二次函數(shù)的教學設計
教學內(nèi)容:人教版九年義務教育初中第三冊第108頁
教學目標:
1. 1. 理解二次函數(shù)的意義;會用描點法畫出函數(shù)y=ax2的圖象,知道拋物線的有關概念;
2. 2. 通過變式教學,培養(yǎng)學生思維的敏捷性、廣闊性、深刻性;
3. 3. 通過二次函數(shù)的教學讓學生進一步體會研究函數(shù)的一般方法;加深對于數(shù)形結合思想認識,數(shù)學教案-二次函數(shù)教學設計。
教學重點:二次函數(shù)的意義;會畫二次函數(shù)圖象。
教學難點:描點法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學過程設計:
一. 一. 創(chuàng)設情景、建模引入
我們已學習了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:
1.寫出圓的半徑是R(CM),它的面積S(CM2)與R的關系式
答:S=πR2. ①
2.寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個關系式中S與R、L之間是否存在函數(shù)關系?
S是否是R、L的一次函數(shù)?
由于①②兩個關系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關知識。(板書課題)
二. 二. 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,
那么,y叫做x的二次函數(shù).
注意:(1)必須a≠0,否則就不是二次函數(shù)了.而b,c兩數(shù)可以是零.(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實數(shù).
練習:1.舉例子:請同學舉一些二次函數(shù)的例子,全班同學判斷是否正確。
2.出難題:請同學給大家出示一個函數(shù),請同學判斷是否是二次函數(shù)。
。ㄈ魧W生考慮不全,教師給予補充。如:
對照教師畫的圖象一一分析學生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點注意。
練習:畫出函數(shù) ; 的圖象(請兩個同學板演)
X
-3
-2
-1
1
2
3
Y=0.5X2
4.5
2
0.5
0.5
02
4.5
Y=-X2
-9
-4
-1
-1
-4
-9
畫好之后教師根據(jù)情況講評,并引導學生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。
(這里,教師在學生自己探索嘗試的基礎上,示范畫圖象的方法和過程,希望學生學會畫圖象的方法;并及時安排練習鞏固剛剛學到的新知識,通過觀察,感悟拋物線名稱的由來。)
三. 三. 運用新知、變式探究
畫出函數(shù) y=5x2圖象
學生在畫圖象的過程中遇到函數(shù)值較大的困難,不知如何是好。
x
-0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5
Y=5x2
1.25
0.8
0.45
0.2
0.05
0.05
0.2
0.45
0.8
1.25
教師出示已畫好的圖象讓學生觀察
注意:1. 畫圖象應描7個左右的點,描的點越多圖象越準確,初中數(shù)學教案《數(shù)學教案-二次函數(shù)教學設計》。
2. 自變量X的取值應注意關于Y軸對稱。
3. 對于不同的二次函數(shù)自變量X的取值應更加靈活,例如可以取分數(shù)。
四. 四. 歸納小結、延續(xù)探究
教師引導學生觀察表格及圖象,歸納y=ax2的性質,學生們暢所欲言,各抒己見;互相改進,互相完善。最終得到如下性質:
一般的',二次函數(shù)y=ax2的圖象是一條拋物線,對稱軸是Y軸,頂點是坐標原點;當a>0時,圖象的開口向上,最低點為(0,0);當a<0時,圖象的開口向下,最高點為(0,0)。
五. 五. 回顧反思、總結收獲
在這一環(huán)節(jié)中,教師請同學們回顧一節(jié)課的學習暢談自己的收獲或多、或少、或幾點、或全面,總之是人人有所得,個個有提高。這也正是新課標中所倡導的新的理念——不同的人在數(shù)學上得到不同的發(fā)展。
。ㄔ谡麄一節(jié)課上,基本上是學生講為主,教師講為輔。一些較為困難的問題,我也鼓勵學生大膽思考,積極嘗試,不怕困難,一個人完不成,講不透,第二個人、第三個人補充,直到完成整個例題。這樣上課氣氛非;钴S,學生之間常會因為某個觀點的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時地對某些觀點作出判斷,或與學生一同討論。)