等腰三角形的性質(zhì)說課稿(通用12篇)
作為一位杰出的老師,常常要寫一份優(yōu)秀的說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。我們該怎么去寫說課稿呢?以下是小編整理的等腰三角形的性質(zhì)說課稿,歡迎閱讀,希望大家能夠喜歡。
等腰三角形的性質(zhì)說課稿 1
一、教材分析
1、教材分析之地位和作用
《等腰三角形的性質(zhì)》是“華東師大版七年級數(shù)學(xué)(下)”第九章第三節(jié)的內(nèi)容。本課安排在《軸對稱的認(rèn)識》后,明確了《等腰三角形的性質(zhì)》與《軸對稱的認(rèn)識》的聯(lián)系,起到知識的鏈接與開拓的作用。本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,它是對三角形的性質(zhì)的呈現(xiàn)。通過等腰三角形的性質(zhì)反映在一個(gè)三角形中“等邊對等角”的邊角關(guān)系,并且是對軸對稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
2、教材分析之教學(xué)目標(biāo)
、僦R與技能目標(biāo):
掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì)。熟練運(yùn)用等腰三角形的性質(zhì)解決等腰三角形內(nèi)角以及邊的計(jì)算問題。
、谶^程與方法目標(biāo):
通過對性質(zhì)的探究活動(dòng)和例題的分析,培養(yǎng)學(xué)生多角度思考問題的習(xí)慣,提高學(xué)生分析問題和解決問題的能力。
、矍楦信c態(tài)度目標(biāo):
通過對等腰三角形的觀察、試驗(yàn)、歸納,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,突出數(shù)學(xué)就在我們身邊。在操作活動(dòng)中,培養(yǎng)學(xué)生之間的合作精神,在獨(dú)立思考的同時(shí)能夠認(rèn)同他人。
3、教材分析之教學(xué)重難點(diǎn)
重點(diǎn):探索等腰三角形“等邊對等角”和“三線合一”的性質(zhì)。
。ㄟ@兩個(gè)性質(zhì)對于平面幾何中的計(jì)算,以及今后的證明尤為重要,故確定為重點(diǎn))
難點(diǎn):等腰三角形中關(guān)于底和腰,底角和頂角的計(jì)算問題。
。ㄓ捎诘妊切蔚缀脱,底角和頂角性質(zhì)特點(diǎn)很容易混淆,而且它們在用法和討論上很有考究,只能練習(xí)實(shí)踐中獲取經(jīng)驗(yàn),故確定為難點(diǎn)。)
4、教材分析之教法
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,“教必有法而教無定法”,只有方法得當(dāng),才會有效。根據(jù)本課內(nèi)容特點(diǎn)和初一學(xué)生思維活動(dòng)的特點(diǎn),我采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。
5、教材分析之學(xué)法
最有價(jià)值的知識是關(guān)于方法的知識,首先對于我們教師應(yīng)該創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己不知不覺中運(yùn)用舊知識的鑰匙去打開新知識的大門,進(jìn)入新知識的領(lǐng)域。本節(jié)課我將采用學(xué)生小組合作,實(shí)驗(yàn)操作,觀察發(fā)現(xiàn),師生互動(dòng),學(xué)生互動(dòng)的學(xué)習(xí)方式。學(xué)生通過小組合作學(xué)會“主動(dòng)探究----主動(dòng)總結(jié)---主動(dòng)提高”。突出學(xué)生是學(xué)習(xí)的主體,他們在感受知識的過程中,提高他們“探究---發(fā)現(xiàn)---聯(lián)想---概括”的能力!
二、教學(xué)過程:
1、創(chuàng)設(shè)情景
、購(fù)習(xí)提問:向同學(xué)們出示幾張精美的建筑物圖片;
問題:軸對稱圖形的'概念?這些圖片中有軸對稱圖形嗎?
、谝胄抡n:再次通過精美的建筑物圖片,找出里面的等腰三角形。
問題:等腰三角形是軸對稱圖形嗎?
、巯嚓P(guān)概念:定義:兩條邊相等的三角形叫做等腰三角形。
邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊.
角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角.
2、探究問題
、賱(dòng)動(dòng)手:讓同學(xué)們做出一張等腰三角形的半透明的紙片,每個(gè)人的等腰三角形的大小和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?請你盡可能多的寫出結(jié)論。
、诘贸鼋Y(jié)論:可讓學(xué)生有充分的時(shí)間觀察、思考、交流、可能得到的結(jié)論:
(1)等腰三角形是軸對稱圖形
(2)∠B=∠C
(3)BD=CD,AD為底邊上的中線
(4)∠ADB=∠ADC=90°,AD為底邊上的高線
(5)∠BAD=∠CAD,AD為頂角平分線
3、重要性質(zhì)
性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
。ê喎Q“三線合一”)
如圖,在△ABC中,AB=AC,點(diǎn)D在BC上
。1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD
。2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC
。3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD
。榱朔奖阌洃浛梢哉f成“知一求二!”)
三、例題部分:
例一:1、在等腰△ABC中,AB=3,AC=4,則△ABC的周長=________
2、在等腰△ABC中,AB=3,AC=7,則△ABC的周長=________
此例題的重點(diǎn)是運(yùn)用等腰三角形的定義,以及等腰三角形腰和底邊的關(guān)系,仔細(xì)比較以上兩個(gè)例題,并強(qiáng)調(diào)在沒有明確腰和底邊之前,應(yīng)該分兩種情況討論。而且在討論后還應(yīng)該思考一個(gè)問題,就是這樣的三條邊能否夠成三角形。
例二:1、在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______
2、在等腰△ABC中,∠A=100°,則∠B=______,∠C=______
此例題的重點(diǎn)是運(yùn)用等腰三角形“等邊對等角”這一性質(zhì),突出頂角和底角的關(guān)系,強(qiáng)調(diào)等腰三角形中頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°。仔細(xì)比較以上兩個(gè)例題,得出結(jié)論一個(gè)經(jīng)驗(yàn):在等腰三角形中,已知一個(gè)角就可以求出另外兩個(gè)角。
例三:在等腰△ABC中,∠A=40°,則∠B=______
此題是一道陷阱題,可以先讓學(xué)生進(jìn)行分析,和例二的2小題比較,估計(jì)會出一些狀況,大多數(shù)學(xué)生會按照兩種情況討論,得到兩個(gè)答案。然后跟學(xué)生畫出圖形進(jìn)行分析,分兩種情況討論,但是答案是“三個(gè)”。強(qiáng)調(diào)需要自己畫圖解題時(shí),一定要三思而后行!
例四:在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),∠B=40°,求∠BAD的度數(shù)?
此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質(zhì)的綜合運(yùn)用,以及怎么書寫解答題,強(qiáng)調(diào)“三線合一”的表達(dá)過程。
解:在△ABC中,
∵AB=AC,∠B=40°,∴∠B=∠C=40°
又∵∠A+∠B+∠C=180°,∴∠A=100°
在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),
∴AD是底邊上的中線根據(jù)等腰三角形“三線合一”知:
AD是∠BAC的平分線,即∠BAD=∠CAD=50°
四、練習(xí)部分:
練功房Ⅰ(基礎(chǔ)知識)填空題
1、在△ABC中,若AB=AC,若頂角為80°,則底角的外角為_________.
2、在△ABC中,若AB=AC,∠B=∠A,則∠C=____________.
3、在△ABC中,若AB=AC,∠B的余角為25°,則∠A=____________.
4、已知:如圖,在△ABC中,D是AB邊上的一點(diǎn),AD=DC,∠B=35°,
∠ACD=43°,則∠BCD=____________
開展小組競賽,比一比那個(gè)小組算的又快又準(zhǔn)!
練功房Ⅱ(實(shí)踐運(yùn)用)實(shí)踐題
如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,已經(jīng)知道它的兩邊AB和AC是相等的建筑工人師傅對這個(gè)建筑物做出了兩個(gè)判斷:
、俟と藥煾翟跍y量了∠B為37°以后,并沒有測量∠C,就說∠C的度數(shù)也是37°。
、诠と藥煾狄庸涛蓓,他們通過測量找到了橫梁BC的中點(diǎn)D,然后在AD兩點(diǎn)之間釘上一根木樁,他們認(rèn)為木樁是垂直橫梁的。
請同學(xué)們想想,工人師傅的說法對嗎?請說明理由。
練功房Ⅲ(思維發(fā)散)選做題
已知:如圖,在△ABC中,AB=AC,E在AC上,D在BA的延長線上,AD=AE,連結(jié)DE。請問:DE⊥BC成立嗎?
五、小結(jié)部分
提問:今天我們學(xué)習(xí)了什么?你覺得在等腰三角形的學(xué)習(xí)中要注意哪些問題?
1、等腰三角形是軸對稱圖形,等腰三角形的定義,以及相關(guān)概念。
2、等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
3、等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
。ê喎Q“三線合一”)
4、注意等腰三角形關(guān)于底和腰的計(jì)算題,特別是需要的討論的時(shí)候,最后還要進(jìn)行
檢驗(yàn),看看這樣的三條邊是否可以構(gòu)成三角形。
5、注意等腰三角形的頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°
6、重視需要自己畫圖解題時(shí)一定要“三思而后行”!
六、作業(yè)部分
1、教科書P86習(xí)題9.31,2,3,4題
2、請問:在等腰三角形中,等腰三角形兩腰上的中線(高線)是否相等?
為什么?
