中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

《正弦定理》教學(xué)反思

時(shí)間:2024-04-11 14:10:06 教學(xué)反思 我要投稿
  • 相關(guān)推薦

《正弦定理》教學(xué)反思(精選10篇)

  在日常生活中,我們的工作之一就是教學(xué),反思指回頭、反過來思考的意思。反思應(yīng)該怎么寫才好呢?下面是小編收集整理的《正弦定理》教學(xué)反思,歡迎閱讀與收藏。

《正弦定理》教學(xué)反思(精選10篇)

  《正弦定理》教學(xué)反思 1

  本節(jié)課是“正弦定理”教學(xué)的第二節(jié)課,其主要任務(wù)是通過對(duì)正弦定理的進(jìn)一步理解,明確它在“已知三角形的兩邊及一邊所對(duì)的角解三角形”方面的應(yīng)用和運(yùn)用正弦定理的變式來求三角形中的角和判斷三角形的形狀。

  在知識(shí)目標(biāo)方面:通過創(chuàng)設(shè)適宜的數(shù)學(xué)情境,引導(dǎo)鼓勵(lì)學(xué)生大膽地提出問題、引導(dǎo)學(xué)生對(duì)所提的問題進(jìn)行分析、整理,篩選出有價(jià)值的問題,注意啟發(fā)學(xué)生揭示問題的數(shù)學(xué)實(shí)質(zhì),將提問推向深入。通過問題的提出、解題方法的探索、到問題的解決、方法的總結(jié)、及練習(xí)題中方法的應(yīng)用,都能緊抓公式及公式的變式,運(yùn)用從特殊到一般、再從一般到特殊的思想方法達(dá)成知識(shí)目標(biāo)。通過練習(xí)及六個(gè)變式問題調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,進(jìn)而采用“正弦定理”、“大邊對(duì)大角”、“三角形內(nèi)角和定理”、“數(shù)形結(jié)合”等知識(shí)與方法有效突破本節(jié)課的'教學(xué)難點(diǎn)。使學(xué)生明白這一類數(shù)學(xué)問題該怎樣解,讓學(xué)生做到“學(xué)會(huì)數(shù)學(xué),會(huì)學(xué)數(shù)學(xué)”

  在能力目標(biāo)方面:通過例題、練習(xí)及六個(gè)變式問題,培養(yǎng)學(xué)生觀察、歸納、概括新知識(shí)的能力; 通過“故意出錯(cuò)”,讓學(xué)生“質(zhì)疑”、“找錯(cuò)”、“改錯(cuò)”,從而使學(xué)生的思維具有批判性,優(yōu)化他們的思維品質(zhì); 通過課后練習(xí)及課后思考,進(jìn)一步培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí),解決數(shù)學(xué)問題的能力。

  在情感態(tài)度與價(jià)值觀方面:本節(jié)課也很注重對(duì)學(xué)生非智力因素的培養(yǎng),注重情感交流與情感的建立與培養(yǎng)。并在教學(xué)過程中做到:與學(xué)生真誠相處、平等交流;依據(jù)自己的個(gè)人特點(diǎn)采取適當(dāng)?shù)姆椒ㄅc技巧,注重充分發(fā)揮教師的個(gè)人人格魅力,而非千篇一律的“柔聲細(xì)語”;能借助信息技術(shù)及其它手段,營造一種氛圍,一種情境,通過“課前音樂背景”的設(shè)置,“課堂上的掌聲鼓勵(lì)”“形體語言與語言藝術(shù)”的運(yùn)用等,力爭營造一種愉快、輕松的氛圍,創(chuàng)建一個(gè)有助于師生,生生思維交流的“情感場(chǎng)”,使數(shù)學(xué)教學(xué)更具有生命力,感染力。使學(xué)生在感悟數(shù)學(xué)的過程中感受數(shù)學(xué)的魅力,體驗(yàn)數(shù)學(xué)產(chǎn)生的美感與幸福感。

  通過這節(jié)課的學(xué)習(xí),不僅復(fù)習(xí)鞏固了舊知識(shí),使學(xué)生掌握了新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),而且培養(yǎng)了學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力。

