中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-12-16 13:06:31 知識(shí)點(diǎn)總結(jié) 我要投稿

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(合集15篇)

  總結(jié)是對(duì)取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面情況進(jìn)行評(píng)價(jià)與描述的一種書(shū)面材料,它可以有效鍛煉我們的語(yǔ)言組織能力,讓我們一起來(lái)學(xué)習(xí)寫(xiě)總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編幫大家整理的高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(合集15篇)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  1.知識(shí)網(wǎng)絡(luò)圖

  復(fù)數(shù)知識(shí)點(diǎn)網(wǎng)絡(luò)圖

  2.復(fù)數(shù)中的難點(diǎn)

  (1)復(fù)數(shù)的向量表示法的運(yùn)算.對(duì)于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對(duì)向量的運(yùn)算的幾何意義的靈活掌握有一定的困難.對(duì)此應(yīng)認(rèn)真體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其靈活地加以證明.

  (2)復(fù)數(shù)三角形式的乘方和開(kāi)方.有部分學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其靈活地運(yùn)用有一定的困難,特別是開(kāi)方運(yùn)算,應(yīng)對(duì)此認(rèn)真地加以訓(xùn)練.

  (3)復(fù)數(shù)的輻角主值的求法.

  (4)利用復(fù)數(shù)的幾何意義靈活地解決問(wèn)題.復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會(huì).

  3.復(fù)數(shù)中的重點(diǎn)

  (1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn).

  (2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角.復(fù)數(shù)有代數(shù),向量和三角三種表示法.特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問(wèn)題時(shí)經(jīng)常用到,是一個(gè)重點(diǎn)內(nèi)容.

  (3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì).復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容.

  (4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法.

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  1、集合的概念

  集合是集合論中的不定義的原始概念,教材中對(duì)集合的概念進(jìn)行了描述性說(shuō)明:“一般地,把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說(shuō)這個(gè)整體是由這些對(duì)象的全體構(gòu)成的集合(或集)”。理解這句話(huà),應(yīng)該把握4個(gè)關(guān)鍵詞:對(duì)象、確定的、不同的、整體。

  對(duì)象――即集合中的元素。集合是由它的元素確定的。

  整體――集合不是研究某一單一對(duì)象的,它關(guān)注的是這些對(duì)象的全體。

  確定的――集合元素的確定性――元素與集合的“從屬”關(guān)系。

  不同的――集合元素的互異性。

  2、有限集、無(wú)限集、空集的意義

  有限集和無(wú)限集是針對(duì)非空集合來(lái)說(shuō)的。我們理解起來(lái)并不困難。

  我們把不含有任何元素的集合叫做空集,記做Φ。理解它時(shí)不妨思考一下“0與Φ”及“Φ與{Φ}”的關(guān)系。

  幾個(gè)常用數(shù)集N、N_N+、Z、Q、R要記牢。

  3、集合的表示方法

  (1)列舉法的表示形式比較容易掌握,并不是所有的集合都能用列舉法表示,同學(xué)們需要知道能用列舉法表示的三種集合:

  ①元素不太多的有限集,如{0,1,8}

 、谠剌^多但呈現(xiàn)一定的規(guī)律的有限集,如{1,2,3,…,100}

 、鄢尸F(xiàn)一定規(guī)律的無(wú)限集,如{1,2,3,…,n,…}

  ●注意a與{a}的區(qū)別

  ●注意用列舉法表示集合時(shí),集合元素的“無(wú)序性”。

  (2)特征性質(zhì)描述法的關(guān)鍵是把所研究的集合的“特征性質(zhì)”找準(zhǔn),然后適當(dāng)?shù)乇硎境鰜?lái)就行了。但關(guān)鍵點(diǎn)也是難點(diǎn)。學(xué)習(xí)時(shí)多加練習(xí)就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個(gè)不同的集合。

  4、集合之間的關(guān)系

  ●注意區(qū)分“從屬”關(guān)系與“包含”關(guān)系

  “從屬”關(guān)系是元素與集合之間的關(guān)系。

  “包含”關(guān)系是集合與集合之間的關(guān)系。掌握子集、真子集的概念,掌握集合相等的概念,學(xué)會(huì)正確使用“”等符號(hào),會(huì)用Venn圖描述集合之間的關(guān)系是基本要求。

  ●注意辨清Φ與{Φ}兩種關(guān)系。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  函數(shù)的概念

  函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A---B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.