3、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角
形呢?帶著問題預(yù)習(xí)教科書P83—84。
七、板書設(shè)計(jì)
八、教學(xué)說明
本節(jié)課的設(shè)計(jì)力求體現(xiàn)使學(xué)生“學(xué)會學(xué)習(xí),為終身學(xué)習(xí)做準(zhǔn)備”的理念,努力實(shí)現(xiàn)學(xué)生的主體地位,使數(shù)學(xué)教學(xué)成為一種過程教學(xué),讓學(xué)生在活動(dòng)中獲得知識、形成技能和能力;在教學(xué)中注意教師角色的轉(zhuǎn)變,教師是組織者、參與者、合作者,教師的責(zé)任是為學(xué)生創(chuàng)造一種寬松、和諧、適合發(fā)展的學(xué)習(xí)環(huán)境,創(chuàng)設(shè)一種有利于思考、討論、探索的學(xué)習(xí)氛圍。在教法上采用啟發(fā)探索式教學(xué)模式,整堂課以問題為思維主線,引導(dǎo)學(xué)生通過觀察,自主探索,使學(xué)生觀察、主動(dòng)思考,充分體驗(yàn)探索的快樂和成功的樂趣,并充分利用計(jì)算機(jī)輔助教學(xué),以加強(qiáng)感性認(rèn)識并培養(yǎng)學(xué)生用運(yùn)動(dòng)聯(lián)系的觀點(diǎn)觀察現(xiàn)象、解決問題。整個(gè)教學(xué)環(huán)節(jié)層層推進(jìn)、步步深入,融基礎(chǔ)性、靈活性、實(shí)踐性、開放性于一體,注重調(diào)動(dòng)學(xué)生思維的積極性,把知識的形成過程轉(zhuǎn)化為學(xué)生親自觀察、實(shí)驗(yàn)、發(fā)現(xiàn)、探索、運(yùn)用的過程。使學(xué)生在獲得知識的同時(shí)提高興趣、增強(qiáng)信心、提高能力。本課就教學(xué)過程作以下幾點(diǎn)說明:
1、知識結(jié)構(gòu)安排:
本課以“問題情境--------獲取新知--------應(yīng)用與拓展”的模式展開,符合初一學(xué)生的認(rèn)知規(guī)律。
2、教學(xué)反饋與評價(jià):
本課從學(xué)生回答問題,練習(xí)情況等方面反饋學(xué)生對知識的理解、運(yùn)用,教師根據(jù)反饋信息適時(shí)點(diǎn)撥;同時(shí)從新課標(biāo)評價(jià)理念出發(fā),抓住學(xué)生語言、思想、動(dòng)手能力方面的亮點(diǎn)給予表揚(yáng),不足的方面給予幫助、指導(dǎo)和恰如其分的鼓勵(lì),形成發(fā)展性評價(jià),提高學(xué)生學(xué)數(shù)學(xué),用數(shù)學(xué)的信心。
3、對于本節(jié)的幾點(diǎn)思考
、俦竟(jié)的學(xué)習(xí)任務(wù)比較重要,有等腰三角形性質(zhì)的推導(dǎo)、性質(zhì)的應(yīng)用,所
以本人針對學(xué)生的特點(diǎn),在課例的掌握好的情況下,讓學(xué)生自己去發(fā)現(xiàn)、去聯(lián)想,
能充分地發(fā)揮學(xué)生主觀能動(dòng)性。
、谕ㄟ^學(xué)生自己動(dòng)手實(shí)驗(yàn)得到等腰三角形性質(zhì)的內(nèi)容,可以使他們比較好的掌握知識、提高學(xué)習(xí)數(shù)學(xué)的興趣,達(dá)到了事半功倍之效。
、墼谡麄(gè)教學(xué)過程中,本人利用多種教學(xué)方法,使學(xué)生在實(shí)驗(yàn)中提出問題,解決問題的途徑,而不知不覺地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動(dòng)學(xué)習(xí)步入主動(dòng)想學(xué)的習(xí)慣。
總之,在本節(jié)教學(xué)中,我始終堅(jiān)持以學(xué)生為主體,教師為主導(dǎo),師生互動(dòng),生生互動(dòng),致力啟用學(xué)生已掌握的知識,充分調(diào)動(dòng)學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動(dòng)中,在整個(gè)教學(xué)過程中我以啟發(fā)學(xué)生,挖掘?qū)W生潛力,讓他們展開聯(lián)想的思維,培養(yǎng)其能力為主旨而發(fā)展。
等腰三角形的性質(zhì)說課稿 2
各位領(lǐng)導(dǎo)、老師:
大家好!
我說課的課題是《等腰三角形》,源于義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書七年級數(shù)學(xué)第七章,下面我將來匯報(bào)我這節(jié)課的教學(xué)設(shè)計(jì)。
一、說教材分析
1、本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,它是對三角形的性質(zhì)的呈現(xiàn)。通過等腰三角形的性質(zhì)反映在一個(gè)三角形中等邊對等角,等角對等邊的邊角關(guān)系,并且對軸對稱圖形性質(zhì)的直觀反映(三線合一)。并且在以后直角三角形和相似三角形中等腰三角形的性質(zhì)也占有一席之地。
2、教學(xué)目標(biāo):要求學(xué)生掌握等腰三角形的性質(zhì)和等邊三角形的每個(gè)角都相等,且每個(gè)角都為60度,使學(xué)生會用等腰三角形的性質(zhì)定理進(jìn)行證明或計(jì)算,逐步滲透幾何證題的基本方法:分析法和綜合法,培養(yǎng)學(xué)生的聯(lián)想能力
3、教學(xué)重點(diǎn)、難點(diǎn):等腰三角形的性質(zhì)定理是本課的重點(diǎn)等腰三角形“三線合一”性質(zhì)的運(yùn)用是本課的難點(diǎn)
4、為了使學(xué)生了解這堂課,本課要求學(xué)生自制一個(gè)等腰三角形模型,教學(xué)過程采用多媒體教學(xué)。
二、說教學(xué)方法:
“教必有法而教無定法”,只有方法得當(dāng),才會有效。根據(jù)本課內(nèi)容特點(diǎn)和初二學(xué)生思維活動(dòng)的特點(diǎn),我采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。
三、說學(xué)生學(xué)法。
“授人以魚,不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的知識,首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運(yùn)用舊知識的鑰匙去打開新知識的大門,進(jìn)入新知識的領(lǐng)域,從不同角度去分析、解決新問題,發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
四、說教學(xué)程序
1、等腰三角形的`有關(guān)概念,軸對稱圖形的有關(guān)概念。
提問:等腰三角形是不是軸對稱圖形?什么是它的對稱軸?
2、教師演示(模型)等腰三角形是軸對稱圖形的實(shí)驗(yàn),并讓學(xué)生做同樣的實(shí)驗(yàn),引導(dǎo)學(xué)生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質(zhì)。
3、新課:讓學(xué)生由實(shí)驗(yàn)或演示指出各自的發(fā)現(xiàn),并加以引導(dǎo),用規(guī)范的數(shù)學(xué)語言進(jìn)行逐條歸納,最后得出等腰三角形的性質(zhì)定理1、2。
性質(zhì)定理1:等腰三角形的兩個(gè)底角相等
在△ ABC中,∵AB=AC()∴∠B= ∠C()
性質(zhì)定理:等腰三角形的頂角平分線、底邊上的中線和高線互相重合
、 ∵ AB=AC ∠1= ∠ 2()∴BD=DC AD⊥BC()
、 ∵ AB=AC BD=DC()∴ ∠1= ∠ 2 AD⊥BC()
、 ∵ AB=AC AD⊥BC于D()∴ BD=DC ∠1= ∠ 2()
4、對新知識的感知性應(yīng)用
指導(dǎo)學(xué)生表述證明過程。
思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?
