《導(dǎo)數(shù)的幾何意義》說課稿
作為一名人民教師,時常會需要準(zhǔn)備好說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。那么大家知道正規(guī)的說課稿是怎么寫的嗎?以下是小編精心整理的《導(dǎo)數(shù)的幾何意義》說課稿,歡迎閱讀,希望大家能夠喜歡。
《導(dǎo)數(shù)的幾何意義》說課稿1
我說課的內(nèi)容是高中數(shù)學(xué)人教B版選修2-2中第一章第三節(jié)的內(nèi)容——導(dǎo)數(shù)的幾何意義第一課時。就本課節(jié)教學(xué)實踐,我將從以下八方面介紹我對本節(jié)課的教學(xué)設(shè)想:說考綱;說教材;說學(xué)情;說教法;說學(xué)法;說教學(xué)過程;說板書設(shè)計;說自評反思。
一、說考綱
由于導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)性質(zhì)提供了有效的工具。近年高考對導(dǎo)數(shù)加大了考查力度,不僅體現(xiàn)在解題工具上,更著力于思維取向的考查,它像一條騰躍的龍和開屏的鳳,潛移默化地改變著我們思考問題的習(xí)慣。數(shù)學(xué)思想的引領(lǐng),辯證思想的滲透,幫助著我們確立科學(xué)的思維取向。正因如此,導(dǎo)數(shù)的幾何意義是整個導(dǎo)數(shù)及其應(yīng)用部分中,新課標(biāo)考綱唯一一個冠以“理解”的要求標(biāo)準(zhǔn),也是這部分認(rèn)知領(lǐng)域的最高標(biāo)準(zhǔn),可見其地位和意義。
二、說教材
教材從數(shù)形結(jié)合的思想即割線入手,以形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,學(xué)生通過觀察、思考、發(fā)現(xiàn)、歸納、運(yùn)用形成完整概念,辯證思想得以滲透,有利于學(xué)生對知識的理解和掌握。本節(jié)知識內(nèi)容相當(dāng)少,但在本節(jié)的教學(xué)實踐中要突出其承前(進(jìn)一步理解導(dǎo)數(shù)的定義,探討函數(shù)值變化快慢)啟后(作為研究函數(shù)的單調(diào)性、求解函數(shù)的極值和最值等性質(zhì)最有效的工具)的關(guān)鍵紐帶作用。
三、說學(xué)情
通過前兩節(jié)對函數(shù)平均變化率和導(dǎo)數(shù)定義的學(xué)習(xí),學(xué)生對有關(guān)導(dǎo)數(shù)的問題已經(jīng)有了初步的認(rèn)識,但是由于導(dǎo)數(shù)定義的抽象性,學(xué)生認(rèn)知起來仍具有一定的困難。本節(jié)要通過動態(tài)的課件演示,將函數(shù)的平均變化率、導(dǎo)數(shù)(瞬時變化率)定義生動地展現(xiàn),同時挖掘切線的斜率(斜率的絕對值的大小與陡峭程度)與函數(shù)圖像的走勢(導(dǎo)數(shù)的絕對值的大小與函數(shù)值變化快慢)的關(guān)聯(lián),成為后面研究函數(shù)的單調(diào)性、求解函數(shù)的極值和最值,探討函數(shù)值變化快慢等性質(zhì)最有效的工具。激發(fā)學(xué)生的學(xué)習(xí)興趣,提升獨(dú)立探索、解決問題的能力、數(shù)形結(jié)合的能力及對知識靈活運(yùn)用的能力。
根據(jù)上述考綱、教材、認(rèn)知的要求,立足學(xué)生的認(rèn)知水平,設(shè)定教學(xué)目標(biāo)和重點(diǎn)、難點(diǎn),從識記、理解、掌握、應(yīng)用四個層次上給出教學(xué)目標(biāo),教學(xué)重點(diǎn)制定在非智力因素的培養(yǎng)上,教學(xué)難點(diǎn)制定在思維能力方面。
教學(xué)目標(biāo):理解導(dǎo)數(shù)的幾何意義,會求曲線的切線方程。
教學(xué)重點(diǎn):掌握在某點(diǎn)和過某點(diǎn)的切線問題的求解方法。
教學(xué)難點(diǎn):讓學(xué)生在觀察、思考、發(fā)現(xiàn)中學(xué)習(xí),歸納總結(jié)、啟發(fā) 學(xué)生研究性問題。
四、說教法
備課準(zhǔn)備充分,為促進(jìn)學(xué)生思維方式方法形成提供動力源泉。
