中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

數(shù)學學業(yè)水平考高中知識點

時間:2023-07-13 18:41:17 興亮 知識點總結(jié) 我要投稿

數(shù)學學業(yè)水平考高中知識點

  在平凡的學習生活中,看到知識點,都是先收藏再說吧!知識點就是“讓別人看完能理解”或者“通過練習我能掌握”的內(nèi)容。你知道哪些知識點是真正對我們有幫助的嗎?以下是小編為大家整理的數(shù)學學業(yè)水平考高中知識點,歡迎大家分享。

數(shù)學學業(yè)水平考高中知識點

  數(shù)學學業(yè)水平考高中知識點 1

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

 、谶^兩點的直線的斜率公式:

  注意下面四點:

  (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);

  (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

  (3)直線方程

  ①點斜式:直線斜率k,且過點

  注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的`方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

 、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b

 、蹆牲c式:直線兩點,

  ④截矩式:其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

  ⑤一般式:(A,B不全為0)

 、菀话闶剑(A,B不全為0)

  注意:○1各式的適用范圍

  ○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (4)直線系方程:即具有某一共同性質(zhì)的直線

  數(shù)學學業(yè)水平考高中知識點 2

  1.拋物線是軸對稱圖形。對稱軸為直線

  x=-b/2a。

  對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點個數(shù)

  Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

  Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

  Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的.取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  數(shù)學學業(yè)水平考高中知識點 3

  復數(shù)定義

  我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當虛部等于零時,這個復數(shù)可以視為實數(shù);當z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復系數(shù)多項式在復數(shù)域中總有根。

  復數(shù)表達式

  虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達式為:

  a=a+ia為實部,i為虛部

  復數(shù)運算法則

  加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;

  減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;

  乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

  除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.

  例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。

  復數(shù)與幾何

 、賻缀涡问

  復數(shù)z=a+bi被復平面上的點z(a,b)確定。這種形式使復數(shù)的`問題可以借助圖形來研究。也可反過來用復數(shù)的理論解決一些幾何問題。

  ②向量形式

  復數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復數(shù)四則運算得到恰當?shù)膸缀谓忉尅?/p>

 、廴切问

  復數(shù)z=a+bi化為三角形式

  數(shù)學學業(yè)水平考高中知識點 4

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數(shù)量:只有大小,沒有方向的量.

  (3)有向線段的三要素:起點、方向、長度.

  (4)零向量:長度為0的.向量.

  (5)單位向量:長度等于1個單位的向量.

  (6)平行向量(共線向量):方向相同或相反的非零向量.

  ※零向量與任一向量平行.

  (7)相等向量:長度相等且方向相同的向量.

  2.向量加法運算:

 、湃切畏▌t的特點:首尾相連.

 、破叫兴倪呅畏▌t的特點:共起點

  數(shù)學學業(yè)水平考高中知識點 5

  1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.

  2.所謂輾轉(zhuǎn)相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).

  3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).

  4.秦九韶算法是一種用于計算一元二次多項式的值的方法.

  5.常用的排序方法是直接插入排序和冒泡排序.

  6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.

  7.將進制的數(shù)化為十進制數(shù)的'方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)則計算出結(jié)果.

  8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應的進制數(shù).

  1.重點:理解輾轉(zhuǎn)相除法與更相減損術(shù)的原理,會求兩個數(shù)的公約數(shù);理解秦九韶算法原理,會求一元多項式的值;會對一組數(shù)據(jù)按照一定的規(guī)則進行排序;理解進位制,能進行各種進位制之間的轉(zhuǎn)化.

  2.難點:秦九韶算法求一元多項式的值及各種進位制之間的轉(zhuǎn)化.

  3.重難點:理解輾轉(zhuǎn)相除法與更相減損術(shù)、秦九韶算法原理、排序方法、進位制之間的轉(zhuǎn)化方法.

  數(shù)學學業(yè)水平考高中知識點 6

  1.定義法:

  判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可.

  2.轉(zhuǎn)換法:

  當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷.

  3.集合法

  在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:

  若A∩B,則p是q的.充分條件.

  若A∪B,則p是q的必要條件.

  若A=B,則p是q的充要條件.

  若A∈B,且B∈A,則p是q的既不充分也不必要條件.

