時機,引導(dǎo)學(xué)生進(jìn)一步觀察、想象、研討,進(jìn)一步理解各個圖形之間、面積公式之間的內(nèi)在聯(lián)系,進(jìn)一步激發(fā)學(xué)生的創(chuàng)新精神。
《多邊形的面積》的教學(xué)反思 10
《多邊形面積》這一單元教學(xué)上周都已經(jīng)結(jié)束并及時進(jìn)行了測評。
回顧這一單元的教學(xué),我個人比較注重學(xué)生參與知識的形成過程,即多邊形面積公式的推導(dǎo)過程。這一單元的多邊形主要是平行四邊形、三角形、梯形三個圖形。而每個圖形面積公式的推導(dǎo)都是在前面已學(xué)的圖形面積公式基礎(chǔ)上學(xué)習(xí)的。在教學(xué)時,我一般提前讓學(xué)生做好學(xué)具,如上平行四邊形時,就讓學(xué)生先剪好平行四邊形,再通過引導(dǎo)提問引發(fā)學(xué)生思考:能否將平行四邊形轉(zhuǎn)化成我們以前學(xué)過的某個圖形來研究呢?這之前,學(xué)生其實只學(xué)過長方形和正方形兩種面積的求法,所以學(xué)生可以很快猜到轉(zhuǎn)化成什么樣的圖形來研究,之后,我再放手讓學(xué)生去嘗試。當(dāng)學(xué)生通過小組或同桌的交流將平行四邊形轉(zhuǎn)化成長方形后,我再進(jìn)一步引導(dǎo)學(xué)生思考:現(xiàn)在的圖形與原來的圖形哪些地方有聯(lián)系呢?這樣我們可以得出平行四邊形的面積公式是怎樣的'?也許有人會覺得有必要這樣麻煩嗎。結(jié)論是這么簡單的,繞來繞去?墒沁@一推導(dǎo)過程其實對學(xué)生思維能力以及對數(shù)學(xué)這門學(xué)科趣味性和動手能力的培養(yǎng)是非常有價值,學(xué)生對公式的理解絕大部分都很透徹。后面三角形和梯形面積公式的推導(dǎo)過程都是按照這個模式來教學(xué)的。這多年來教這個內(nèi)容我都堅持這么做,可能上這樣的課我花費的時間要比別人多,但我覺得非常值。
但是經(jīng)過測評,我也發(fā)現(xiàn)這一單元中學(xué)生存在許多共性問題:一是單位換算問題。這一單元都是有關(guān)面積的問題,自然和面積單位分不開,面積單位是學(xué)生三、四年級學(xué)得內(nèi)容,時間長了,單位換算進(jìn)率和方法一部分學(xué)生出現(xiàn)了遺忘,還有一部分一點都不記得(當(dāng)初學(xué)時都糊里糊涂)。這學(xué)期我們重點是研究面積公式,所以我沒有投入精力給學(xué)生復(fù)習(xí),有大部分學(xué)生在這方面失分。另外解決問題時單位不統(tǒng)一學(xué)生沒有注意到,這些說明學(xué)生審題不夠細(xì)致所至。第二個問題是拼成的平行四邊形和原有的三角形之前的關(guān)系,特別是等底等高這個條件學(xué)生的理解還不夠,雖然我口頭有作過強調(diào),但這個知識點最初出現(xiàn)時,也就是在上三角形面積公式的推理時我沒有重點突出來強調(diào),導(dǎo)致學(xué)生理解得不夠深刻,所以后來再講效果也不太理想,這些以后再上時一定要注意。第三個問題是在組合圖形面積求法中。一是找不準(zhǔn)對應(yīng)的條件,如三角形要找出對應(yīng)的底和高,特別是一些復(fù)雜的圖形,學(xué)生有困難,這些在平時教學(xué)中要加強引導(dǎo)學(xué)生去找,去認(rèn)。二是運用分割法求組合圖形的面積后來要合在一起,添補法最后要將補起來的大圖形減掉小圖形面積,這些中偏下的學(xué)生容易遺忘,平時教學(xué)時要加以強調(diào)。