  《正弦定理》教學(xué)反思 2

  在備這節(jié)課時(shí),我有兩個(gè)問題需要精心設(shè)計(jì)。一個(gè)是問題的引入,一個(gè)是定理的證明。本節(jié)課以學(xué)生為主體,“問題提出---問題解決為主線”, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

  上完這節(jié)課,讓我有這樣一些體會(huì):

  1.問題是思維的起點(diǎn),是學(xué)生主動(dòng)探索的動(dòng)力。本節(jié)課在教學(xué)過程中充分發(fā)揮學(xué)生主體作用,始終以問題的形式引導(dǎo)學(xué)生主動(dòng)參與,在師生互動(dòng)、生生互動(dòng)中讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程,做到了把握重點(diǎn)、突破難點(diǎn)。

  2.在教學(xué)中恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段。本節(jié)課利用《幾何畫板》探究比值 , 的值,由動(dòng)到靜,取得了很好的效果!

  3.做練習(xí)時(shí),有學(xué)生提出解三角形時(shí),正弦定理可以解決哪些問題?學(xué)生有這樣歸納的意識(shí),在課堂及時(shí)肯定,表揚(yáng),并在課后刻意留一道思考題,任務(wù)后延,自主探究,使學(xué)生發(fā)現(xiàn)用正弦定理解決兩邊一對(duì)角問題時(shí)可能會(huì)出現(xiàn)兩解,一解或無解的情況,那么自然過渡到下一節(jié)內(nèi)容,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)問題。

  4.正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等,本節(jié)課將斜三角形的邊角關(guān)系轉(zhuǎn)化為直角三角形的邊角關(guān)系導(dǎo)出正弦定理,采用轉(zhuǎn)化,分類討論的的數(shù)學(xué)思想,是學(xué)生們易于接受的一種證明方法。但在具體的推導(dǎo)時(shí),發(fā)現(xiàn)學(xué)生可以想到對(duì)三角形進(jìn)行分類討論,并將斜三角形轉(zhuǎn)化成直角三角形證明,但在轉(zhuǎn)化時(shí),不僅可以通過作高,還可以有別的方法,比如外接圓法。但在證明時(shí)只用了作高這種方法,這種思路雖然簡單,但不是從學(xué)生的頭腦中產(chǎn)生的,而是教師強(qiáng)加給學(xué)生的,只注意教學(xué)的`結(jié)果而沒有注意學(xué)生思維過程的發(fā)展,思路再好對(duì)學(xué)生的也沒有指導(dǎo)意義。所以今后要注意尊重學(xué)生思維的發(fā)展的過程,這是一種理念,也是一種能力。 上好一堂課不僅有好的教學(xué)設(shè)計(jì),還應(yīng)有靈活應(yīng)變的能力,要尊重學(xué)生的思路,善于發(fā)現(xiàn)學(xué)生的閃光點(diǎn),并及時(shí)引導(dǎo),才不會(huì)為了進(jìn)度而導(dǎo)下,將學(xué)生強(qiáng)拉進(jìn)自己事先設(shè)計(jì)好的軌道。

  5.在教學(xué)設(shè)計(jì)和課堂教學(xué)中應(yīng)充分了解學(xué)生、研究學(xué)生,備課不僅是備知識(shí),更重要的是備學(xué)生。作為教師只有真正樹立以學(xué)生的發(fā)展為本的教學(xué)理念,才能尊重學(xué)生思維過程的發(fā)生、發(fā)展,才能從學(xué)生的知識(shí)水平和理解能力出發(fā),創(chuàng)設(shè)合理的教學(xué)情境,才能為學(xué)生提供充分的數(shù)學(xué)活動(dòng)和交流的機(jī)會(huì),使學(xué)生從單純的知識(shí)接受者轉(zhuǎn)變?yōu)閿?shù)學(xué)學(xué)習(xí)的主人。

  《正弦定理》教學(xué)反思 3

  在備課中有兩個(gè)問題需要精心設(shè)計(jì).一個(gè)是問題的引入,一個(gè)是定理的證明

  課本通過一個(gè)實(shí)際問題引入,但沒有深入展開下去;對(duì)正弦定理的證明

  是利用三角形的面積公式導(dǎo)出的,但不夠自然.為了處理好這兩個(gè)問題,我首先確定了一個(gè)基本原則,就是充分利用課本素材,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計(jì).具體的思路就是從解決課本的實(shí)際問題入手展開,將問題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理.