  數(shù)學學業(yè)水平考高中知識點 7

  方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的'零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:

  方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

  3、函數(shù)零點的求法:

  求函數(shù)的零點:

  1(代數(shù)法)求方程的實數(shù)根;

  2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

  4、二次函數(shù)的零點:

  二次函數(shù).

  1、△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

  2、△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

  3、△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

  數(shù)學學業(yè)水平考高中知識點 8

  1.萬能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

  2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

  3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

  向量公式:

  1.單位向量:單位向量a0=向量a/|向量a|

  2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)

  3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]

  4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(x1平方+y1平方)_根號(x2平方+y2平方)

  5.空間向量:同上推論(提示:向量a={x,y,z})

  6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

  7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

  數(shù)學學業(yè)水平考高中知識點 9

  1.求函數(shù)的單調(diào)性

  利用導數(shù)求函數(shù)單調(diào)性的基本方法:設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).

  利用導數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.

  反過來,也可以利用導數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導,

 。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.

  2.求函數(shù)的極值:

  設函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的`所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值).

  可導函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

 。1)確定函數(shù)f(x)的定義域;(2)求導數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:

 。4)檢查f(x)的符號并由表格判斷極值.

  3.求函數(shù)的值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值.函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的.

  求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值.

  4.解決不等式的有關(guān)問題:

 。1)不等式恒成立問題(絕對不等式問題)可考慮值域.

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0.

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0.

  (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0.

  5.導數(shù)在實際生活中的應用:

  實際生活求解(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明.

  數(shù)學學業(yè)水平考高中知識點 10

  考點一、映射的概念

  1.了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多

  2.映射:設A和B是兩個非空集合,如果按照某種對應關(guān)系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱“對一”的對應.包括:一對一多對一

  考點二、函數(shù)的概念

  1.函數(shù):設A和B是兩個非空的數(shù)集,如果按照某種確定的對應關(guān)系f,對于集合A中的任意一個數(shù)x,在集合B中都存在確定的數(shù)y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個函數(shù).記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域.函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.

  2.函數(shù)的三要素:定義域、值域、對應關(guān)系.這是判斷兩個函數(shù)是否為同一函數(shù)的依據(jù).

  3.區(qū)間的概念:設a,bR,且a

 、伲╝,b)={xa

 、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

  考點三、函數(shù)的表示方法

  1.函數(shù)的三種表示方法列表法圖象法解析法

  2.分段函數(shù):定義域的不同部分,有不同的對應法則的函數(shù).注意兩點:①分段函數(shù)是一個函數(shù),不要誤認為是幾個函數(shù).②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.

  考點四、求定義域的幾種情況

  ①若f(x)是整式,則函數(shù)的定義域是實數(shù)集R;

 、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的'實數(shù)集;

 、廴鬴(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;

  ④若f(x)是對數(shù)函數(shù),真數(shù)應大于零.

  ⑤.因為零的零次冪沒有意義,所以底數(shù)和指數(shù)不能同時為零.

  ⑥若f(x)是由幾個部分的數(shù)學式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;

 、呷鬴(x)是由實際問題抽象出來的函數(shù),則函數(shù)的定義域應符合實際問題

  數(shù)學學業(yè)水平考高中知識點 11

  二項式定理知識點:

 、(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

  特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

  ②主要性質(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m

  二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)

  所有二項式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

  奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和

  Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

 、弁棡榈趓+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關(guān)問題。

  二項式定理的`應用:解決有關(guān)近似計算、整除問題,運用二項展開式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。

  注意二項式系數(shù)與項的系數(shù)(字母項的系數(shù),指定項的系數(shù)等,指運算結(jié)果的系數(shù))的區(qū)別,在求某幾項的系數(shù)的和時注意賦值法的應用。

  數(shù)學學業(yè)水平考高中知識點 12

  (1)高中函數(shù)公式的變量:因變量,自變量。

  在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  (2)一次函數(shù):①若兩個變量,間的關(guān)系式可以表示成(為常數(shù),不等于0)的形式,則稱是的一次函數(shù)。②當=0時,稱是的正比例函數(shù)。

  (3)高中函數(shù)的一次函數(shù)的圖象及性質(zhì)

 、侔岩粋函數(shù)的自變量與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。

  ②正比例函數(shù)=的'圖象是經(jīng)過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當0,O,則經(jīng)2、3、4象限;當0,0時,則經(jīng)1、2、4象限;當0,0時,則經(jīng)1、3、4象限;當0,0時,則經(jīng)1、2、3象限。