  (1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;

  (2)與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  函數(shù)的三要素:定義域、值域、對(duì)應(yīng)法則

  函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域

  (2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。

  (3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。

  4、函數(shù)圖象知識(shí)歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿(mǎn)足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

  (2)畫(huà)法

  A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對(duì)稱(chēng)變換,即平移。

  (3)函數(shù)圖像平移變換的特點(diǎn):

  1)加左減右——————只對(duì)x

  2)上減下加——————只對(duì)y

  3)函數(shù)y=f(x)關(guān)于X軸對(duì)稱(chēng)得函數(shù)y=-f(x)

  4)函數(shù)y=f(x)關(guān)于Y軸對(duì)稱(chēng)得函數(shù)y=f(-x)

  5)函數(shù)y=f(x)關(guān)于原點(diǎn)對(duì)稱(chēng)得函數(shù)y=-f(-x)

  6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動(dòng)得

  函數(shù)y=|f(x)|

  7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對(duì)稱(chēng)的圖像得函數(shù)f(|x|)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  圓的方程定義:

  圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

  直線和圓的位置關(guān)系:

  1.直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系.

 、佴>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.

  方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較.

 、賒R,直線和圓相離.

  2.直線和圓相切,這類(lèi)問(wèn)題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況.

  3.直線和圓相交,這類(lèi)問(wèn)題主要是求弦長(zhǎng)以及弦的中點(diǎn)問(wèn)題.

  切線的性質(zhì)

 、艌A心到切線的距離等于圓的半徑;

 、七^(guò)切點(diǎn)的半徑垂直于切線;

 、墙(jīng)過(guò)圓心,與切線垂直的直線必經(jīng)過(guò)切點(diǎn);

  ⑷經(jīng)過(guò)切點(diǎn),與切線垂直的直線必經(jīng)過(guò)圓心;

  當(dāng)一條直線滿(mǎn)足

  (1)過(guò)圓心;

  (2)過(guò)切點(diǎn);

  (3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足.

  切線的判定定理

  經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線.

  切線長(zhǎng)定理

  從圓外一點(diǎn)作圓的兩條切線,兩切線長(zhǎng)相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角.

  圓錐曲線性質(zhì):

  一、圓錐曲線的定義

  1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(zhǎng)(定長(zhǎng)大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.

  2.雙曲線:到兩個(gè)定點(diǎn)的距離的差的絕對(duì)值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線.即.

  3.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線.當(dāng)01時(shí)為雙曲線.

  二、圓錐曲線的方程

  1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

  2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

  3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

  三、圓錐曲線的性質(zhì)

  1.橢圓:+=1(a>b>0)

  (1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(0,1)(5)準(zhǔn)線:x=±

  2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(1,+∞)(5)準(zhǔn)線:x=±(6)漸近線:y=±x

  3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):(,0)(4)離心率:e=1(5)準(zhǔn)線:x=-

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  本節(jié)內(nèi)容主要是空間點(diǎn)、直線、平面之間的位置關(guān)系,在認(rèn)識(shí)過(guò)程中,可以進(jìn)一步提高同學(xué)們的空間想象能力,發(fā)展推理能力.通過(guò)對(duì)實(shí)際模型的認(rèn)識(shí),學(xué)會(huì)將文字語(yǔ)言轉(zhuǎn)化為圖形語(yǔ)言和符號(hào)語(yǔ)言,以具體的長(zhǎng)方體中的點(diǎn)、線、面之間的關(guān)系作為載體,使同學(xué)們?cè)谥庇^感知的基礎(chǔ)上,認(rèn)識(shí)空間中點(diǎn)、線、面之間的位置關(guān)系,點(diǎn)、線、面的位置關(guān)系是立體幾何的主要研究對(duì)象,同時(shí)也是空間圖形最基本的幾何元素.

  重難點(diǎn)知識(shí)歸納

  1、平面

  (1)平面概念的理解

  直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

  抽象的理解:平面是平的,平面是無(wú)限延展的,平面沒(méi)有厚。

  (2)平面的表示法

 、賵D形表示法:通常用平行四邊形來(lái)表示平面,有時(shí)根據(jù)實(shí)際需要,也用其他的平面圖形來(lái)表示平面.

 、谧帜副硎荆撼S玫认ED字母表示平面.

  (3)涉及本部分內(nèi)容的符號(hào)表示有:

 、冱c(diǎn)A在直線l內(nèi),記作; ②點(diǎn)A不在直線l內(nèi),記作;

 、埸c(diǎn)A在平面內(nèi),記作; ④點(diǎn)A不在平面內(nèi),記作;

 、葜本l在平面內(nèi),記作; ⑥直線l不在平面內(nèi),記作;

  注意:符號(hào)的'使用與集合中這四個(gè)符號(hào)的使用的區(qū)別與聯(lián)系.

  (4)平面的基本性質(zhì)

  公理1:如果一條直線的兩個(gè)點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有點(diǎn)都在這個(gè)平面內(nèi).

  符號(hào)表示為:.