課堂練習(xí):
p227練習(xí)1,練習(xí)2(指出這是等邊三角形的性質(zhì)定理)。
5、小結(jié):
。1)等腰三角形的性質(zhì)定理。
(2)等邊三角形的性質(zhì)
。3)利用等腰三角形的性質(zhì)定理可證明:兩角相等,兩線段相等,兩直線互相垂直。
。4)聯(lián)想方法要經(jīng)常運(yùn)用,對解題大有裨益。
五、布置作業(yè):
見作業(yè)本
六、對于本節(jié)的幾點(diǎn)思考
1、本節(jié)的學(xué)習(xí)任務(wù)比較重要,有定理的證明、定理的計(jì)算和證題應(yīng)用,所以本人針對學(xué)生的特點(diǎn),在上節(jié)課例的掌握好的情況下,讓學(xué)生自己去發(fā)現(xiàn)、去聯(lián)想,能充分地發(fā)揮學(xué)生主觀能動(dòng)性。練習(xí)2其目的有二:(一)使學(xué)生在復(fù)習(xí)本節(jié)知識。(二)為下一節(jié)內(nèi)容鋪墊。
2、通過學(xué)生自己動(dòng)手實(shí)驗(yàn)得到兩個(gè)定理的內(nèi)容,可以使他們比較好的掌握知識、提高學(xué)習(xí)數(shù)學(xué)的興趣,達(dá)到了事半功倍之效。
3、在整個(gè)教學(xué)過程中,本人利用多種教學(xué)方法,使學(xué)生在實(shí)驗(yàn)中提出問題,解決問題的途徑,而不知不覺地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動(dòng)學(xué)習(xí)步入主動(dòng)想學(xué)的習(xí)慣。
總之,在本節(jié)教學(xué)中,我始終堅(jiān)持以學(xué)生為主體,教師為主導(dǎo),致力啟用學(xué)生已掌握的知識,充分調(diào)動(dòng)學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動(dòng)中,在整個(gè)教學(xué)過程中我以啟發(fā)學(xué)生,挖掘?qū)W生潛力,讓他們展開聯(lián)想的思維,培養(yǎng)其能力為主旨而發(fā)展的。
9.12等腰三角形的性質(zhì)定理
板書設(shè)計(jì)
課題:
等腰三角形的性質(zhì)定理
例1、書寫格式
例2、書寫過程
性質(zhì)定理1
性質(zhì)定理2
學(xué)生板演
等腰三角形的性質(zhì)說課稿 3
一、說教材
《等腰三角形的性質(zhì)》是人教版教科書八年級上冊第13章第三節(jié)第1課時(shí)的教學(xué)內(nèi)容。在此之前,學(xué)生們已經(jīng)學(xué)習(xí)了等腰三角形的定義以及軸對稱,學(xué)生已經(jīng)具備了一定的動(dòng)手操作能力。這些知識為本節(jié)課的學(xué)習(xí)等腰三角形的性質(zhì)起到了鋪墊的作用。而本節(jié)課的知識為以后將為以后學(xué)習(xí)的四邊形及多邊形的相關(guān)知識奠定了基礎(chǔ)。
二、說教學(xué)目標(biāo)
根據(jù)教學(xué)大綱和新課程標(biāo)準(zhǔn)的要求,我認(rèn)真鉆研教材,特制定以下三個(gè)教學(xué)目標(biāo):
1、掌握等腰三角形的性質(zhì)
2、知道等腰三角形的性質(zhì)的推理過程
3、會靈活運(yùn)用等腰三角形的性質(zhì)解決相關(guān)的數(shù)學(xué)問題
三、說教學(xué)重、難點(diǎn)
結(jié)合八年級學(xué)生的年齡特點(diǎn)、心理特征和現(xiàn)有的知識結(jié)構(gòu)。我認(rèn)為本節(jié)課的重點(diǎn)是等腰三角形的兩個(gè)性質(zhì)即“等邊對等角”;“三線合一”。
由于八年級學(xué)生的邏輯推理能力和理解運(yùn)用能力還較弱,因此等腰三角形的性質(zhì)的推理過程及會靈活運(yùn)用等腰三角形的性質(zhì)解決相關(guān)的數(shù)學(xué)問題是本節(jié)課的難點(diǎn)。
四、說教法和學(xué)法
本節(jié)課我采用的教法是啟發(fā)式教學(xué)法、動(dòng)手操作法。
學(xué)生的學(xué)法是:自主探究法、合作討論法。
五、說教學(xué)過程
本節(jié)課我主要是根據(jù)“四步五環(huán)節(jié)”教學(xué)法從以下五個(gè)環(huán)節(jié)進(jìn)行教學(xué)的。
1、復(fù)習(xí)導(dǎo)入
通過教師在黑板上畫一個(gè)三角形(任意取一個(gè)點(diǎn)為圓心,適當(dāng)?shù)拈L為半徑畫弧,在所畫的弧上任意取兩個(gè)點(diǎn)順次連接這三個(gè)點(diǎn)所得的三角形是什么三角形?)的方法能確定是所畫的三角形是等腰三角形。這樣導(dǎo)入可以讓學(xué)生知道如何用尺規(guī)作圖做一個(gè)等腰三角形,并引導(dǎo)他們回憶等腰三角形的概念及腰、底邊、頂角、底角的概念。
2、探究新知
在同學(xué)們已經(jīng)學(xué)習(xí)了軸對稱的基礎(chǔ)上通過對折剪紙觀察猜想得出等腰三角形的`性質(zhì),這樣設(shè)計(jì)既能提高學(xué)生的動(dòng)手操作能了,又能更直觀的發(fā)現(xiàn)等腰三角形的三條性質(zhì)即:對稱性、等邊對等角、三線合一。在此基礎(chǔ)上教師在引導(dǎo)學(xué)生寫出推理過程,同時(shí)也提高了學(xué)生的邏輯思維能力.
3、理解與運(yùn)用
為了讓學(xué)生熟練的掌握等腰三角形的三個(gè)性質(zhì),我設(shè)計(jì)了一道相關(guān)證明題,讓學(xué)生先自主探究不會的同學(xué)請教會做的給其講解進(jìn)行兵練兵,再找一名學(xué)生將解題過程板術(shù)黑板上,教師進(jìn)行點(diǎn)評,以提高學(xué)生書寫完整、簡潔的解題過程的能力。
4、強(qiáng)化鞏固
在這一教學(xué)環(huán)節(jié)中我設(shè)計(jì)了2道求角度的問題,讓學(xué)生通過由易到難的探究過程將所學(xué)的知識進(jìn)一步升華,培養(yǎng)學(xué)生的探究精神。
5、小結(jié)
設(shè)計(jì)三個(gè)問題讓學(xué)生通過思考討論回答出來,從而把本節(jié)課的知識系統(tǒng)化。以提高學(xué)生的總結(jié)概括能力。
本節(jié)課我采用觀察法和動(dòng)手操作法導(dǎo)入新課充分的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的主動(dòng)性和積極性順利完成的預(yù)定的教學(xué)任務(wù),取得了良好的教學(xué)效果。
等腰三角形的性質(zhì)說課稿 4
一、教材分析
1、教材的地位和作用
《等腰三角形的性質(zhì)》是“華東師大版八年級數(shù)學(xué)(上)”第十三章第三節(jié)第一課時(shí)的內(nèi)容。本節(jié)先課利用軸對稱的知識來探索發(fā)現(xiàn)等腰三角形的有關(guān)性質(zhì),然后利用全等三角形的知識證明這些性質(zhì)。學(xué)習(xí)過程中運(yùn)用的“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的方法是探究數(shù)學(xué)知識的常用方法。同時(shí)“等邊對等角”和“三線合一”的性質(zhì)是又是接下來學(xué)習(xí)等邊三角形知識以及等腰三角形的判定的基礎(chǔ)知識,更是今后論證兩個(gè)角相等、兩條線段相等、兩條線垂直的重要依據(jù)。起著承前啟后的作用。
2、教材的教學(xué)目標(biāo):
①知識與技能目標(biāo):
掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì),能運(yùn)用它們解決等腰三角形的邊、角計(jì)算問題。
、谶^程與方法目標(biāo):
通過實(shí)踐、觀察、同組間學(xué)生以及小組與小組間的合作與交流,培養(yǎng)學(xué)生多角度思考問題和分析問題、解決問題的能力。③情感與態(tài)度目標(biāo):
通過合作交流培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、樂于助人的品質(zhì)。
3、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):等腰三角形“等邊對等角”和“三線合一”性質(zhì)的探究和應(yīng)用。難點(diǎn):等腰三角形性質(zhì)的推理證明。
二、學(xué)情分析
八年級上期學(xué)生學(xué)習(xí)幾何知識有了初步的抽象思維感知,有一定的形象直觀思維能力,能進(jìn)行簡單的推理論證。但其運(yùn)用數(shù)學(xué)思維的廣闊性、緊密性、靈活性比較欠缺,在學(xué)習(xí)過程中要加強(qiáng)引導(dǎo)和培養(yǎng)。
三、教法與手段
根據(jù)本課內(nèi)容特點(diǎn)和初二學(xué)生思維活動(dòng)的特點(diǎn),在教學(xué)中我將采用“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的教學(xué)法,利用分組活動(dòng),組間合作與交流從而達(dá)到對“等邊對等角”和“三線合一”的性質(zhì)的探究的層層深入。另外,我還將采用多媒體輔助教學(xué),呈現(xiàn)更直觀的形象,激發(fā)學(xué)生的積極性、主動(dòng)性,增大課堂容量,提高教學(xué)效率。
四、學(xué)法設(shè)計(jì)
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)的抽象結(jié)論,應(yīng)以觀察、實(shí)驗(yàn)為前提,幾何教學(xué)應(yīng)該把實(shí)驗(yàn)方法與邏輯分析結(jié)合起來。結(jié)合這一理念在探究等腰三角形的性質(zhì)時(shí)我將采用學(xué)生實(shí)驗(yàn)操作、小組合作、觀察發(fā)現(xiàn)、師生互動(dòng)、學(xué)生互動(dòng)的學(xué)習(xí)方式。
五、教學(xué)過程設(shè)計(jì)
。ㄒ唬﹦(chuàng)設(shè)情景、導(dǎo)入新課
、購(fù)習(xí)提問:向同學(xué)們出示幾張精美的建筑物圖片,引入等腰三角形。
。ㄔO(shè)計(jì)意圖:感知數(shù)學(xué)知識和實(shí)際生活聯(lián)系緊密,培養(yǎng)觀察力,感受身邊處處有數(shù)學(xué)。)
、诘妊切蔚南嚓P(guān)概念:
定義:兩條邊相等的三角形叫做等腰三角形。
邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊。
角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。
、墼O(shè)問:等腰三角形具有哪些特殊的性質(zhì)呢?(引入新課)
。ǘ⿲(shí)驗(yàn)探索、得出猜想:
①動(dòng)動(dòng)手:讓同學(xué)們用剪刀在長方形紙片上剪下等腰三角形,每個(gè)人的等腰三角形的大小和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?“比一比”看誰思考的結(jié)論最多。
。ㄔO(shè)計(jì)意圖:以六人小組為單位學(xué)生親自操作實(shí)驗(yàn),填寫導(dǎo)學(xué)案。通過組內(nèi)合作與交流,集思廣益讓學(xué)生用自己的語言在小組內(nèi)表達(dá)自己的發(fā)現(xiàn)。)
、诘贸霾孪耄嚎勺寣W(xué)生有充分的時(shí)間觀察、思考、交流、可能得到的結(jié)論:
(1)等腰三角形是軸對稱圖形
(2)∠B=∠C
(3)BD=CD,AD為底邊上的中線
(4)∠ADB=∠ADC=90°,AD為底邊上的高線(5)∠BAD=∠CAD,AD為頂角平分線
。ㄔO(shè)計(jì)意圖:以小組為單位派代表發(fā)言即組間交流補(bǔ)充,引導(dǎo)歸納提煉,使不同層次的學(xué)生都能感受新知,建立新的知識體系,為進(jìn)一步探索做準(zhǔn)備。)
。ㄈ┳C明猜想、形成定理:
1、結(jié)論(2)∠B=∠C你能用一個(gè)命題表達(dá)這一結(jié)論并論證它的正確性嗎?