  1.本節(jié)課雖然在教師的引導(dǎo)下,完成了教學(xué)任務(wù),但是一味地為了完成任務(wù)而忽略了對(duì)學(xué)生正確思維的展開和引導(dǎo).上好一堂課不僅有好的.教學(xué)設(shè)計(jì),還應(yīng)有靈活應(yīng)變的能力,只有從思想上真正轉(zhuǎn)變?yōu)橐詫W(xué)生的發(fā)展為根本,才不會(huì)為了進(jìn)度而將學(xué)生強(qiáng)拉進(jìn)自己事先設(shè)計(jì)好的軌道.正是教學(xué)有法,又無定法.

  2.問題是思維的起點(diǎn),是學(xué)生主動(dòng)探索的動(dòng)力.本節(jié)課通過對(duì)課本引例的解決、展開,引導(dǎo)學(xué)生在問題解決中發(fā)現(xiàn)結(jié)論.符合認(rèn)識(shí)問題的思維規(guī)律,對(duì)激發(fā)學(xué)生探究問題興趣是非常有益的.

  3.正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等,本節(jié)課將斜三角形的邊角關(guān)系轉(zhuǎn)化為直角三角形的邊角關(guān)系導(dǎo)出正弦定理,從學(xué)生的“最近發(fā)展區(qū)”入手去設(shè)計(jì)問題,思路自然,是學(xué)生們易于接受的一種證明方法.但在具體的推導(dǎo)時(shí),要注意尊重學(xué)生思維的發(fā)展的過程,這是一種理念,也是一種能力。

  4.在教學(xué)中恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段,本節(jié)課利用《幾何畫板》探究比值的值,由動(dòng)到靜,取得了很好的效果.而課下學(xué)生問,∠a是鈍角的情形怎么證明呢?于是我將這一問題給學(xué)生留作思考題,即“你能否將∠a是鈍角的情形轉(zhuǎn)化為銳角的情形呢?”

  在教學(xué)設(shè)計(jì)和課堂教學(xué)中應(yīng)充分了解學(xué)生、研究學(xué)生,備課不僅是備知識(shí),更重要的是備學(xué)生.作為教師只有真正樹立以學(xué)生的發(fā)展為本的教學(xué)理念,才能尊重學(xué)生思維過程的發(fā)生、發(fā)展,才能從學(xué)生的生活經(jīng)驗(yàn)和已有知識(shí)背景出發(fā),創(chuàng)設(shè)合理的教學(xué)情境,才能為學(xué)生提供充分的數(shù)學(xué)活動(dòng)和交流的機(jī)會(huì),使學(xué)生從單純的知識(shí)接受者轉(zhuǎn)變?yōu)閿?shù)學(xué)學(xué)習(xí)的主人.

  《正弦定理》教學(xué)反思 4

  本節(jié)是“正弦定理”定理的第一節(jié),設(shè)計(jì)從直角三角形出發(fā),通過學(xué)生的探究活動(dòng),引導(dǎo)學(xué)生提出問題,通過證明、歸納、應(yīng)用為線索,把問題展現(xiàn)給學(xué)生,從而引入并證明正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的知識(shí),有效提高學(xué)生解決問題的能力。

  本節(jié)設(shè)計(jì)注重知識(shí)建構(gòu)過程和學(xué)生主題地位的體現(xiàn),從學(xué)生熟悉的直角三角形邊角關(guān)系,到銳角三角形、鈍角三角形的`討論,滲透了分類討論思想和數(shù)形結(jié)合思想。