多媒體輔助教學(xué),通過幾何畫板的動態(tài)演示,能充分發(fā)揮其快捷、生動、形象的特點(diǎn),無需提出問題讓學(xué)生通過小組議論形式,發(fā)現(xiàn)規(guī)律,更有利于難點(diǎn)的突破。讓學(xué)生親身經(jīng)歷“觀察、思考、發(fā)現(xiàn)、歸納總結(jié)、啟發(fā)學(xué)生研究性”的過程,教師針對各組的結(jié)論引導(dǎo)學(xué)生用逼近的思維方法,理解導(dǎo)數(shù)的幾何意義,同時盡量為后面的單調(diào)性、極最值、函數(shù)值變化快慢等做好總結(jié)性鋪墊。教給學(xué)生思考問題的方法和依據(jù),使學(xué)生真正成為教學(xué)主體。
五、說學(xué)法
通過小組議論形式讓學(xué)生參與教學(xué)活動,促進(jìn)學(xué)生間合作學(xué)習(xí)與交流,共同探討問題,探索解題方法,產(chǎn)生互動效果,提高學(xué)生的合作意識,共同來完成教學(xué)目標(biāo)。
六、說教學(xué)過程
。ㄒ唬┗仡櫯c引入
回顧函數(shù)平均變化率定義及其幾何意義;導(dǎo)數(shù)的定義及其導(dǎo)數(shù)的物理意義,鋪設(shè)類比遷移情景。提出導(dǎo)數(shù)的幾何意義是什幺?
。ǘ⿲(dǎo)數(shù)幾何意義的探求過程
1.切線的定義
利用圓的切線與割線的動態(tài)聯(lián)系適時地給出一般曲線的切線定義(避免從公共點(diǎn)的個數(shù)來定義)。
2.動態(tài)觀察割線與切線的關(guān)聯(lián)
通過演示割線的動態(tài)變化趨勢,為學(xué)生觀察、思考提供平臺,引導(dǎo)學(xué)生共同分析,直觀獲得切線定義。通過逼近方法,將割線趨于確定位置的直線定義為切線,使學(xué)生體會這種定義適用于各種曲線,反映了切線的直觀本質(zhì),從而歸納出導(dǎo)數(shù)的幾何意義。這里教師要引導(dǎo)學(xué)生歸納總結(jié)曲線在某點(diǎn)處切線與曲線可以有不止1個公共點(diǎn)。直線與曲線
只有一個公共點(diǎn)時,不一定是曲線的切線。
3.通過例題體現(xiàn)應(yīng)用,歸納求解步驟。
七、說板書設(shè)計
課題:
回顧:例1.求在指定點(diǎn)處的切線
練習(xí):
幾何意義:
例2.求過指定點(diǎn)處的切線
切線的理解:
例3.探索已知切線的斜率求切線方程問題
小結(jié):
作業(yè):
八、說自評反思
在本節(jié)課教學(xué)過程中對學(xué)生的觀察能力、分析思考能力、理解歸納能力及數(shù)形結(jié)合能力方面進(jìn)行了訓(xùn)練和考驗。注重合作交流,歸納總結(jié),及時對各組學(xué)生所取得的成果進(jìn)行肯定,從而使學(xué)生獲得成就感。既注重“雙基”,又兼顧提高,為學(xué)生指明課后繼續(xù)研究的方向,同時也為以后的學(xué)習(xí)陳設(shè)鋪墊,激發(fā)學(xué)生探索新知識的興趣。
《導(dǎo)數(shù)的幾何意義》說課稿2
一、說教材:
1、教材的地位與作用
導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學(xué)生對導(dǎo)數(shù)的概念已經(jīng)有了充分的認(rèn)識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學(xué)生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進(jìn)行動畫演示,讓學(xué)生通過觀察、思考、發(fā)現(xiàn)、思維、運(yùn)用形成完整概念. 通過本節(jié)的學(xué)習(xí),可以幫助學(xué)生更好的體會導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。
2、教學(xué)的重點(diǎn)、難點(diǎn)、關(guān)鍵
教學(xué)重點(diǎn):導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。
教學(xué)難點(diǎn):理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵
1) 從割線到切線的過程中采用的逼近方法;
2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點(diǎn)x附近的變化快慢,導(dǎo)數(shù)是曲線上某點(diǎn)切線的斜率,等等.