《多邊形的面積》的教學(xué)反思 11
整整兩個星期我們都在學(xué)習(xí)多邊形的面積計算,因為初次教五年級,所以每節(jié)課的備課時間總是花到上課時間的三到四倍,不過總算今天把這章內(nèi)容講完了,下面我來談?wù)勎业慕虒W(xué)感受。
小學(xué)階段的多邊形是指平行四邊形、三角形和梯形,它們的面積計算是以長方形、正方形的面積計算為基礎(chǔ),由于四年級時學(xué)生們通過剪一剪,畫一畫,分一分把長方形和正方形分成邊長是1厘米的小正方形推導(dǎo)出它們的面積公式,掌握了計算方法。因此五年級學(xué)習(xí)多邊形的面積計算時應(yīng)充分利用已具備的學(xué)習(xí)基礎(chǔ)。首先學(xué)習(xí)的是平行四邊形,在教學(xué)時我先出示一組面積相等的長方形和平行四邊形讓學(xué)生猜一猜它們的大小;再把它們放到方格紙上讓學(xué)生通過數(shù)方格得出它們的面積相等;然后教師提出問題:我們可不可以把平行四邊形通過分一分、拼一拼轉(zhuǎn)化成長方形呢?接下來讓學(xué)生們動手操作。有的同學(xué)沿平行四邊形的高把它分成兩個梯形;有的同學(xué)沿它的高把平行四邊形分成一個直角三角形和一個直角梯形;然后利用前面學(xué)習(xí)的平移知識轉(zhuǎn)化成一個長方形,從而推導(dǎo)出平行四邊形的面積公式。
教學(xué)三角形的面積計算時,師問:我們怎樣應(yīng)用所學(xué)的.方法探究三角形的面積計算公式呢?于是學(xué)生們?nèi)齻一組,四個一堆就開始討論、操作。有的剪了兩個完全一樣的直角三角形拼成一個長方形;有的剪了兩個完全一樣的等腰直角三角形拼成了一個正方形;有的剪了兩個銳角三角形拼成了一個平行四邊形;還有的同學(xué)剪了一個大三角形,過三角形的一個頂點作一條高,再過高的中點作一條和底邊平行的平行線,然后沿平行線剪開,把大三角形分成一個小三角形和一個梯形,把小三角形旋轉(zhuǎn)后與梯形拼成一格平行四邊形。最后他們都利用自己拼的圖形推導(dǎo)出了三角形的面積計算公式。
在學(xué)習(xí)梯形面積計算公式的推導(dǎo)時,我更加相信學(xué)生們的能力了,首先從學(xué)生的生活實際出發(fā),讓學(xué)生知曉生活中很多時候都要計算梯形的面積,從而引發(fā)學(xué)生探究梯形面積的學(xué)習(xí)欲望,讓他們充分調(diào)動自己已有的知識經(jīng)驗,放手讓學(xué)生把梯形轉(zhuǎn)化成前面學(xué)過的會計算面積的圖形,自主探究出了很多種推導(dǎo)面積公式的方法,培養(yǎng)了他們的創(chuàng)新思維能力和自主學(xué)習(xí)能力。
在教學(xué)多邊形面積公式的推導(dǎo)時,我注重把握以下幾點:
1、充分應(yīng)用前面掌握的學(xué)習(xí)策略來學(xué)習(xí)新知識。
2、重視培養(yǎng)學(xué)生的動手能力。
3、重視發(fā)展學(xué)生的個性,鼓勵學(xué)生拼出多種多樣的圖形,讓學(xué)生選擇自己喜歡的圖形來推導(dǎo)面積計算公式。
總之,數(shù)學(xué)教學(xué)不僅是一門科學(xué),而且是一門藝術(shù)。為了讓學(xué)生在愉快的氣氛中最大限度的調(diào)動他們的積極性和主動性,使他們輕松愉快的學(xué)習(xí),我們更應(yīng)該備好每一堂課。