  在正弦定理的推導(dǎo)過程中,引導(dǎo)學(xué)生采用不同方法證明正弦定理,學(xué)生比較容易聯(lián)想到利用三角函數(shù)定義或三角形面積進(jìn)行論證,使學(xué)生不斷發(fā)現(xiàn)規(guī)律,得出在斜三角形中邊與角的關(guān)系,多種方法的證明有利于學(xué)生思維能力的拓展,有助于加強(qiáng)學(xué)生解題的靈活度。

  由于教學(xué)時(shí)間的超時(shí),說明教學(xué)存在對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,教學(xué)過程中時(shí)間的分配不夠適當(dāng),教學(xué)語言不夠精簡,今后一定避免此類問題,爭取更大的進(jìn)步。

  《正弦定理》教學(xué)反思 5

  正余弦定理與三角形內(nèi)角和定理,面積公式的綜合運(yùn)用對(duì)學(xué)生來說也是難點(diǎn),尤其是根據(jù)條件判斷三角形形狀。此處列舉例2讓學(xué)生進(jìn)一步體會(huì)如何選擇定理進(jìn)行邊角互化。

  1、解三角形時(shí),找三邊一角之間的關(guān)系常用余弦定理,找兩邊兩角之間的關(guān)系常用正弦定理

  2、根據(jù)所給條件確定三角形的形狀,主要有兩種途徑:①化邊為角;②化角為邊。并常用正余弦定理實(shí)施邊角轉(zhuǎn)化。

  3、用正余弦定理解三角形問題可適當(dāng)應(yīng)用向量的數(shù)量積求三角形內(nèi)角與應(yīng)用向量的模求三角形的邊長。

  4、應(yīng)用問題可利用圖形將題意理解清楚,然后用數(shù)學(xué)模型解決問題。

  5、正余弦定理與三角函數(shù)、向量、不等式等知識(shí)相結(jié)合,綜合運(yùn)用解決實(shí)際問題。

  本課是在學(xué)生學(xué)習(xí)了三角函數(shù)、平面幾何、平面向量、正弦和余弦定理的基礎(chǔ)上而設(shè)置的復(fù)習(xí)內(nèi)容,因此本課的教學(xué)有較多的處理辦法。從解三角形的問題出發(fā),對(duì)學(xué)過的知識(shí)進(jìn)行分類,采用的例題是精心準(zhǔn)備的,講解也是至關(guān)重要的。一開始的'復(fù)習(xí)回顧學(xué)生能夠很好的回答正弦定理和余弦定理的基本內(nèi)容,但對(duì)于兩個(gè)定理的變形公式不知,也就是說對(duì)于公式的應(yīng)用不熟練。設(shè)計(jì)中的自主檢測(cè)幫助學(xué)生回顧記憶公式,對(duì)學(xué)生更有針對(duì)性的進(jìn)行了訓(xùn)練。學(xué)生還是出現(xiàn)了問題,在遇到第一個(gè)正弦方程時(shí),是只有一組解還是有兩組解,這是難點(diǎn)。例1、例2是常規(guī)題,讓學(xué)生應(yīng)用數(shù)學(xué)知識(shí)求解問題,可用正弦定理,也可用余弦定理,幫助學(xué)生鞏固正弦定理、余弦定理知識(shí)。

  《正弦定理》教學(xué)反思 6

  今天在高一(5)班上了余弦定理的內(nèi)容,加上前兩天的正弦定理,《正弦定理、余弦定理》算是告一段落,通過這幾天在課堂上和學(xué)生的“交鋒”,課后自己經(jīng)過了認(rèn)真的反思,對(duì)這一塊高考的重點(diǎn)內(nèi)容有了新的認(rèn)識(shí)。