 、墚0時,的值隨值的增大而增大,當0時,的值隨值的增大而減少。

  (4)高中函數(shù)的二次函數(shù):

  ①一般式:

  ,對稱軸是頂點是;

 、陧旤c式:,對稱軸是頂點是;

 、劢稽c式:,其中,是拋物線與x軸的交點

  數(shù)學學業(yè)水平考高中知識點 13

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

  某些數(shù)列前n項和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理

  a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理

  b2=a2+c2-2accosB 注:角B是邊a和邊c的'夾角

  乘法與因式分

  a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解

  -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系

  x1+x2=-b/a x1*x2=c/a 注:韋達定理

  判別式

  b2-4a=0 注:方程有相等的兩實根

  b2-4ac0 注:方程有兩個不相等的個實根

  b2-4ac0 注:方程有共軛復數(shù)根

  數(shù)學學業(yè)水平考高中知識點 14

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動點的軌跡方程的基本步驟。

  1、建立適當?shù)淖鴺讼,設出動點M的坐標;

  2、寫出點M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關(guān)點法:用動點Q的`坐標x,y表示相關(guān)點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

  4、參數(shù)法:當動點坐標x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

  5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動點軌跡方程的一般步驟:

 、俳ㄏ怠⑦m當?shù)淖鴺讼担?/p>

  ②設點——設軌跡上的任一點P(x,y);

 、哿惺健谐鰟狱cp所滿足的關(guān)系式;

 、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

 、葑C明——證明所求方程即為符合條件的動點軌跡方程。

  數(shù)學學業(yè)水平考高中知識點 15

  1、含n個元素的有限集合其子集共有2n個,非空子集有2n—1個,非空真子集有2n—2個。

  2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補等于補之并。

  Cu(AUB)=(CuA)∩(CuB),并之補等于補之交。

  3、ax2+bx+c<0的解集為x(0

  +c>0的解集為x,cx2+bx+a>0的解集為>x或x<;ax2—bx+

  4、c<0的解集為x,cx2—bx+a>0的解集為—>x或x<—。

  5、原命題與其逆否命題是等價命題。

  原命題的逆命題與原命題的否命題也是等價命題。

  6、函數(shù)是一種特殊的映射,函數(shù)與映射都可用:f:A→B表示。

  A表示原像,B表示像。當f:A→B表示函數(shù)時,A表示定義域,B大于或等于其值域范圍。只有一一映射的函數(shù)才具有反函數(shù)。

  7、原函數(shù)與反函數(shù)的單調(diào)性一致,且都為奇函數(shù)。

  偶函數(shù)和周期函數(shù)沒有反函數(shù)。若f(x)與g(x)關(guān)于點(a,b)對稱,則g(x)=2b—f(2a—x)。

  8、若f(—x)=f(x),則f(x)為偶函數(shù),若f(—x)=f(x),則f(x)為奇函數(shù);

  偶函數(shù)關(guān)于y軸對稱,且對稱軸兩邊的單調(diào)性相反;奇函數(shù)關(guān)于原點對稱,且在整個定義域上的單調(diào)性一致。反之亦然。若奇函數(shù)在x=0處有意義,則f(0)=0。函數(shù)的單調(diào)性可用定義法和導數(shù)法求出。偶函數(shù)的導函數(shù)是奇函數(shù),奇函數(shù)的導函數(shù)是偶函數(shù)。對于任意常數(shù)T(T≠0),在定義域范圍內(nèi),都有f(x+T)=f(x),則稱f(x)是周期為T的周期函數(shù),且f(x+kT)=f(x),k≠0。

  9、周期函數(shù)的特征性:①f(x+a)=—f(x),是T=2a的函數(shù),②若f(x+a)+f(x+b)=0,即f(x+a)=—f(x+b),T=2(b—a)的函數(shù),③若f(x)既x=a關(guān)對稱,又關(guān)于x=b對稱,則f(x)是T=2(b—a)的函數(shù)④若f(x

  +a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b—a)的`函數(shù)⑤f(x+a)=±,則f(x)

  是T=4(b—a)的函數(shù)