《多邊形的面積》的教學(xué)反思 12
一直以來,復(fù)習(xí)課都以理練結(jié)合的課堂模式為主,復(fù)習(xí)時需要既全面又突出重點,由于時間過長,容易使學(xué)生厭煩。創(chuàng)新教學(xué)模式,不斷使學(xué)生有新鮮的感覺,更能吸引學(xué)生,提高復(fù)習(xí)效率。復(fù)習(xí)時我從以下幾個方面做起。
一、目標(biāo)定位。學(xué)生在新知、單元復(fù)習(xí)后進(jìn)入了總復(fù)習(xí)階段。這節(jié)課我主要是對這一單元進(jìn)一步理解、記憶、總結(jié),融會貫通,完善學(xué)生的認(rèn)知結(jié)構(gòu)。
二、知識梳理。梳理就是引導(dǎo)學(xué)生主動構(gòu)建知識網(wǎng)絡(luò),復(fù)習(xí)不是把前面知識進(jìn)行聯(lián)系的過程,也不是知識的再現(xiàn),而是獲得整理知識建構(gòu)知識網(wǎng)絡(luò)的過程。課前我通過了解發(fā)現(xiàn),學(xué)生對公式的應(yīng)用比較熟練,但對公式的推導(dǎo)過程有些遺忘。所以在設(shè)計中,我通過動手操作讓學(xué)生回憶五種平面圖形的面積計算公式及他們的推導(dǎo)過程,喚醒學(xué)生的記憶,為幫助學(xué)生建立概念圖提供了必要的準(zhǔn)備。為了幫助學(xué)生從整體上把握知識內(nèi)容,在整體中了解各部分知識的生成和發(fā)展,以及它們之間的聯(lián)系,能夠很好的幫助學(xué)生重組知識結(jié)構(gòu),我通過知識網(wǎng)絡(luò)結(jié)構(gòu)圖,不但把知識系統(tǒng)化的歸納整理,還將轉(zhuǎn)化思想對今后探究新圖形面積時的作用進(jìn)行滲透。
三、應(yīng)用。引導(dǎo)學(xué)生用所學(xué)的知識解決問題,是復(fù)習(xí)課的目的之一。通過應(yīng)用幫助學(xué)生形成對知識的更深層次的理解,提高學(xué)生磷火運用知識解決問題的能力,我的復(fù)習(xí)課應(yīng)用是分層進(jìn)行,第一層次是簡單運用,夯實基礎(chǔ)。第二層次是綜合運用,解決問題。讓學(xué)生再練習(xí)中進(jìn)一步形成知識網(wǎng)絡(luò)。在這里,為了激發(fā)學(xué)生的興趣,我設(shè)計了開辟農(nóng)場菜地這一熱門話題,將本單元主要題型融入其中,一題多變,整節(jié)課提供了一個接一個的.情景,讓學(xué)生時時有新奇,時時有興趣。
四、拓展。復(fù)習(xí)不能僅僅停留在已有的基礎(chǔ)上,應(yīng)該在基本知識技能方面得到拓展讓學(xué)生在復(fù)習(xí)舊知的同時有新的收獲,同時也是對學(xué)生的知識進(jìn)行查缺補漏。
但在教學(xué)中,我對時間的把握不夠準(zhǔn)確,導(dǎo)致拖堂,也提醒自己,在今后的教學(xué)中,要考慮周全。
《多邊形的面積》的教學(xué)反思 13