  三角形中的幾何計(jì)算的主要內(nèi)容是利用正弦定理和余弦定理解斜三角形,是對(duì)正、余弦定理的拓展和強(qiáng)化,可看作前兩節(jié)課的習(xí)題課。本節(jié)課的重點(diǎn)是運(yùn)用正弦定理和余弦定理處理三角形中的計(jì)算問題,難點(diǎn)是如何在理解題意的基礎(chǔ)上將實(shí)際問題數(shù)學(xué)化。在求解問題時(shí),首先要確定與未知量之間相關(guān)聯(lián)的量,把所求的問題轉(zhuǎn)化為由已知條件可直接求解的量上來。為了突出重點(diǎn),突破難點(diǎn),結(jié)合學(xué)生的學(xué)習(xí)情況,我是從這幾方面體現(xiàn)的:

  我在這節(jié)課里所選擇的例題就考常出現(xiàn)的三種題型:解三形、判斷三角形形狀及三角形面積,題目都是很有代表性的,并在學(xué)生練習(xí)過程中將例題變形讓學(xué)生能觀察到此類題的考點(diǎn)及易錯(cuò)點(diǎn)。這節(jié)課我試圖根據(jù)新課標(biāo)的精神去設(shè)計(jì),去進(jìn)行教學(xué),試圖以“問題”貫穿我的整個(gè)教學(xué)過程,努力改進(jìn)自己的教學(xué)方法,讓學(xué)生的接受式學(xué)習(xí)中融入問題解決的'成份,企圖把講授式與活動(dòng)式教學(xué)有機(jī)整合,希望在學(xué)生鞏固基礎(chǔ)知識(shí)的同時(shí),能夠發(fā)展學(xué)生的創(chuàng)新精神和實(shí)踐能力,但我覺得自己還有如下幾點(diǎn)做得還不夠:

  1、課堂容量中體來說比較適中,但由于學(xué)生的整體能力比較差,沒有給出一定的時(shí)間讓同學(xué)們進(jìn)行討論,把老師自己認(rèn)為難的,學(xué)生不易懂得直接讓優(yōu)等生進(jìn)行展示,學(xué)生缺乏對(duì)這幾個(gè)題目事先認(rèn)識(shí),沒有引起學(xué)生的共同參與,效果上有一定的折扣;

  2、沒有充分挖掘?qū)W生探索解題思路,對(duì)學(xué)生的解題思維只給出了點(diǎn)評(píng),而沒有引起學(xué)生對(duì)這一問題的深入研究,例如對(duì)于運(yùn)用正弦定理求三角形的角的時(shí)候,出了給學(xué)生們常規(guī)方法外,還應(yīng)給出老教材中關(guān)于三角形個(gè)數(shù)的方法,致少應(yīng)介紹一下;

  3、沒有很好對(duì)學(xué)生的解題過程和方法進(jìn)行點(diǎn)評(píng),沒起到“畫龍點(diǎn)睛”的作用。

  4、第五個(gè)學(xué)生的展示的結(jié)論有一個(gè)角應(yīng)是,他給出的是,而我沒有發(fā)現(xiàn),這是我在教學(xué)過程中的一個(gè)很大失誤。

  5、本來準(zhǔn)備了一道練習(xí)題,但沒能很好把握時(shí)間,而放棄了,說明了對(duì)這堂課準(zhǔn)備不足,缺乏對(duì)學(xué)生很好的了解。

  《正弦定理》教學(xué)反思 7

  現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的性質(zhì)概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)基礎(chǔ)上的,因此我在教學(xué)設(shè)計(jì)過程中注意了:

 、逶趯W(xué)生已有知識(shí)結(jié)構(gòu)和新性質(zhì)概念間尋找“最近發(fā)展區(qū)”。

 、嬉龑(dǎo)學(xué)生通過同化,順應(yīng)掌握新概念。

 、缭O(shè)法走出“性質(zhì)概念一帶而過,演習(xí)作業(yè)鋪天蓋地”的誤區(qū),促使自己與學(xué)生一起走進(jìn)“重視探究、重視交流、重視過程” 的新天地。

  我認(rèn)為本節(jié)課的設(shè)計(jì)應(yīng)遵循教學(xué)的基本原則;注重對(duì)學(xué)生思維的發(fā)展;貫徹教師對(duì)本節(jié)內(nèi)容的'理解;體現(xiàn)“學(xué)思結(jié)合﹑學(xué)用結(jié)合”原則。希望對(duì)學(xué)生的思維品質(zhì)的培養(yǎng)﹑數(shù)學(xué)思想的建立﹑心理品質(zhì)的優(yōu)化起到良好的作用。