二、說教學(xué)目標(biāo):
根據(jù)新課程標(biāo)準(zhǔn)的要求、學(xué)生的認(rèn)知水平,確定教學(xué)目標(biāo)如下:
1、知識與技能 :
通過實驗探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點(diǎn)的切線的概念,會求簡單函數(shù)在某點(diǎn)的切線方程。
過程與方法:
經(jīng)歷切線定義的形成過程,培養(yǎng)學(xué)生分析、抽象、概括等思維能力;體會導(dǎo)數(shù)的思想及內(nèi)涵,完善對切線的認(rèn)識和理解
通過逼近、數(shù)形結(jié)合思想的具體運(yùn)用,使學(xué)生達(dá)到思維方式的遷移,了解科學(xué)的思維方法。
3、情感態(tài)度與價值觀:
滲透逼近、數(shù)形結(jié)合、以直代曲等數(shù)學(xué)思想,激發(fā)學(xué)生學(xué)習(xí)興趣,引導(dǎo)學(xué)生領(lǐng)悟特殊與一般、有限與無限,量變與質(zhì)變的辯證關(guān)系,感受數(shù)學(xué)的統(tǒng)一美,意識到數(shù)學(xué)的應(yīng)用價值
三、說教法與學(xué)法
對于直線來說它的導(dǎo)數(shù)就是它的斜率,學(xué)生會很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過了圓錐曲線,學(xué)生對曲線的切線的概念也有了一些認(rèn)識,基于以上學(xué)情分析,我確定下列教法:
教法:從圓的切線的定義引入本課,再引導(dǎo)學(xué)生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的`定義.同樣通過幾何畫板的實驗觀察得到導(dǎo)數(shù)的幾何意義和直觀感知“逼近”的數(shù)學(xué)思想.因此,我采用實驗觀察法、探究性研究教學(xué)和信息技術(shù)輔助教學(xué)法相結(jié)合,以突出重點(diǎn)和突破難點(diǎn);
學(xué)法:為了發(fā)揮學(xué)生的主觀能動性,提高學(xué)生的綜合能力,本節(jié)課采取了
自主 、合作、探究的學(xué)習(xí)方法。
教具: 幾何畫板、幻燈片
四、說教學(xué)程序
1.創(chuàng)設(shè)情境
學(xué)生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線C的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關(guān)系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設(shè)計意圖】:通過類比構(gòu)建認(rèn)知沖突。
學(xué)生活動——復(fù)習(xí)回顧
導(dǎo)數(shù)的定義
【設(shè)計意圖】:從理論和知識基礎(chǔ)兩方面為本節(jié)課作鋪墊。
2.探索求知
學(xué)生活動——試驗探究
問一;求導(dǎo)數(shù)的步驟是怎樣的?
第一步:求平均變化率;第二步:當(dāng)趨近于0時,平均變化率無限趨近于的常數(shù)就是。
【設(shè)計意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準(zhǔn)備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。
【設(shè)計意圖】:通過學(xué)生動手實踐得到平均變化率表示割線PQ的斜率。
問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。
【設(shè)計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,Q();從形的角度看, 的過程中,Q點(diǎn)向P點(diǎn)無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學(xué)生通過幾何畫板的演示觀察割線的變化趨勢,教師引導(dǎo)給出一般曲線的切線定義。
【設(shè)計意圖】: 借助多媒體教學(xué)手段引導(dǎo)學(xué)生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點(diǎn);學(xué)生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強(qiáng)化學(xué)生對導(dǎo)數(shù)概念的理解。
問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎?
【設(shè)計意圖】:引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:,割線PQ切線PT,所以割線
PQ的斜率切線PT的斜率。因此,=切線PT的斜率。
五、教學(xué)評價
1、通過學(xué)生參加活動是否積極主動,能否與他人合作探索,對學(xué)生的學(xué)習(xí)過程評價;
2、通過學(xué)生對方法的選擇,對學(xué)生的學(xué)習(xí)能力評價;
3、通過練習(xí)、課后作業(yè),對學(xué)生的學(xué)習(xí)效果評價.
4、教學(xué)中,學(xué)生以研究者的身份學(xué)習(xí),在問題解決的過程中,通過自身的體驗對知識的認(rèn)識從模糊到清晰,從直觀感悟到精確掌握;
5、本節(jié)課設(shè)計目標(biāo)力求使學(xué)生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運(yùn)動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.
【《導(dǎo)數(shù)的幾何意義》說課稿】相關(guān)文章:
分?jǐn)?shù)的意義說課稿11-08
小數(shù)的意義和讀寫說課稿11-02
比例的意義和基本性質(zhì)說課稿11-12
比例的意義和基本性質(zhì)說課稿4篇11-12
《背影》導(dǎo)學(xué)案09-27
小學(xué)語文導(dǎo)學(xué)導(dǎo)練:漢語拼音06-26
六年級上冊《比的意義》說課稿01-11