本單元教學(xué)中我本著:“以學(xué)生發(fā)展為本,以活動為主線,以創(chuàng)新為主導(dǎo)”的思想。讓學(xué)生親身主動地參與學(xué)習(xí)過程,經(jīng)歷學(xué)習(xí)中的問題的提出,探索解決問題的方法和途徑,在經(jīng)歷中真正理解和掌握知識,體驗成功的快樂,同時學(xué)生的自主學(xué)習(xí)能力、創(chuàng)新能力得到了培養(yǎng)。在教學(xué)策略上,把多邊形面積公式的推導(dǎo)化為學(xué)生剪一剪、拼一拼、說一說的活動,通過小組活動、操作實踐等手段借助多媒體的演示,幫助學(xué)生理解知識點,使抽象的知識變得直觀形象。
平行四邊形面積計算,是學(xué)習(xí)平面幾何初步知識的基礎(chǔ),尤其是平行四邊形面積公式的推倒,蘊涵著轉(zhuǎn)化的'數(shù)學(xué)思想,因此,在本單元教學(xué)中,我把平行四邊形面積計算公式的推導(dǎo)過程作為教學(xué)的重中之重,課內(nèi)給學(xué)生充足的時間進(jìn)行操作和交流,在學(xué)生自主探究的基礎(chǔ)上推導(dǎo)出計算公式。使學(xué)生在學(xué)習(xí)推導(dǎo)三角形、梯形面積公式時已成順?biāo)浦壑畡,輕松、愉悅,學(xué)生在模仿、遷移、推導(dǎo)的過程中,學(xué)會學(xué)習(xí)、學(xué)會思考,真正成為學(xué)習(xí)的主人。
《多邊形的面積》的教學(xué)反思 14
在多邊形的面積計算教學(xué)中,通過小組活動、操作實踐等手段,幫助學(xué)生理解知識點,使抽象的知識變得直觀形象,給學(xué)生一個創(chuàng)新的空間。
在計算教學(xué)中注重引導(dǎo)學(xué)生的自主學(xué)習(xí),把學(xué)習(xí)的權(quán)利交給學(xué)生,利用小組合作學(xué)習(xí),便于培養(yǎng)學(xué)生的參與合作精神。教師會積極參與小組的討論,引導(dǎo)組織好學(xué)生的學(xué)習(xí)活動,真正把課堂還給學(xué)生,使學(xué)生成為課堂的主人。
學(xué)生在練習(xí)時發(fā)現(xiàn)學(xué)生單位進(jìn)率嚴(yán)重遺忘,作業(yè)中發(fā)現(xiàn)問題后,我在評講作業(yè)時,重新進(jìn)行了面積進(jìn)率的推導(dǎo),以其幫助學(xué)生回憶以前的知識,利用一個邊長1米的正方形,讓學(xué)生分別用米作單位和用分米作單位計算面積,再現(xiàn)了面積單位進(jìn)率的推導(dǎo)過程,幫助學(xué)生找回記憶中的知識。針對這種情況,我有意識地在平時的練習(xí)中,引導(dǎo)學(xué)生復(fù)習(xí)容易遺忘的知識點。在教學(xué)實踐過程中,教師只有經(jīng)常反思學(xué)生在學(xué)習(xí)過程中出現(xiàn)的種種問題,分析其成因,才能幫助教師不斷改進(jìn)教學(xué)手段,以增強教學(xué)效果。應(yīng)該說,課堂上每一個多邊形面積公式的推導(dǎo)過程都是比較清晰的。在推導(dǎo)平行四邊形、梯形和三角形的面積公式時,學(xué)生的參與度是很高的學(xué)生能夠說出來的,作為老師盡量不要代替學(xué)生說出來。在課堂上也能從操作、比較到發(fā)現(xiàn)前后圖形之間的聯(lián)系,最后得出計算公式。但是,課后發(fā)現(xiàn),有的.學(xué)生對計算公式記得很牢,對多邊形面積公式的推導(dǎo)過程卻表達(dá)不清。對于多邊形面積公式的推導(dǎo),能讓學(xué)生探索的,教師盡量少干預(yù),使學(xué)生通過動手剪拼、猜想面積公式、對比歸納轉(zhuǎn)化前后的情況,最后抽象出面積公式。