。1)語言總結(jié):等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
。2)怎樣論證這個(gè)一命題的正確性呢?
、贋樽C∠B=∠C,需要添加輔助線構(gòu)造以∠B、∠C為元素的兩個(gè)全等三角形。
、谔接懱砑虞o助線的方法,讓學(xué)生選擇一種輔助線并完成證明過程。
設(shè)計(jì)說明:以上過程分小組討論,在探索過程中鼓勵(lì)學(xué)生尋求不同(作高、中線、角平分線)的方法來解決問題。
利用展臺展示各小組不同的證明方法,讓學(xué)生的個(gè)性得到充分的展示。
。3)得出等腰三角形的性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
2、結(jié)論(3)(4)(5)你也能用一個(gè)命題表達(dá)這一結(jié)論并論證它的正確性嗎?
。1)結(jié)合性質(zhì)一的證明鼓勵(lì)學(xué)生證明總結(jié)的命題
。2)得出等腰三角形的性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
(3)“三線合一”的'幾何表達(dá):
如圖,在△ABC中,AB=AC,點(diǎn)D在BC上
、伲1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD
、冢2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(為了方便記憶可以說成“知一求二!”)
、郏3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD
2設(shè)計(jì)意圖:充分調(diào)動(dòng)各組學(xué)生的積極性、主動(dòng)性,采用各小組競爭的方式,參照性質(zhì)1的探索完成本性質(zhì)的探索與證明。通過本性質(zhì)的探索讓不同的學(xué)生有不同的收獲,讓每個(gè)學(xué)生的能力都得到提升。
。ㄋ模⿲(shí)例剖析、鞏固新知:
1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數(shù)
2、例2:在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),∠B=30
。1)求∠ADC的度數(shù)(2)求∠BAD的度數(shù)
此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質(zhì)的綜合運(yùn)用,以及怎么書寫解答題,強(qiáng)調(diào)“三線合一”的表達(dá)過程。
解:(1)∵AB=AC,D是BC邊上的中點(diǎn)(已知)
∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三線合一”)∴∠ADC=∠ADB=90°(垂直的定義)
(2)∵∠BAD+∠B+∠ADB=180°(三角形內(nèi)角和等于180°)∴∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°
。ㄔO(shè)計(jì)意圖:設(shè)計(jì)例題1鞏固等腰三角形“等邊對等角的性質(zhì)”的理解,讓學(xué)生學(xué)以致用,獲得成就感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。而例題2主要是體會等腰三角形“三線合一”性質(zhì)的運(yùn)用。這兩個(gè)例題作為課本上的例題是基礎(chǔ)新知的鞏固,要求能正確的寫出解題過程。)
。ㄎ澹、課堂練習(xí)、總結(jié)所得:
1、先完成課后81頁練習(xí)1、2、3、4題
。ㄔO(shè)計(jì)意圖:作為課本上的練習(xí)題的完成達(dá)到檢測學(xué)生對本節(jié)課知識的掌握情況,從而幫助學(xué)生查漏補(bǔ)缺,鞏固基礎(chǔ)知識。)
2、學(xué)以致用:
。ㄔO(shè)計(jì)意圖:讓書生體會數(shù)學(xué)知識和實(shí)際生活的緊密聯(lián)系)
如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,已經(jīng)知道它的兩邊AB和AC是相等的建筑工人師傅對這個(gè)建筑物做出了兩個(gè)判斷:
、俟と藥煾翟跍y量了∠B為37°以后,并沒有測量∠C,就說∠C的度數(shù)也是37°。
、诠と藥煾狄庸涛蓓,他們通過測量找到了橫梁BC的中點(diǎn)D,然后在AD兩點(diǎn)之間釘上一根木樁,他們認(rèn)為木樁是垂直橫梁的。
請同學(xué)們想想,工人師傅的說法對嗎?請說明理由。
設(shè)計(jì)意圖:運(yùn)用所學(xué)知識解決實(shí)際問題,引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,進(jìn)一步加深學(xué)生對等腰三角形性質(zhì)的理解和運(yùn)用;從數(shù)學(xué)回到實(shí)際生活,自然地滲透數(shù)學(xué)作用于實(shí)際問題的思想。
3、課堂小結(jié)
今天我們學(xué)習(xí)了什么?你覺得在等腰三角形的學(xué)習(xí)中要注意哪些問題?設(shè)計(jì)意圖:幫助學(xué)生回顧,歸納,鞏固所學(xué)知識。A(六)作業(yè)布置、深化提高:
1、課本P84:習(xí)題13.31、2、3;(必做題)
2、(思維發(fā)散)選做題
已知:如圖△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2
求證:∠ACE=∠BC
六、板書設(shè)計(jì)
等腰三角形的性質(zhì)說課稿 5
各位領(lǐng)導(dǎo)、老師們:
大家好!
今天我說課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》八年級上冊第十二章12.3.1等腰三角形性質(zhì)第一課時(shí)。下面,我從教材分析、教法分析、學(xué)法分析、教學(xué)過程、教學(xué)反思五個(gè)方面來匯報(bào)我對這節(jié)課的教學(xué)設(shè)想。
一、教材分析
1、教材的地位與作用:
本節(jié)課內(nèi)容是在學(xué)生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。使學(xué)生學(xué)會分析、學(xué)會證明,在培養(yǎng)學(xué)生的思維能力和推理能力等方面有重要的作用。通過等腰三角形的性質(zhì)反映在一個(gè)三角形中“等邊對等角”的邊角關(guān)系,并且是對軸對稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。等腰三角形的性質(zhì)也是論證兩個(gè)角相等、兩條線段相等、兩條直線垂直的重要依據(jù),因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
2、教學(xué)目標(biāo):
知識技能:理解掌握等腰三角形的性質(zhì);運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計(jì)算。
過程方法:通過實(shí)踐、觀察、證明等腰三角形的性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。
解決問題:通過觀察等腰三角形的對稱性,及運(yùn)用等腰三角形的性質(zhì)解決有關(guān)的問題,提高學(xué)生觀察、分析、歸納、運(yùn)用知識解決問題的能力,發(fā)展應(yīng)用意識。
情感態(tài)度:通過引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識解答問題的活動(dòng)中獲取成功的體驗(yàn),建立學(xué)習(xí)的自信心。
。ǜ鶕(jù)教材內(nèi)容的地位與作用及教學(xué)目標(biāo),因此我將把本節(jié)課的重點(diǎn)確定為:等腰三角形的性質(zhì)的探究和應(yīng)用。由于對文字語言敘述的幾何命題的.證明要求嚴(yán)格且步驟繁瑣,此時(shí)八年級學(xué)生還沒有深刻的理解和熟練的掌握,因此我將把本節(jié)課的難點(diǎn)定為:等腰三角形性質(zhì)的推理證明。)
3、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):等腰三角形的性質(zhì)的探索和應(yīng)用。
難點(diǎn):等腰三角形性質(zhì)的推理證明。
二、教法設(shè)計(jì):
教法設(shè)想:我采用探索發(fā)現(xiàn)法和啟發(fā)式教學(xué)法完成本節(jié)的教學(xué),在教學(xué)中通過創(chuàng)設(shè)情景,設(shè)計(jì)問題,引導(dǎo)學(xué)生自主探索,合作交流,組織學(xué)生動(dòng)手操作,觀察現(xiàn)象,提出猜想,推理論證等。有效地啟發(fā)學(xué)生的思考,使學(xué)生真正成為學(xué)習(xí)的主體。
三、學(xué)法設(shè)計(jì):
在學(xué)生學(xué)習(xí)的過程中,我將從兩個(gè)方面指導(dǎo)學(xué)生學(xué)習(xí),一方面老師大膽放手,讓學(xué)生去自主探究等腰三角形的性質(zhì),另一方面,在對等腰三角形性質(zhì)的證明過程中,老師要巧妙引導(dǎo),分散難點(diǎn)。這樣做既有利于活躍學(xué)生的思維,又能幫助他們探本求源,這樣也體現(xiàn)了以“教師為主導(dǎo),學(xué)生為主體”的新課改背景下的教學(xué)原則。
四、教學(xué)過程:
根據(jù)制定的教學(xué)目標(biāo),圍繞重點(diǎn),突破難點(diǎn),我將從以下七個(gè)方面設(shè)計(jì)我的教學(xué)過程:
1、創(chuàng)設(shè)情景:
首先向同學(xué)們出示精美的建筑物圖片,并提出問題串:(1)什么是軸對稱圖形?這些圖片中有軸對稱圖形嗎? (2)里面有等腰三角形嗎?然后向?qū)W生介紹等腰三角形的定義以及邊角等相關(guān)的概念,由于學(xué)生小學(xué)就已經(jīng)接觸過,所以學(xué)生很容易理解。再提出第三個(gè)問題:(3)a.等腰三角形是軸對稱圖形嗎?b.等腰三角形具備哪些性質(zhì)呢?引出本節(jié)課的課題-我們這節(jié)課來探究等腰三角形的性質(zhì)。--板書課題。
。、動(dòng)手操作,大膽猜想:
、倌贸稣n下制作的等腰三角形的紙片,它是軸對稱圖形嗎?對稱軸是誰?用你手中的紙片說明你的看法?②等腰三角形沿對稱軸折疊后,你能得到哪些結(jié)論?(看誰得到的結(jié)論多)
、鄯纸M討論。(看哪一組氣氛最活躍,結(jié)論又對又多.)
然后小組代表發(fā)言,交流討論結(jié)果。
、軞w納:你能猜想得到等腰三角形具有什么性質(zhì)?你能用文字語言歸納一下嗎?