  注意:如果直線上所有的點(diǎn)都在一個(gè)平面內(nèi),我們也說(shuō)這條直線在這個(gè)平面內(nèi),或者稱(chēng)平面經(jīng)過(guò)這條直線.

  公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面.

  符號(hào)表示為:直線AB存在唯一的平面,使得.

  注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來(lái)代替.此公理又可表示為:不共線的三點(diǎn)確定一個(gè)平面.

  公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.

  符號(hào)表示為:.

  注意:兩個(gè)平面有一條公共直線,我們說(shuō)這兩個(gè)平面相交,這條公共直線就叫作兩個(gè)平面的交線.若平面、平面相交于直線l,記作.

  公理的推論:

  推論1:經(jīng)過(guò)一條直線和直線外的一點(diǎn)有且只有一個(gè)平面.

  推論2:經(jīng)過(guò)兩條相交直線有且只有一個(gè)平面.

  推論3:經(jīng)過(guò)兩條平行直線有且只有一個(gè)平面.

  2.空間直線

  (1)空間兩條直線的位置關(guān)系

  ①相交直線:有且僅有一個(gè)公共點(diǎn),可表示為;

 、谄叫兄本:在同一個(gè)平面內(nèi),沒(méi)有公共點(diǎn),可表示為a//b;

 、郛惷嬷本:不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn).

  (2)平行直線

  公理4:平行于同一條直線的兩條直線互相平行.

  符號(hào)表示為:設(shè)a、b、c是三條直線,.

  定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等.

  (3)兩條異面直線所成的角

  注意:

  ①兩條異面直線a,b所成的角的范圍是(0°,90°].

 、趦蓷l異面直線所成的角與點(diǎn)O的選擇位置無(wú)關(guān),這可由前面所講過(guò)的“等角定理”直接得出.

  ③由兩條異面直線所成的角的定義可得出異面直線所成角的一般方法:

  (i)在空間任取一點(diǎn),這個(gè)點(diǎn)通常是線段的中點(diǎn)或端點(diǎn).

  (ii)分別作兩條異面直線的平行線,這個(gè)過(guò)程通常采用平移的方法來(lái)實(shí)現(xiàn).

  (iii)指出哪一個(gè)角為兩條異面直線所成的角,這時(shí)我們要注意兩條異面直線所成的角的范圍.

  3.空間直線與平面

  直線與平面位置關(guān)系有且只有三種:

  (1)直線在平面內(nèi):有無(wú)數(shù)個(gè)公共點(diǎn);

  (2)直線與平面相交:有且只有一個(gè)公共點(diǎn);

  (3)直線與平面平行:沒(méi)有公共點(diǎn).

  4.平面與平面

  兩個(gè)平面之間的位置關(guān)系有且只有以下兩種:

  (1)兩個(gè)平面平行:沒(méi)有公共點(diǎn);

  (2)兩個(gè)平面相交:有一條公共直線.

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  1.多面體的結(jié)構(gòu)特征

  (1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

  正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

  (2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形。

  正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

  (3)棱臺(tái)可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2.旋轉(zhuǎn)體的結(jié)構(gòu)特征

  (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.

  (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.

  (3)圓臺(tái)可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

  (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

  3.空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

  三視圖的長(zhǎng)度特征:“長(zhǎng)對(duì)正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長(zhǎng),側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫(huà)法。

  4.空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測(cè)畫(huà)法來(lái)畫(huà),基本步驟是:

  (1)畫(huà)幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀圖時(shí),把它們畫(huà)成對(duì)應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x(chóng)′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長(zhǎng)度不變,平行于y軸的線段,長(zhǎng)度變?yōu)樵瓉?lái)的一半。

  (2)畫(huà)幾何體的高

  在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對(duì)應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長(zhǎng)度不變。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  知識(shí)點(diǎn)1

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

  2、集合的中元素的三個(gè)特性:

  1、元素的確定性;

  2、元素的互異性;

  3、元素的無(wú)序性

  說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

  (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

 。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  1、用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2、集合的表示方法:列舉法與描述法。

  注意。撼S脭(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分類(lèi):

  1、有限集含有有限個(gè)元素的集合

  2、無(wú)限集含有無(wú)限個(gè)元素的集合

  3、空集不含任何元素的集合例:{x|x2=—5}

  知識(shí)點(diǎn)2

  I、定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)

  則稱(chēng)y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II、二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x—h)^2+k[拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

  III、二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV、拋物線的性質(zhì)

  1、拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線x=—b/2a。對(duì)稱(chēng)軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)

  2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(—b/2a,(4ac—b^2)/4a)

  當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2—4ac=0時(shí),P在x軸上。

  3、二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

  |a|越大,則拋物線的開(kāi)口越小。

  知識(shí)點(diǎn)3

  1、拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線

  x=—b/2a。

  對(duì)稱(chēng)軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)