  10、復合函數(shù)的單調(diào)性滿足“同增異減”原理。

  定義域都是指函數(shù)中自變量的取值范圍。

  11、抽象函數(shù)主要有f(xy)=f(x)+f(y)(對數(shù)型),f(x+y)=f(x)?f(y)(指數(shù)型),f(x+y)=f(x)+f(y)(直線型)。

  解此類抽象函數(shù)比較實用的方法是特殊值法和周期法。

  12、指數(shù)函數(shù)圖像的規(guī)律是:底數(shù)按逆時針增大。

  對數(shù)函數(shù)與之相反。

  13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。

  在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數(shù)方程或不等式時,常借助于換元法,應特別注意換元后新變元的取值范圍。

  14、log10N=lgN;logeN=lnN(e=2。718);對數(shù)的性質(zhì):如果a>0,a≠0,M>0N>0,

  那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N。

  換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk。

  15、函數(shù)圖像的變換:

 。1)水平平移:y=f(x±a)(a>0)的圖像可由y=f(x)向左或向右平移a個單位得到;

 。2)豎直平移:y=f(x)±b(b>0)圖像,可由y=f(x)向上或向下平移b個單位得到;

 。3)對稱:若對于定義域內(nèi)的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關(guān)于直線x=m對稱;y=f(x)關(guān)于(a,b)對稱的函數(shù)為y!=2b—f(2a—x)。

 。4),學習計劃;翻折:①y=|f(x)|是將y=f(x)位于x軸下方的部分以x軸為對稱軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位于y軸左方的圖像翻折到y(tǒng)軸的右方而成的圖像。

 。5)有關(guān)結(jié)論:①若f(a+x)=f(b—x),在x為一切實數(shù)上成立,則y=f(x)的圖像關(guān)于

  x=對稱。②函數(shù)y=f(a+x)與函數(shù)y=f(b—x)的圖像有關(guān)于直線x=對稱。

  15、等差數(shù)列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+

  16、若n+m=p+q,則am+an=ap+aq;

  sk,s2k—k,s3k—2k成以k2d為公差的等差數(shù)列。an是等差數(shù)列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數(shù)列,則可設前n項和為sn=an2+bn(注:沒有常數(shù)項),用方程的思想求解a,b。在等差數(shù)列中,若將其腳碼成等差數(shù)列的項取出組成數(shù)列,則新的數(shù)列仍舊是等差數(shù)列。

  17、等比數(shù)列中,an=a1?qn—1=am?qn—m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1),

  sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;

  sk,s2k—k,s3k—2k也是等比數(shù)列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數(shù)列。在等比數(shù)列中,若將其腳碼成等差數(shù)列的項取出組成數(shù)列,則新的數(shù)列仍舊是等比數(shù)列。裂項公式:

  =—,=(—),常用數(shù)列遞推形式:疊加,疊乘,

  18、弧長公式:l=|α|?r。

  s扇=?lr=?|α|r2=?;當一個扇形的周長一定時(為L時),

  其面積為,其圓心角為2弧度。

  19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;

  Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ

  數(shù)學學業(yè)水平考高中知識點 16

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  1.元素的確定性;

  2.元素的互異性;

  3.元素的無序性

  說明:

  (1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的`集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  注意。撼S脭(shù)集及其記法:

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

 、僬Z言描述法:例:{不是直角三角形的三角形}

  ②數(shù)學式子描述法:例:不等式x-3>2的解集是{x?Rx-3>2}或{x x-3>2}

  4、集合的分類:

  1.有限集含有有限個元素的集合

  2.無限集含有無限個元素的集合

  3.空集不含任何元素的集合例:{x x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實例:設A={x x2-1=0}B={-1,1}“元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

  ①任何一個集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

 、苋绻鸄íB同時BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

【數(shù)學學業(yè)水平考高中知識點】相關(guān)文章:

數(shù)學學業(yè)水平考高中知識點總結(jié)11-17

高中數(shù)學學業(yè)水平考知識點總結(jié)10-08

數(shù)學學業(yè)水平考高中知識點總結(jié)12篇11-17

高二數(shù)學水平考知識點總結(jié)08-08

地理學業(yè)水平測試知識點總結(jié)07-28

化學水平考復習知識點總結(jié)10-08

學業(yè)水平自我評價12-15

高中學業(yè)水平自我評價(通用11篇)10-13

對高中生的學業(yè)水平綜合評語怎么寫03-14