。ń處熞龑(dǎo)學(xué)生進(jìn)行總結(jié)歸納得出性質(zhì)1,2)
性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡稱“三線合一”)
。ㄔO(shè)計(jì)意圖:由學(xué)生自己動(dòng)手折紙活動(dòng),根據(jù)等腰三角形軸對稱性,大膽猜測等腰三角形的性質(zhì),培養(yǎng)學(xué)生的觀察分析、概括總結(jié)能力。也發(fā)展了學(xué)生的幾何直觀。教師在學(xué)生猜想的基礎(chǔ)上,引導(dǎo)學(xué)生觀察、完善、歸納出性質(zhì)1和性質(zhì)2。培養(yǎng)了學(xué)生進(jìn)行合情推理的能力。)
3、證明猜想,形成定理:
你能證明等腰三角形的性質(zhì)嗎?
對于這種幾何命題的證明需要三大步驟:分析題設(shè)結(jié)論,畫出圖形寫出已知和求證,最后進(jìn)行推理證明。這對于八年級學(xué)段的學(xué)生難度較大,為了突破難點(diǎn),我決定設(shè)計(jì)以下三個(gè)階梯問題:
。1)找出“性質(zhì)1”的題設(shè)和結(jié)論,畫出的圖形,寫出已知和求證。
。2)證明角和角相等有哪些方法?(學(xué)生可能會想到平行線的性質(zhì),全等三角形的性質(zhì))
。3)通過折疊等腰三角形紙片,你認(rèn)為本題用什么方法證明∠B=∠C,寫出證明過程。
問題1的設(shè)計(jì)使得學(xué)生順利地將文字語言轉(zhuǎn)化為符號語言,幫助學(xué)生順利地寫出已知和求證;
問題2提供給學(xué)生了解題思路,引導(dǎo)學(xué)生用舊的知識解決新的問題,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想。找到新知識的生長點(diǎn),就是三角形的全等。
問題3的設(shè)計(jì)目的:因?yàn)檩o助線的添加是本題中的又一難點(diǎn),因此讓學(xué)生對折等腰三角形紙片,使兩腰重合,使學(xué)生在形成感性認(rèn)識的同時(shí),意識到要證明∠B=∠C,關(guān)鍵是將∠B和∠C放在兩三角形中去,構(gòu)造全等三角形,老師再及時(shí)設(shè)問:你認(rèn)為可以通過什么方法可以將∠B和∠C放在兩個(gè)三角形中去呢?再次讓學(xué)生思考,由于對知識的發(fā)生,發(fā)展有了充分的了解,學(xué)生探討以后可能會得出以下三種方法:
。1)作頂角∠BAC的平分線,
。2)作底邊BC的中線,
。3)作底邊BC的高。以作頂角平分線為例,讓一生板演,其他學(xué)生在練習(xí)本上寫出完整的證明過程。以達(dá)到規(guī)范學(xué)生的解題步驟的目的。其他兩種證法,讓學(xué)生課下證明。這樣,學(xué)生就證明了性質(zhì)1,同時(shí)由于△BAD≌△CAD,也很容易得出等腰三角形的頂角平分線平分底邊,并垂直于底邊。用類似的方法還可以證明等腰三角形底邊的中線平分頂角且垂直于底邊,等腰三角形底邊上的高平分頂角且平分底邊,這也就證明了性質(zhì)2。
。ㄔO(shè)計(jì)意圖:教師精心設(shè)計(jì)問題串引導(dǎo)學(xué)生通過動(dòng)手,觀察,猜想,歸納,猜測出等腰三角形的性質(zhì),發(fā)展了學(xué)生的合情推理能力,同時(shí)也讓學(xué)生明確,結(jié)論的正確性需要通過演繹推理加以證明。這樣把對性質(zhì)的證明作為探索活動(dòng)的自然延續(xù)和必要發(fā)展,使學(xué)生感受到合情推理與演繹推理是相輔相成的兩種形式,同時(shí)感受到探索證明同一個(gè)問題的不同思路和方法,發(fā)展了學(xué)生思維的廣闊性和靈活性。)
。4)你能用符號語言表示性質(zhì)1和性質(zhì)2嗎?
。ㄔO(shè)計(jì)意圖:把文字語言轉(zhuǎn)換為符號語言,讓學(xué)生建立符號意識,這有助于學(xué)生理解符號的使用是數(shù)學(xué)表達(dá)和進(jìn)行數(shù)學(xué)思考的重要形式!
4、性質(zhì)的應(yīng)用:
例一:在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______
變式練習(xí):
1、在等腰中,∠A=50°,則 ∠B=___,∠C=___
2、在等腰中,∠A=100°,則∠B=___,∠C=___
設(shè)計(jì)意圖:此例題的重點(diǎn)是運(yùn)用等腰三角形“等邊對等角”這一性質(zhì)和三角形的內(nèi)角和,突出頂角和底角的關(guān)系,如
例一,學(xué)生就比較容易得出正確結(jié)果,對變式練習(xí)(1)、(2)學(xué)生得出正確的結(jié)果就有困難,容易漏解,讓學(xué)生把變式題與例一進(jìn)行比較兩題的條件,讓學(xué)生認(rèn)識等腰三角形在沒有明確頂角和底角時(shí),應(yīng)分類討論:變式1(如圖)①當(dāng)∠A=50°為頂角時(shí),則∠B=65°,∠C=65°。②當(dāng)∠A=50°為底角時(shí),則∠B=50°,∠C=80°;或∠B=80°,∠C=50°。變式2①當(dāng)∠A=100°為頂角時(shí),則∠B=40°,∠C=40°。②當(dāng)∠A=100°為底角時(shí),則△ABC不存在。由此得出,等腰三角形中已知一個(gè)角可以求出另兩個(gè)角(頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°)。
例二:在等腰△ABC中,AB=5,AC=6,則△ABC的周長=_______
變式練習(xí):在等腰△ABC中,AB=5,AC=12,則 △ABC的周長=______
。ㄔO(shè)計(jì)意圖:此例題的重點(diǎn)是運(yùn)用等腰三角形的定義,以及等腰三角形腰和底邊的關(guān)系,并強(qiáng)調(diào)在沒有明確腰和底邊時(shí),應(yīng)該分兩種情況討論。如例二,①當(dāng)AB=5為腰時(shí),則三邊為5,5,6;②當(dāng)AB=5為底時(shí),則三邊為6,6,5。變式練習(xí)①:當(dāng)AB=5為腰時(shí),三邊為5,5,12;②當(dāng)AB=5為底時(shí),三邊為12,12,5。此時(shí)同學(xué)們就會毫不猶豫地得出三角形的周長,這時(shí)老師就可以提出質(zhì)疑,讓同學(xué)們之間討論(學(xué)生容易忽視三角形三邊關(guān)系,看能否構(gòu)成一個(gè)三角形)。
例三、如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。
。ɡ3是課本例題,有一定難度,讓學(xué)生展開討論,老師參與討論,認(rèn)真聽取學(xué)生分析,引導(dǎo)學(xué)生找出角之間的關(guān)系,利用方程的思想解決問題,并書寫出解答過程。本題運(yùn)用了等腰三角形性質(zhì)1,并體現(xiàn)了利用方程解決幾何問題的思想。)
例四:
在△ABC中,點(diǎn)D在BC上,給出4個(gè)條件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2個(gè)條件作題設(shè),另外2個(gè)條件作結(jié)論,你能寫出一個(gè)正確的命題嗎?看誰寫得多。(分組討論搶答)
5、鞏固提高
。1)等腰三角形一腰上的高與另一腰的夾角為30°,則這個(gè)等腰三角形頂角為度。
(2)如圖,在△ABC中,AB=AC,D是BC邊上的中點(diǎn),∠B=30。求∠1和∠ADC的度數(shù)。
。3)課本本章數(shù)學(xué)活動(dòng)三“等腰三角形中相等的線段”
設(shè)計(jì)意圖:
(1)題運(yùn)用等腰三角形的性質(zhì)1及等腰三角形一腰上的高的畫法,由于題目沒有圖,要用到分類討論的數(shù)學(xué)思想,學(xué)生能正確畫出銳角和鈍角三角形兩種圖形就容易得出結(jié)果,也滲透了一題多解。
。2)題同時(shí)運(yùn)用了等腰三角形的性質(zhì)1,性質(zhì)2,還有三角形的內(nèi)角和這三個(gè)知識點(diǎn),培養(yǎng)學(xué)生對于知識的靈活運(yùn)用,“討論”是本章的數(shù)學(xué)活動(dòng)3“等腰三角形中相等的線段”。與等腰性質(zhì)的證明思路類似,先通過等腰三角形的對稱性猜想距離是相等的,然后通過做輔助線構(gòu)造全等三角形來進(jìn)行嚴(yán)密的推理。更加說明了合情推理和演繹推理是相輔相成的。
6、課堂小結(jié):不僅僅說你收獲了什么,而是讓學(xué)生從知識上,思想方法上,以及輔助線的做法上等方面具體總結(jié)一下。然后教師結(jié)合學(xué)生的回答完善本節(jié)知識結(jié)構(gòu)。學(xué)生對于自己的疑惑提出小組內(nèi)交流,還沒解決則全班交流。
7、布置作業(yè):
P55練習(xí)1、2、3題
P56習(xí)題1、4、6,(選做7,8題)
等腰三角形的性質(zhì)說課稿 6
一、教材分析
本節(jié)課是在學(xué)習(xí)了軸對稱圖形以及全等三角形的判定的基礎(chǔ)上進(jìn)行的,主要學(xué)習(xí)等腰三角形的“等邊對等角”和“等腰三角形的三線合一”兩個(gè)性質(zhì)。本節(jié)內(nèi)容是對前面知識的深化和應(yīng)用,它的性質(zhì)定理不僅是證明角相等、線段相等及兩直線互相垂直的依據(jù),而且也是后繼學(xué)習(xí)線段垂直平分線、等腰梯形的預(yù)備知識。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
二、教學(xué)目的
。ㄒ唬┲R目標(biāo):知道等腰三角形的定義及相關(guān)概念,理解等腰三角形的性質(zhì),會利用等腰三角形的性質(zhì)進(jìn)行簡單的推理、判斷和計(jì)算。
。ǘ┠芰δ繕(biāo):通過實(shí)踐,觀察,證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理和演繹推理能力,通過運(yùn)用等腰三角形的性質(zhì)解決有關(guān)問題,提高分析問題、解決問題能力。
。ㄈ┣楦心繕(biāo):在實(shí)際操作動(dòng)手中激發(fā)學(xué)生的學(xué)習(xí)興趣,體驗(yàn)幾何發(fā)現(xiàn)的.樂趣,從而增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識。
三、教學(xué)重、難點(diǎn)
。ㄒ唬┲攸c(diǎn):等腰三角形的性質(zhì)的探究及應(yīng)用
。ǘ╇y點(diǎn):等腰三角形“三線合一”性質(zhì)的運(yùn)用
四、教學(xué)方法
。ㄒ唬┙谭ǎ罕竟(jié)課采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。
。ǘ⿲W(xué)法:本節(jié)課主要引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運(yùn)用舊知識的鑰匙去打開新知識的大門,進(jìn)入新知識的領(lǐng)域,從不同角度去分析、解決新問題,發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
五、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情景,引入新知
我們學(xué)過三角形,你都知道哪些特殊的三角形?今天我們來學(xué)習(xí)其中的一種特殊的三角形——等腰三角形。
等腰三角形的有關(guān)概念,軸對稱圖形的有關(guān)概念。
提問:等腰三角形是不是軸對稱圖形?什么是它的對稱軸?