  設(shè)計(jì)意圖:我的板書設(shè)計(jì)的指導(dǎo)原則:簡明直觀,重點(diǎn)突出。本節(jié)課的板書教學(xué)重點(diǎn)放在黑板的正中間,為了能加深學(xué)生對(duì)正弦定理以及其應(yīng)用的認(rèn)識(shí),把例題放在中間,以期全班同學(xué)都能看得到。

  《正弦定理》教學(xué)反思 8

  本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個(gè)問題需要精心設(shè)計(jì)。一個(gè)是問題的引入,一個(gè)是定理的證明。通過兩個(gè)實(shí)際問題引入,讓學(xué)生體會(huì)為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計(jì),尋求解決問題的方法。具體的思路就是從解決課本的實(shí)際問題入手展開,將問題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的知識(shí),有效提高學(xué)生解決問題的能力。

  1、在教學(xué)過程中,我注重引導(dǎo)學(xué)生的'思維發(fā)生,發(fā)展,讓學(xué)生體會(huì)數(shù)學(xué)問題是如何解決的,給學(xué)生解決問題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數(shù)形結(jié)合思想等思想。

  2、在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段。利用《幾何畫板》探究比值的值,由動(dòng)到靜,取得了很好的效果,加深了學(xué)生的印象。

  3、由于設(shè)計(jì)的內(nèi)容比較的多,教學(xué)時(shí)間的超時(shí),這說明我自己對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,致使教學(xué)過程中時(shí)間的分配不夠適當(dāng),教學(xué)語言不夠精簡,今后我一定避免此類問題,爭取更大的進(jìn)步。

  《正弦定理》教學(xué)反思 9

  在本課的教學(xué)中,教師立足于所創(chuàng)設(shè)的情境,通過學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應(yīng)用反思的過程,學(xué)生成為正弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的`苦和樂,知識(shí)目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實(shí)。

  創(chuàng)設(shè)數(shù)學(xué)情境是這種教學(xué)模式的基礎(chǔ)環(huán)節(jié),教師必須對(duì)學(xué)生的身心特點(diǎn)、知識(shí)水平、教學(xué)內(nèi)容、教學(xué)目標(biāo)等因素進(jìn)行綜合考慮,對(duì)可用的情境進(jìn)行比較,選擇具有較好的教育功能的情境。這種教學(xué)模式主張以問題為連線組織教學(xué)活動(dòng),以學(xué)生作為提出問題的主體,因此,如何引導(dǎo)學(xué)生提出問題是教學(xué)成敗的關(guān)鍵。教學(xué)實(shí)驗(yàn)表明,學(xué)生能否提出數(shù)學(xué)問題,不僅受其數(shù)學(xué)基礎(chǔ)、生活經(jīng)歷、學(xué)習(xí)方式等自身因素的影響,還受其所處的環(huán)境、教師對(duì)提問的態(tài)度等外在因素的制約。

  因此,教師不僅要注重創(chuàng)設(shè)適宜的數(shù)學(xué)情境,而且要真正轉(zhuǎn)變對(duì)學(xué)生提問的態(tài)度,提高引導(dǎo)水平,一方面要鼓勵(lì)學(xué)生大膽地提出問題,另一方面要妥善處理學(xué)生提出的問題。教師還要積極引導(dǎo)學(xué)生對(duì)所提的問題進(jìn)行分析、整理,篩選出有價(jià)值的問題,注意啟發(fā)學(xué)生揭示問題的數(shù)學(xué)實(shí)質(zhì),將提問引向深入。