《多邊形的面積》的教學(xué)反思 15
第五單元是《多邊形的面積》,學(xué)生學(xué)起來饒有興致。原因就是他們可以不必正襟危坐,完全可以暢所欲言,此時,他們的大腦好像被激活了一樣,雙手也變得那般靈活。整節(jié)課充滿著無限生機。這樣的課就這樣持續(xù)著,包括學(xué)年的“一課三講”,包括“區(qū)域教研”。學(xué)生喜歡上這樣的課,我想可能有以下幾個原因:
1、學(xué)生真正成了課堂的主人
蘇霍姆林斯基說過:“在人的心靈深處都有一種根深蒂固的需要,就是希望感到自己是一個發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈!睙o論是平行四邊形的面積還是三角形的面積教師都引導(dǎo)學(xué)生自主探究,鼓勵學(xué)生大膽猜想。學(xué)生本來就很愛動手實踐,當(dāng)他們的主觀能動性被充分調(diào)動,所發(fā)揮出來的潛力是無法估量的。因為老師為學(xué)生創(chuàng)設(shè)了一種民主、寬松、和諧的學(xué)習(xí)氛圍,給了學(xué)生充分的思考問題的`時間與空間,所以在推導(dǎo)平行四邊形面積時,有很多同學(xué)都想出了三四種方法(剪拼法、拼組法、折疊法等)轉(zhuǎn)化成以前學(xué)習(xí)過的圖形----長方形,并能夠加以有效的驗證。在這樣的課堂教學(xué)中教師始終是學(xué)生學(xué)習(xí)活動的組織者、指導(dǎo)者、合作者,在這樣的課堂學(xué)習(xí)中學(xué)生樂想、善思、敢說,他們可以自由地思考、猜想、實踐、驗證……
2、重視學(xué)生的提問
問題是數(shù)學(xué)的心臟,能給學(xué)生的思維以方向和動力,不善于發(fā)現(xiàn)、提出和解決問題的學(xué)生是不可能具有創(chuàng)新精神的。聽了這幾節(jié)課,教師都精心設(shè)計了具有探索性的問題,比如:“平行四邊形面積該怎樣求?”“該怎樣來驗證自己的猜想呢?”“怎樣用數(shù)方格來數(shù)出平行四邊形的面積?”“怎樣用轉(zhuǎn)化的方法把平行四邊形轉(zhuǎn)化成長方形呢?”……這些問題在學(xué)生的頭腦中自然產(chǎn)生,學(xué)生在獨立思考、相互交流、相互評價的過程中感受到自己是學(xué)習(xí)的主人,滿足了學(xué)生自尊、交流和成功的心理需求,從而以積極的姿態(tài)投入到數(shù)學(xué)學(xué)習(xí)之中。因此學(xué)習(xí)效果也很顯著。
《多邊形的面積》的教學(xué)反思 16
本節(jié)課對多邊形面積計算的知識點進(jìn)行了全面的整理和復(fù)習(xí)。把長方形,平行四邊形,三角形,梯形的面積計算緊密聯(lián)系起來。著重解決組合圖形的面積計算。在整個教學(xué)過程中,我始終貫徹了以下幾點:
一、體現(xiàn)數(shù)學(xué)與實際生活的聯(lián)系,將知識應(yīng)用于生活實際。
新課改強調(diào)“要使學(xué)生體會數(shù)學(xué)與自然及人類社會的密切聯(lián)系,了解數(shù)學(xué)的價值,增強應(yīng)用數(shù)學(xué)的意識!痹诒竟(jié)課中,我時刻提醒學(xué)生注意數(shù)學(xué)知識與日常生活的聯(lián)系,激發(fā)學(xué)生運用數(shù)學(xué)知識探索和解決實際問題的強烈欲望,既顯得親切自然,也為整理復(fù)習(xí)的開展創(chuàng)設(shè)新的情境。