。ǘ⿲(shí)驗(yàn)探索,大膽猜想
教師演示(模型)等腰三角形是軸對稱圖形的實(shí)驗(yàn),并讓學(xué)生做同樣的實(shí)驗(yàn),引導(dǎo)學(xué)生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質(zhì)。
。ㄈ┳C明猜想,形成定理
讓學(xué)生由實(shí)驗(yàn)或演示指出各自的發(fā)現(xiàn),并加以引導(dǎo),用規(guī)范的數(shù)學(xué)語言進(jìn)行逐條歸納,最后得出等腰三角形的性質(zhì)定理1、2。
1、性質(zhì)定理1:
等腰三角形的兩個(gè)底角相等
在△ABC中,∵AB=AC()∴∠B=∠C()
2、性質(zhì)定理2:
等腰三角形的頂角平分線、底邊上的中線和高線互相重合
(1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()
。2)∵AB=ACBD=DC() ∴∠1=∠2AD⊥BC()
。3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()
。ㄋ模⿷(yīng)用舉例,強(qiáng)化訓(xùn)練
指導(dǎo)學(xué)生表述證明過程。
思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?
。ㄎ澹w納小結(jié),布置作業(yè)
1、歸納:
。1)等腰三角形的性質(zhì)定理。
(2)等邊三角形的性質(zhì)
。3)利用等腰三角形的性質(zhì)定理可證明:兩角相等,兩線段相等,兩直線互相垂直。
。4)聯(lián)想方法要經(jīng)常運(yùn)用,對解題大有裨益。
2、作業(yè)布置:
(1)必做題:
書本課后作業(yè)
。2)選做題:搜集日常生活中應(yīng)用等腰三角形的實(shí)例,并思考這些實(shí)例運(yùn)用了等腰三角形的哪些性質(zhì)?
等腰三角形的性質(zhì)說課稿 7
尊敬的各位評委、老師:
大家好!
今天,我將為大家?guī)淼氖浅踔袛?shù)學(xué)中關(guān)于“等腰三角形的性質(zhì)”的說課內(nèi)容。本節(jié)課旨在通過直觀感知、操作確認(rèn)、邏輯推理等教學(xué)活動(dòng),使學(xué)生理解和掌握等腰三角形的基本性質(zhì),并能運(yùn)用這些性質(zhì)解決一些簡單的實(shí)際問題。
一、教材分析
等腰三角形是初中數(shù)學(xué)幾何部分的重要內(nèi)容,它不僅在平面幾何中占有重要地位,而且在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)課的內(nèi)容包括等腰三角形的定義、性質(zhì)(兩邊相等、兩角相等、三線合一)以及這些性質(zhì)的應(yīng)用。
二、學(xué)情分析
本節(jié)課面向的是初中二年級的學(xué)生,他們已經(jīng)具備了一定的幾何基礎(chǔ),如直線的性質(zhì)、角的性質(zhì)等。但學(xué)生的抽象思維能力和邏輯推理能力還在發(fā)展中,因此需要通過直觀演示和動(dòng)手操作來幫助他們理解和掌握等腰三角形的性質(zhì)。
三、教學(xué)目標(biāo)
1. 知識與技能目標(biāo):使學(xué)生理解等腰三角形的定義,掌握等腰三角形的基本性質(zhì),并能運(yùn)用這些性質(zhì)進(jìn)行簡單的計(jì)算和證明。
2. 過程與方法目標(biāo):通過觀察、實(shí)驗(yàn)、推理等活動(dòng),培養(yǎng)學(xué)生的觀察能力和邏輯推理能力。
3. 情感態(tài)度與價(jià)值觀目標(biāo):激發(fā)學(xué)生對幾何學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識。
四、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn):理解并證明等腰三角形的“三線合一”性質(zhì)。
五、教學(xué)方法
本節(jié)課采用直觀演示法、動(dòng)手操作法、討論交流法和歸納總結(jié)法相結(jié)合的教學(xué)方法。通過直觀演示和動(dòng)手操作,幫助學(xué)生形成對等腰三角形性質(zhì)的直觀認(rèn)識;通過討論交流和歸納總結(jié),提高學(xué)生的思維能力和表達(dá)能力。
六、教學(xué)過程
1. 導(dǎo)入新課:通過展示一些等腰三角形的`實(shí)物圖片或動(dòng)畫,激發(fā)學(xué)生的學(xué)習(xí)興趣,引出本節(jié)課的主題。
2. 新知講授:首先介紹等腰三角形的定義,然后通過觀察、測量和推理,引導(dǎo)學(xué)生發(fā)現(xiàn)等腰三角形的基本性質(zhì)。
3. 鞏固練習(xí):設(shè)計(jì)一些與等腰三角形性質(zhì)相關(guān)的練習(xí)題,讓學(xué)生在實(shí)際操作中鞏固所學(xué)知識。
4. 課堂小結(jié):對本節(jié)課所學(xué)內(nèi)容進(jìn)行總結(jié),強(qiáng)調(diào)等腰三角形性質(zhì)的重要性和應(yīng)用價(jià)值。
5. 布置作業(yè):布置一些與等腰三角形性質(zhì)相關(guān)的練習(xí)題和思考題,供學(xué)生課后復(fù)習(xí)和鞏固。
七、板書設(shè)計(jì)
本節(jié)課的板書設(shè)計(jì)將突出等腰三角形的定義和性質(zhì),以及這些性質(zhì)的應(yīng)用。通過簡潔明了的板書,幫助學(xué)生理清思路,加深對所學(xué)內(nèi)容的理解。
以上就是我對“等腰三角形的性質(zhì)”這一節(jié)課的教學(xué)設(shè)計(jì)思路,謝謝大家!
等腰三角形的性質(zhì)說課稿 8
尊敬的各位領(lǐng)導(dǎo)、老師:
大家好!