  《正弦定理》教學(xué)反思 10

  《正弦定理》一課教學(xué)模式和策略設(shè)計(jì)就是想讓素質(zhì)教育如何落實(shí)在課堂教學(xué)的每一個(gè)環(huán)節(jié)上進(jìn)行一些探索和研究。旨在通過學(xué)生自己的思維活動(dòng)獲取數(shù)學(xué)知識(shí),提高學(xué)生基礎(chǔ)性學(xué)力(基礎(chǔ)能力),培養(yǎng)學(xué)生發(fā)展性學(xué)力(培養(yǎng)終身學(xué)習(xí)能力),誘發(fā)學(xué)生創(chuàng)造性學(xué)力(提高應(yīng)用能力),最終達(dá)到素質(zhì)教育目的。為此,我在設(shè)計(jì)這節(jié)課時(shí),采用問題開放式課堂教學(xué)模式,以學(xué)生參與為主,教師啟發(fā)、點(diǎn)撥的課堂教學(xué)策略。通過設(shè)置開放性問題,問題的層次性推進(jìn)和教師啟發(fā)、點(diǎn)撥發(fā)展學(xué)生有效思維,提高數(shù)學(xué)能力,達(dá)到上述三種學(xué)力的提高、培養(yǎng)和誘發(fā)。以學(xué)生參與為主,教師啟發(fā)、點(diǎn)撥教學(xué)策略是體現(xiàn)以學(xué)生發(fā)展為本的現(xiàn)代教育觀,在開放式討論過程中,提高學(xué)生的數(shù)學(xué)基礎(chǔ)能力,發(fā)展學(xué)生的各種數(shù)學(xué)需要,使其獲得終身受用的數(shù)學(xué)基礎(chǔ)能力和創(chuàng)造才能。建構(gòu)主義強(qiáng)調(diào),學(xué)生并不是空著腦袋走進(jìn)教室的。

  在日常生活中,在以往的學(xué)習(xí)中,他們已經(jīng)形成了豐富的.經(jīng)驗(yàn),小到身邊的衣食住行,大到宇宙、星體的運(yùn)行,從自然現(xiàn)象到社會(huì)生活,他們幾乎都有一些自己的看法。而且,有些問題即使他們還沒有接觸過,沒有現(xiàn)成的經(jīng)驗(yàn),但當(dāng)問題一旦呈現(xiàn)在面前時(shí),他們往往也可以基于相關(guān)的經(jīng)驗(yàn),依靠他們的認(rèn)知能力,形成對(duì)問題的某種解釋。而且,這種解釋并不都是胡亂猜測(cè),而是從他們的經(jīng)驗(yàn)背景出發(fā)而推出的合乎邏輯的假設(shè)。所以,教學(xué)不能無視學(xué)生的這些經(jīng)驗(yàn),另起爐灶,從外部裝進(jìn)新知識(shí),而是要把學(xué)生現(xiàn)有的知識(shí)經(jīng)驗(yàn)作為新知識(shí)的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”出新的知識(shí)經(jīng)驗(yàn)。

  為此我們根據(jù)“問題教學(xué)”模式,沿著“設(shè)置情境--提出問題--解決問題--反思應(yīng)用”這條主線,把從情境中探索和提出數(shù)學(xué)問題作為教學(xué)的出發(fā)點(diǎn),以“問題”為主線組織教學(xué),形成以提出問題與解決問題相互引發(fā)攜手并進(jìn)的“情境--問題”學(xué)習(xí)鏈,使學(xué)生真正成為提出問題和解決問題的主體,成為知識(shí)的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學(xué)過程成為學(xué)生主動(dòng)獲取知識(shí)、發(fā)展能力、體驗(yàn)數(shù)學(xué)的過程。

【《正弦定理》教學(xué)反思】相關(guān)文章:

正弦定理說課稿03-15

正弦定理教學(xué)設(shè)計(jì)(精選5篇)05-26

正弦定理說課稿熱門03-09

正弦定理說課稿最新03-09

數(shù)學(xué)說課稿:正弦定理12-14

正弦定理優(yōu)秀教案設(shè)計(jì)08-25

數(shù)學(xué)說課稿:正弦定理(5篇)12-14

數(shù)學(xué)說課稿:正弦定理5篇12-14

高中數(shù)學(xué)正弦定理教案09-28