三角函數(shù)教學(xué)課件
一.教學(xué)目標(biāo)
1.知識(shí)與技能
。1)能夠借助三角函數(shù)的定義及單位圓中的三角函數(shù)線推導(dǎo)三角函數(shù)的誘導(dǎo)公式。
。2)能夠運(yùn)用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡(jiǎn)、求值問(wèn)題轉(zhuǎn)化為銳角三角函數(shù)的化簡(jiǎn)、求值問(wèn)題。
2.過(guò)程與方法
(1)經(jīng)歷由幾何直觀探討數(shù)量關(guān)系式的過(guò)程,培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)能力和概括能力。
。2)通過(guò)對(duì)誘導(dǎo)公式的探求和運(yùn)用,培養(yǎng)化歸能力,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
3.情感、態(tài)度、價(jià)值觀
(1)通過(guò)對(duì)誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度。
。2)在誘導(dǎo)公式的探求過(guò)程中,運(yùn)用合作學(xué)習(xí)的方式進(jìn)行,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神。
二.教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):探求π-a的誘導(dǎo)公式。π+a與-a的誘導(dǎo)公式在小結(jié)π-a的誘導(dǎo)公式發(fā)現(xiàn)過(guò)程的基礎(chǔ)上,教師引導(dǎo)學(xué)生推出。
教學(xué)難點(diǎn):π+a,-a與角a終邊位置的幾何關(guān)系,發(fā)現(xiàn)由終邊位置關(guān)系導(dǎo)致(與單位圓交點(diǎn))的坐標(biāo)關(guān)系,運(yùn)用任意角三角函數(shù)的定義導(dǎo)出誘導(dǎo)公式的“研究路線圖”。
三.教學(xué)方法與教學(xué)手段
問(wèn)題教學(xué)法、合作學(xué)習(xí)法,結(jié)合多媒體課件
四.教學(xué)過(guò)程
角的概念已經(jīng)由銳角擴(kuò)充到了任意角,前面已經(jīng)學(xué)習(xí)過(guò)任意角的三角函數(shù),那么任意角的三角函數(shù)值怎么求呢?先看一個(gè)具體的問(wèn)題。
(一)問(wèn)題提出
如何將任意角三角函數(shù)求值問(wèn)題轉(zhuǎn)化為0°~360°角三角函數(shù)求值問(wèn)題。
【問(wèn)題1】求390°角的正弦、余弦值.
一般地,由三角函數(shù)的定義可以知道,終邊相同的角的同一三角函數(shù)值相等,三角函數(shù)看重的就是終邊位置關(guān)系。即有:sin(a+k·360°) = sinα,
cos(a+k·360°) = cosα, (k∈Z)
tan(a+k·360°) = tanα。
這組公式用弧度制可以表示成sin(a+2kπ) = sinα,
cos(a+2kπ) = cosα, (k∈Z) (公式一)
tan(a+2kπ) = tanα。
(二)嘗試推導(dǎo)
如何利用對(duì)稱推導(dǎo)出角π-a與角a的三角函數(shù)之間的關(guān)系。
由上一組公式,我們知道,終邊相同的角的同一三角函數(shù)值一定相等。反過(guò)來(lái)呢?如果兩個(gè)角的三角函數(shù)值相等,它們的終邊一定相同嗎?比如說(shuō):
【問(wèn)題2】你能找出和30°角正弦值相等,但終邊不同的角嗎?
角π-a與角a的終邊關(guān)于y軸對(duì)稱,有
sin(π-a) = sina,
cos(π-a) =-cosa,(公式二)
tan(π-a) =-tana。
〖思考〗請(qǐng)大家回顧一下,剛才我們是如何獲得這組公式(公式二)的?
因?yàn)榕c角a終邊關(guān)于y軸對(duì)稱是角π-a,,利用這種對(duì)稱關(guān)系,得到它們的終邊與單位圓的交點(diǎn)的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)。于是,我們就得到了角π-a與角a的三角函數(shù)值之間的關(guān)系:正弦值相等,余弦值互為相反數(shù),進(jìn)而,就得到我們研究三角函數(shù)誘導(dǎo)公式的路線圖:角間關(guān)系→對(duì)稱關(guān)系→坐標(biāo)關(guān)系→三角函數(shù)值間關(guān)系。
(三)自主探究
如何利用對(duì)稱推導(dǎo)出π+a,-a與a的三角函數(shù)值之間的關(guān)系。
剛才我們利用單位圓,得到了終邊關(guān)于y軸對(duì)稱的.角π-a與角a的三角函數(shù)值之間的關(guān)系,下面我們還可以研究什么呢?
【問(wèn)題3】?jī)蓚(gè)角的終邊關(guān)于x軸對(duì)稱,你有什么結(jié)論?兩個(gè)角的終邊關(guān)于原點(diǎn)對(duì)稱呢?
角-a與角a的終邊關(guān)于x軸對(duì)稱,有:
sin(-a) =-sina,
cos(-a) = cosa,(公式三)
tan(-a) =-tana。
角π+a與角a終邊關(guān)于原點(diǎn)O對(duì)稱,有:
sin(π +a) =-sina,
cos(π +a) =-cosa,(公式四)
tan(π +a) = tana。
上面的公式一~四都稱為三角函數(shù)的誘導(dǎo)公式。
(四)簡(jiǎn)單應(yīng)用
例求下列各三角函數(shù)值:
(1) sinp; (2) cos(-60°);(3)tan(-855°)
(五)回顧反思
【問(wèn)題4】回顧一下,我們是怎樣獲得誘導(dǎo)公式的?研究的過(guò)程中,你有哪些體會(huì)?
知識(shí)上,學(xué)會(huì)了四組誘導(dǎo)公式;思想方法層面:誘導(dǎo)公式體現(xiàn)了由未知轉(zhuǎn)化為已知的化歸思想;誘導(dǎo)公式所揭示的是終邊具有某種對(duì)稱關(guān)系的兩個(gè)角三角函數(shù)之間的關(guān)系。主要體現(xiàn)了化歸和數(shù)形結(jié)合的數(shù)學(xué)思想。具體可以表示如下:
(六)分層作業(yè)
1、閱讀課本,體會(huì)三角函數(shù)誘導(dǎo)公式推導(dǎo)過(guò)程中的思想方法;
2、必做題 課本23頁(yè)13
3、選做題
。1)你能由公式二、三、四中的任意兩組公式推導(dǎo)到另外一組公式嗎?
(2)角α和角β的終邊還有哪些特殊的位置關(guān)系,你能探究出它們的三角函數(shù)值之間的關(guān)系嗎?
【三角函數(shù)教學(xué)課件】相關(guān)文章:
《乞巧》教學(xué)課件06-25
《絕招》課件教學(xué)02-20
教學(xué)設(shè)計(jì)課件02-17
a拼音教學(xué)課件04-11
元旦教學(xué)課件04-08
《匆匆》教學(xué)課件04-08
寫(xiě)字教學(xué) 課件04-06
音樂(lè)教學(xué) 課件04-04
教學(xué)優(yōu)秀課件04-04
《白鵝》教學(xué)課件04-01