今天,我將為大家分享的是初中數(shù)學(xué)中關(guān)于“等腰三角形的性質(zhì)”的教學(xué)設(shè)計(jì)。本節(jié)課旨在通過一系列的教學(xué)活動(dòng),使學(xué)生掌握等腰三角形的基本性質(zhì),并能靈活運(yùn)用這些性質(zhì)解決實(shí)際問題。
一、教材地位與作用
等腰三角形是初中數(shù)學(xué)幾何部分的重要基礎(chǔ)內(nèi)容,它不僅在平面幾何中占有重要地位,而且在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)課的學(xué)習(xí)將為后續(xù)學(xué)習(xí)其他幾何圖形和解決實(shí)際問題打下堅(jiān)實(shí)的基礎(chǔ)。
二、學(xué)情分析
本節(jié)課面向的是初中二年級的學(xué)生,他們已經(jīng)具備了一定的幾何基礎(chǔ),但抽象思維能力和邏輯推理能力還在發(fā)展中。因此,在教學(xué)過程中需要注重直觀演示和動(dòng)手操作,幫助學(xué)生形成對等腰三角形性質(zhì)的直觀認(rèn)識。
三、教學(xué)目標(biāo)
1. 知識與技能:理解等腰三角形的定義,掌握等腰三角形的基本性質(zhì)(兩邊相等、兩角相等、三線合一),并能運(yùn)用這些性質(zhì)進(jìn)行簡單的計(jì)算和證明。
2. 過程與方法:通過觀察、實(shí)驗(yàn)、推理等活動(dòng),培養(yǎng)學(xué)生的觀察能力和邏輯推理能力,提高學(xué)生的幾何素養(yǎng)。
3. 情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生對幾何學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識,增強(qiáng)學(xué)生的自信心和成就感。
四、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn):理解并證明等腰三角形的“三線合一”性質(zhì),以及靈活運(yùn)用這些性質(zhì)解決實(shí)際問題。
五、教學(xué)方法與手段
本節(jié)課采用直觀演示法、動(dòng)手操作法、討論交流法和歸納總結(jié)法相結(jié)合的教學(xué)方法。通過多媒體展示、實(shí)物模型、動(dòng)手操作等方式,幫助學(xué)生形成對等腰三角形性質(zhì)的直觀認(rèn)識;通過討論交流和歸納總結(jié),提高學(xué)生的`思維能力和表達(dá)能力。
六、教學(xué)過程
1. 導(dǎo)入新課:通過展示一些等腰三角形的實(shí)物圖片或動(dòng)畫,激發(fā)學(xué)生的學(xué)習(xí)興趣,引出本節(jié)課的主題。
2. 新知講授:首先介紹等腰三角形的定義,然后通過觀察、測量和推理,引導(dǎo)學(xué)生發(fā)現(xiàn)等腰三角形的基本性質(zhì)。在講解過程中,注重引導(dǎo)學(xué)生思考、提問和討論,培養(yǎng)學(xué)生的探究精神和創(chuàng)新意識。
3. 鞏固練習(xí):設(shè)計(jì)一些與等腰三角形性質(zhì)相關(guān)的練習(xí)題,讓學(xué)生在實(shí)際操作中鞏固所學(xué)知識。同時(shí),鼓勵(lì)學(xué)生嘗試用多種方法解決問題,培養(yǎng)他們的靈活性和創(chuàng)造性。
4. 課堂小結(jié):對本節(jié)課所學(xué)內(nèi)容進(jìn)行總結(jié),強(qiáng)調(diào)等腰三角形性質(zhì)的重要性和應(yīng)用價(jià)值。同時(shí),鼓勵(lì)學(xué)生反思自己的學(xué)習(xí)過程和收獲,培養(yǎng)他們的自我評價(jià)能力。
5. 布置作業(yè):布置一些與等腰三角形性質(zhì)相關(guān)的練習(xí)題和思考題,供學(xué)生課后復(fù)習(xí)和鞏固。同時(shí),鼓勵(lì)學(xué)生尋找生活中的等腰三角形實(shí)例,培養(yǎng)他們的觀察能力和應(yīng)用能力。
七、板書設(shè)計(jì)
本節(jié)課的板書設(shè)計(jì)將突出等腰三角形的定義和性質(zhì),以及這些性質(zhì)的應(yīng)用。通過簡潔明了的板書,幫助學(xué)生理清思路,加深對所學(xué)內(nèi)容的理解。同時(shí),注重板書的美觀性和邏輯性,提高學(xué)生的學(xué)習(xí)興趣和注意力。
以上就是我對“等腰三角形的性質(zhì)”這一節(jié)課的教學(xué)設(shè)計(jì)思路,謝謝大家!
等腰三角形的性質(zhì)說課稿 9
尊敬的各位評委、老師:
大家好!
今天,我將為大家介紹的是初中數(shù)學(xué)中的一個(gè)重要內(nèi)容——《等腰三角形的性質(zhì)》。
一、教材分析
本節(jié)課選自初中數(shù)學(xué)教材,是三角形章節(jié)中的一節(jié)核心內(nèi)容。等腰三角形作為一種特殊的三角形,在幾何學(xué)中具有重要的地位,其性質(zhì)的學(xué)習(xí)不僅能夠加深學(xué)生對三角形性質(zhì)的理解,還能為后續(xù)的幾何學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)。
二、學(xué)情分析
本節(jié)課的教學(xué)對象是初中二年級的學(xué)生,他們已經(jīng)具備了一定的幾何基礎(chǔ)知識,如三角形的定義、分類及基本性質(zhì)等。然而,等腰三角形的性質(zhì)對他們來說仍是一個(gè)新的知識點(diǎn),需要通過具體實(shí)例和直觀演示來幫助他們理解和掌握。
三、教學(xué)目標(biāo)
1. 知識與技能:掌握等腰三角形的定義及基本性質(zhì),包括等腰三角形的兩邊相等、兩角相等、底邊上的高與中線重合等。
2. 過程與方法:通過動(dòng)手操作、觀察思考、合作交流等方式,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3. 情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生對幾何學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的幾何直覺和審美能力。
四、教學(xué)重難點(diǎn)
1. 教學(xué)重點(diǎn):等腰三角形的定義及基本性質(zhì)。
2. 教學(xué)難點(diǎn):理解并應(yīng)用等腰三角形的性質(zhì)解決實(shí)際問題。
五、教學(xué)方法
本節(jié)課采用“問題引導(dǎo)—?jiǎng)邮植僮鳌献鹘涣鳌獨(dú)w納總結(jié)”的教學(xué)模式,通過引導(dǎo)學(xué)生觀察、思考、討論,激發(fā)他們的學(xué)習(xí)興趣,培養(yǎng)他們的思維能力。
六、教學(xué)過程
1. 導(dǎo)入新課:通過展示生活中的等腰三角形實(shí)例,如等腰梯形、等腰三角形屋頂?shù),引出等腰三角形的概念?/p>
2. 學(xué)習(xí)新知:引導(dǎo)學(xué)生觀察等腰三角形的特點(diǎn),通過動(dòng)手操作和合作交流,歸納出等腰三角形的性質(zhì)。
3. 鞏固練習(xí):設(shè)計(jì)一系列與等腰三角形性質(zhì)相關(guān)的練習(xí)題,讓學(xué)生在實(shí)際應(yīng)用中鞏固所學(xué)知識。
4. 課堂小結(jié):對本節(jié)課的'學(xué)習(xí)內(nèi)容進(jìn)行回顧和總結(jié),強(qiáng)調(diào)等腰三角形性質(zhì)的重要性及應(yīng)用價(jià)值。
5. 布置作業(yè):布置與等腰三角形性質(zhì)相關(guān)的課后作業(yè),進(jìn)一步鞏固和拓展學(xué)生的知識面。
七、板書設(shè)計(jì)
本節(jié)課的板書設(shè)計(jì)將圍繞等腰三角形的定義、性質(zhì)及應(yīng)用展開,注重條理清晰、重點(diǎn)突出。
八、教學(xué)反思
本節(jié)課通過直觀演示和動(dòng)手操作相結(jié)合的方式,激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的思維能力。然而,在教學(xué)過程中仍需關(guān)注學(xué)生的個(gè)體差異,因材施教,確保每位學(xué)生都能理解和掌握等腰三角形的性質(zhì)。
以上就是我對《等腰三角形的性質(zhì)》這一節(jié)課的教學(xué)設(shè)計(jì),謝謝大家!
等腰三角形的性質(zhì)說課稿 10
尊敬的各位領(lǐng)導(dǎo)、老師:
大家好!
今天,我將分享的是初中數(shù)學(xué)中關(guān)于《等腰三角形的性質(zhì)》的教學(xué)設(shè)計(jì)。
一、教材地位與作用
等腰三角形作為三角形家族中的重要成員,其性質(zhì)的學(xué)習(xí)不僅是對三角形知識的深化,更是為后續(xù)學(xué)習(xí)平行四邊形、梯形等幾何圖形打下堅(jiān)實(shí)基礎(chǔ)。本節(jié)課旨在通過等腰三角形的性質(zhì)教學(xué),培養(yǎng)學(xué)生的幾何直覺和邏輯推理能力。
二、學(xué)情分析
本節(jié)課面向初中二年級的學(xué)生,他們已初步掌握三角形的基本性質(zhì),但對等腰三角形的特殊性質(zhì)尚缺乏深入了解。因此,在教學(xué)過程中,我將注重引導(dǎo)學(xué)生通過觀察、操作、思考來發(fā)現(xiàn)和理解等腰三角形的性質(zhì)。
三、教學(xué)目標(biāo)
1. 知識與技能:理解等腰三角形的定義,掌握等腰三角形的性質(zhì),并能運(yùn)用這些性質(zhì)解決實(shí)際問題。
2. 過程與方法:通過動(dòng)手操作、觀察思考、合作交流等學(xué)習(xí)方式,提高學(xué)生的幾何素養(yǎng)和解決問題的能力。
3. 情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生對幾何學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的團(tuán)隊(duì)合作精神和創(chuàng)新意識。
四、教學(xué)重難點(diǎn)
1. 教學(xué)重點(diǎn):等腰三角形的定義及基本性質(zhì)。
2. 教學(xué)難點(diǎn):如何引導(dǎo)學(xué)生通過觀察、操作、思考來發(fā)現(xiàn)和理解等腰三角形的性質(zhì),并能靈活運(yùn)用這些性質(zhì)解決實(shí)際問題。
五、教學(xué)方法
本節(jié)課采用“情境導(dǎo)入—?jiǎng)邮植僮鳌献鹘涣鳌獨(dú)w納總結(jié)”的教學(xué)模式,通過創(chuàng)設(shè)情境激發(fā)學(xué)生的學(xué)習(xí)興趣,引導(dǎo)學(xué)生通過觀察、操作、思考來發(fā)現(xiàn)和理解等腰三角形的性質(zhì)。
六、教學(xué)過程
1. 情境導(dǎo)入:通過展示生活中的等腰三角形實(shí)例,如等腰三角形屋頂、等腰梯形等,引出等腰三角形的'概念。
2. 動(dòng)手操作:引導(dǎo)學(xué)生用紙片剪出等腰三角形,并觀察其特點(diǎn),通過折疊、測量等方式發(fā)現(xiàn)等腰三角形的性質(zhì)。
3. 合作交流:組織學(xué)生分組討論,分享各自發(fā)現(xiàn)的等腰三角形性質(zhì),并通過合作交流達(dá)成共識。
4. 歸納總結(jié):引導(dǎo)學(xué)生對所學(xué)知識進(jìn)行歸納總結(jié),形成完整的知識體系。
5. 鞏固練習(xí):設(shè)計(jì)一系列與等腰三角形性質(zhì)相關(guān)的練習(xí)題,讓學(xué)生在應(yīng)用中鞏固所學(xué)知識。
七、板書設(shè)計(jì)
本節(jié)課的板書設(shè)計(jì)將簡潔明了地呈現(xiàn)等腰三角形的定義、性質(zhì)及應(yīng)用,幫助學(xué)生形成清晰的知識框架。
八、教學(xué)反思
在教學(xué)過程中,我將關(guān)注學(xué)生的個(gè)體差異,因材施教,確保每位學(xué)生都能理解和掌握等腰三角形的性質(zhì)。同時(shí),我也將不斷反思自己的教學(xué)方法和手段,努力提高自己的教學(xué)水平。
以上就是我對《等腰三角形的性質(zhì)》這一節(jié)課的教學(xué)設(shè)計(jì),謝謝大家!