二、加強合作交流的意識,在合作中學(xué)習(xí),在交流中體驗快樂。
在課程設(shè)計中,充分發(fā)揮學(xué)生的主動性,創(chuàng)造盡可能多的機會讓學(xué)生展示自己學(xué)習(xí)的收獲和聰明才智。既可以是獨立的講解,也可以是同伴的合作,或者是互相的'提問,答辯,質(zhì)疑。所以,我安排后進(jìn)生,交流基礎(chǔ)知識的回顧;讓中等生進(jìn)行復(fù)習(xí)整理提高;到實踐與應(yīng)用時,充分發(fā)揮優(yōu)等生的優(yōu)勢,辨論用多種方法合理解題。整個過程中,始終讓學(xué)生通過多種形式的交流,來揭示知識之間的聯(lián)系,認(rèn)識轉(zhuǎn)化遷移等數(shù)學(xué)思想。
三、突破難點重點,完成單元既定目標(biāo)。
組合圖形面積計算是長方形、正方形,平行四邊形,三角形與梯形的面積計算知識的發(fā)展,也是日常生活中經(jīng)常需要解決的問題。在教學(xué)過程中,讓學(xué)生自主解決組合圖形面積計算的問題。再讓學(xué)生動手操作,自主探究如何使用組合圖形,轉(zhuǎn)化為己學(xué)過的基本圖形的過程中,首先讓學(xué)生把這個圖形,分解成我們已學(xué)過的圖形,通過畫輔助線表示出來,如果認(rèn)為有幾種分法,就分別在圖形上表示出來。在這個環(huán)節(jié)中,學(xué)生基本上都能夠運用分割法或添補法把組合圖形轉(zhuǎn)化為所學(xué)過的基本圖形。但在展示學(xué)生分法時,我忘記了將在巡堂時發(fā)現(xiàn)的個別學(xué)生,由于找不到相關(guān)條件,無法計算圖形面積也進(jìn)行展示和集體討論,這是不足的地方。學(xué)生匯報了不同的分法后,就讓他們用自己喜歡的方法進(jìn)行圖形的面積計算,然后讓學(xué)生展示匯報,從中小結(jié),用哪種分割法或添補法計算這個組合圖形的面積更簡單。這個環(huán)節(jié)花的時間比較多,跟前面的環(huán)節(jié)類似,結(jié)果導(dǎo)致后面的時間很緊,因此在今后教學(xué)中應(yīng)多注意教學(xué)環(huán)節(jié)之間的內(nèi)容設(shè)計,把握重點,盡量緊湊,及時發(fā)現(xiàn)問題和做出反饋。
當(dāng)然,課堂上還存在一些不足。例如,對于有些學(xué)生表現(xiàn)好,能夠正確地進(jìn)行評價。而對于有些學(xué)生的亮點沒有及時發(fā)現(xiàn),評價不到位。且課堂紀(jì)律的組織,也有些欠缺。這些有待于自己在今后教學(xué)中,不斷學(xué)習(xí)和探索。我深知:教師應(yīng)該是用教材,而不是學(xué)教材,應(yīng)引導(dǎo)學(xué)生走出課本,激活他們的創(chuàng)造性思維,使學(xué)生向多元化發(fā)展,讓學(xué)生真正學(xué)到有價值的數(shù)學(xué),獲得必需的數(shù)學(xué)。
【《多邊形的面積》的教學(xué)反思】相關(guān)文章:
《多邊形的面積》教學(xué)反思03-08
多邊形面積教學(xué)反思04-14
多邊形的面積教學(xué)反思04-14
多邊形面積教學(xué)反思04-14
多邊形的面積教學(xué)反思04-14
關(guān)于《多邊形的面積》的教學(xué)反思03-07
《多邊形面積計算》教學(xué)反思11-30