等腰三角形的性質(zhì)說課稿 11
尊敬的各位評委、老師:
大家好!
今天,我將為大家?guī)硪惶藐P(guān)于“等腰三角形的性質(zhì)”的說課。本節(jié)課旨在通過直觀感知、動(dòng)手操作和邏輯推理,使學(xué)生理解和掌握等腰三角形的基本性質(zhì),并能靈活運(yùn)用這些性質(zhì)解決實(shí)際問題。
一、教材分析
本節(jié)課選自初中數(shù)學(xué)教材,是三角形章節(jié)中的重要內(nèi)容。等腰三角形作為特殊的三角形,其性質(zhì)在幾何學(xué)中占有重要地位。通過本節(jié)課的學(xué)習(xí),學(xué)生將進(jìn)一步深化對三角形性質(zhì)的理解,為后續(xù)學(xué)習(xí)奠定基礎(chǔ)。
二、學(xué)情分析
本節(jié)課面向初中二年級學(xué)生。學(xué)生已經(jīng)具備了一定的幾何基礎(chǔ)和邏輯推理能力,但抽象思維能力和空間想象能力仍需進(jìn)一步提升。因此,在教學(xué)過程中,我將注重直觀演示和動(dòng)手操作,幫助學(xué)生更好地理解和掌握等腰三角形的.性質(zhì)。
三、教學(xué)目標(biāo)
1. 知識與技能目標(biāo):使學(xué)生理解等腰三角形的定義,掌握等腰三角形的性質(zhì),包括兩邊相等、兩角相等以及三線合一等。
2. 過程與方法目標(biāo):通過直觀感知、動(dòng)手操作和邏輯推理,培養(yǎng)學(xué)生的幾何直觀能力和邏輯思維能力。
3. 情感態(tài)度與價(jià)值觀目標(biāo):激發(fā)學(xué)生對幾何學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識和合作精神。
四、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):等腰三角形的性質(zhì)及其證明。
教學(xué)難點(diǎn):理解并靈活運(yùn)用等腰三角形的性質(zhì)解決實(shí)際問題。
五、教學(xué)方法
本節(jié)課將采用直觀演示法、動(dòng)手操作法和邏輯推理法相結(jié)合的教學(xué)方法。通過直觀演示,幫助學(xué)生理解等腰三角形的定義和性質(zhì);通過動(dòng)手操作,加深學(xué)生對性質(zhì)的理解和掌握;通過邏輯推理,培養(yǎng)學(xué)生的邏輯思維能力。
六、教學(xué)過程
1. 導(dǎo)入新課:通過復(fù)習(xí)三角形的分類,引出等腰三角形的定義,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2. 講授新知:通過直觀演示和動(dòng)手操作,引導(dǎo)學(xué)生發(fā)現(xiàn)并總結(jié)等腰三角形的性質(zhì)。
3. 鞏固練習(xí):設(shè)計(jì)一系列練習(xí)題,讓學(xué)生運(yùn)用所學(xué)知識解決實(shí)際問題,加深對性質(zhì)的理解和掌握。
4. 課堂小結(jié):總結(jié)本節(jié)課的知識點(diǎn),強(qiáng)調(diào)等腰三角形性質(zhì)的重要性。
5. 布置作業(yè):布置適量的課后作業(yè),鞏固所學(xué)知識,提高應(yīng)用能力。
七、板書設(shè)計(jì)
本節(jié)課的板書設(shè)計(jì)將突出等腰三角形的定義和性質(zhì),條理清晰,便于學(xué)生理解和記憶。
八、教學(xué)反思
在教學(xué)過程中,我將關(guān)注學(xué)生的反應(yīng)和表現(xiàn),及時(shí)調(diào)整教學(xué)策略和方法,確保教學(xué)效果。同時(shí),我也會不斷反思和總結(jié)自己的教學(xué)經(jīng)驗(yàn),不斷提高自己的教學(xué)水平。
以上就是我關(guān)于“等腰三角形的性質(zhì)”的說課內(nèi)容,謝謝大家!
等腰三角形的性質(zhì)說課稿 12
尊敬的各位領(lǐng)導(dǎo)、老師:
大家好!
今天,我為大家?guī)淼氖恰暗妊切蔚男再|(zhì)”這一節(jié)課的說課內(nèi)容。本節(jié)課旨在通過引導(dǎo)學(xué)生觀察、思考和實(shí)踐,使他們深入理解等腰三角形的性質(zhì),并能夠靈活運(yùn)用這些性質(zhì)解決實(shí)際問題。
一、教材分析
本節(jié)課選自初中數(shù)學(xué)教材,是三角形章節(jié)中的核心內(nèi)容之一。等腰三角形作為三角形的一種特殊形式,其性質(zhì)在幾何學(xué)中具有重要意義。本節(jié)課的學(xué)習(xí)將為后續(xù)學(xué)習(xí)其他幾何知識奠定基礎(chǔ)。
二、學(xué)情分析
本節(jié)課面向初中二年級學(xué)生。學(xué)生已經(jīng)掌握了一定的幾何基礎(chǔ)知識,但抽象思維能力和空間想象能力仍有待提升。因此,在教學(xué)過程中,我將注重引導(dǎo)學(xué)生通過觀察、思考和實(shí)踐來理解和掌握等腰三角形的性質(zhì)。
三、教學(xué)目標(biāo)
1. 知識與技能目標(biāo):使學(xué)生理解等腰三角形的定義,掌握等腰三角形的性質(zhì),包括兩邊相等、底角相等以及三線合一等。
2. 過程與方法目標(biāo):通過觀察、思考和實(shí)踐,培養(yǎng)學(xué)生的幾何直觀能力和邏輯思維能力。
3. 情感態(tài)度與價(jià)值觀目標(biāo):激發(fā)學(xué)生對幾何學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識和合作精神。
四、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):等腰三角形的性質(zhì)及其證明。
教學(xué)難點(diǎn):理解并靈活運(yùn)用等腰三角形的性質(zhì)解決實(shí)際問題。
五、教學(xué)方法
本節(jié)課將采用情境教學(xué)法、問題引導(dǎo)法和合作學(xué)習(xí)法相結(jié)合的教學(xué)方法。通過創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣;通過問題引導(dǎo),幫助學(xué)生逐步深入理解等腰三角形的性質(zhì);通過合作學(xué)習(xí),培養(yǎng)學(xué)生的合作精神和解決問題的能力。
六、教學(xué)過程
1. 導(dǎo)入新課:通過創(chuàng)設(shè)一個(gè)與等腰三角形相關(guān)的情境,引出本節(jié)課的主題,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2. 講授新知:通過問題引導(dǎo),引導(dǎo)學(xué)生觀察等腰三角形的特點(diǎn),并總結(jié)出等腰三角形的性質(zhì)。同時(shí),通過舉例和證明,加深學(xué)生對性質(zhì)的理解和掌握。
3. 鞏固練習(xí):設(shè)計(jì)一系列練習(xí)題,讓學(xué)生運(yùn)用所學(xué)知識解決實(shí)際問題,加深對性質(zhì)的理解和掌握。同時(shí),通過合作學(xué)習(xí),培養(yǎng)學(xué)生的合作精神和解決問題的'能力。
4. 課堂小結(jié):總結(jié)本節(jié)課的知識點(diǎn),強(qiáng)調(diào)等腰三角形性質(zhì)的重要性。同時(shí),鼓勵(lì)學(xué)生提出自己的疑問和想法,培養(yǎng)學(xué)生的創(chuàng)新意識和批判性思維。
5. 布置作業(yè):布置適量的課后作業(yè),鞏固所學(xué)知識,提高應(yīng)用能力。
七、板書設(shè)計(jì)
本節(jié)課的板書設(shè)計(jì)將突出等腰三角形的定義和性質(zhì),條理清晰,便于學(xué)生理解和記憶。同時(shí),也會適當(dāng)加入一些圖形和符號,幫助學(xué)生更好地理解和掌握等腰三角形的性質(zhì)。
八、教學(xué)反思
在教學(xué)過程中,我將關(guān)注學(xué)生的反應(yīng)和表現(xiàn),及時(shí)調(diào)整教學(xué)策略和方法,確保教學(xué)效果。同時(shí),我也會不斷反思和總結(jié)自己的教學(xué)經(jīng)驗(yàn),不斷提高自己的教學(xué)水平。
以上就是我關(guān)于“等腰三角形的性質(zhì)”的說課內(nèi)容,謝謝大家!
【等腰三角形的性質(zhì)說課稿】相關(guān)文章:
《等腰三角形性質(zhì)》說課稿12-29
等腰三角形的性質(zhì)說課稿11-28
等腰三角形的性質(zhì)說課稿11-23
《等腰三角形性質(zhì)》說課稿12-29
等腰三角形的性質(zhì)說課稿 初中數(shù)學(xué)等腰三角形說課稿02-02
等腰三角形的性質(zhì)說課稿9篇12-04
《等腰三角形的性質(zhì)》說課稿(精選11篇)06-05
《小數(shù)性質(zhì)》說課稿12-27
矩形的性質(zhì)說課稿01-12