  2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(—b/2a,(4ac—b’2)/4a)

  當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2—4ac=0時(shí),P在x軸上。

  3、二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

  |a|越大,則拋物線的開(kāi)口越小。

  4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。

  5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b’2—4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  Δ=b’2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  Δ=b’2—4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  知識(shí)點(diǎn)4

  對(duì)數(shù)函數(shù)

  對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

  右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

  可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱(chēng)圖形,因?yàn)樗鼈兓榉春瘮?shù)。

 。1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

 。2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

 。3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。

 。4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

 。5)顯然對(duì)數(shù)函數(shù)。

  知識(shí)點(diǎn)5

  方程的根與函數(shù)的零點(diǎn)

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。

  3、函數(shù)零點(diǎn)的求法:

 。1)(代數(shù)法)求方程的實(shí)數(shù)根;

 。2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。

  4、二次函數(shù)的零點(diǎn):

 。1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。

  (2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

 。3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸如下表:

  解析式

  頂點(diǎn)坐標(biāo)

  對(duì)稱(chēng)軸

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

  當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|

  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

  當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

  (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  【基本初等函數(shù)】

  一、指數(shù)函數(shù)

 。ㄒ唬┲笖(shù)與指數(shù)冪的運(yùn)算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand)。

  當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

  2、分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

  3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

 。ǘ┲笖(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。

  2、指數(shù)函數(shù)的圖象和性質(zhì)

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  一:函數(shù)及其表示

  知識(shí)點(diǎn)詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

  1. 函數(shù)與映射的區(qū)別:

  2. 求函數(shù)定義域

  常見(jiàn)的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

  ①當(dāng)f(x)為整式時(shí),函數(shù)的定義域?yàn)镽.

  ②當(dāng)f(x)為分式時(shí),函數(shù)的定義域?yàn)槭狗质椒帜覆粸榱愕膶?shí)數(shù)集合。

 、郛(dāng)f(x)為偶次根式時(shí),函數(shù)的定義域是使被開(kāi)方數(shù)不小于0的實(shí)數(shù)集合。

 、墚(dāng)f(x)為對(duì)數(shù)式時(shí),函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。

  ⑤如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。

 、迯(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。

 、邔(duì)于由實(shí)際問(wèn)題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問(wèn)題的制約。

  3. 求函數(shù)值域

  (1)、觀察法:通過(guò)對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

  (2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過(guò)換元可以寫(xiě)成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過(guò)自變量的范圍可以求出該函數(shù)的值域;

  (3)、判別式法:

  (4)、數(shù)形結(jié)合法;通過(guò)觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;

  (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;

  (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來(lái)求出值域;

  (7)、利用基本不等式:對(duì)于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

  (8)、最值法:對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

  (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  知識(shí)點(diǎn)總結(jié)

  本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。

  一、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義

  2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法

  二、函數(shù)的奇偶性和周期性

  1、函數(shù)的奇偶性和周期性的定義

  2、函數(shù)的奇偶性的判定和證明方法

  3、函數(shù)的周期性的判定方法

  三、函數(shù)的圖象

  1、函數(shù)圖象的作法 (1)描點(diǎn)法 (2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱(chēng)變換、翻折變換。

  常見(jiàn)考法

  本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

  誤區(qū)提醒

  1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問(wèn)題定義域優(yōu)先的原則”。

  2、單調(diào)區(qū)間必須用區(qū)間來(lái)表示,不能用集合或不等式,單調(diào)區(qū)間一般寫(xiě)成開(kāi)區(qū)間,不必考慮端點(diǎn)問(wèn)題。

  3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開(kāi)。

  4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),則函數(shù)一定是非奇非偶函數(shù)。

  5、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  二次函數(shù)

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱(chēng)y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線x=-b/2a。對(duì)稱(chēng)軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

  |a|越大,則拋物線的開(kāi)口越小。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  冪函數(shù)的性質(zhì):

  對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

  排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

  排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

  排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

  總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

  如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

  在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

  在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

  而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

  由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

  (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

 。2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

 。3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

 。4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

 。5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。

  (6)顯然冪函數(shù)。

  解題方法:換元法

  解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。

  換元法又稱(chēng)輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái);蛘咦?yōu)槭煜さ男问剑褟?fù)雜的計(jì)算和推證簡(jiǎn)化。

  它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問(wèn)題中有廣泛的應(yīng)用。

  練習(xí)題:

  1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

  (1)求f(log2x)的最小值及對(duì)應(yīng)的x值;

  (2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]

  2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(—2k,2)是函數(shù)y=f—1(x)圖象上的點(diǎn)。

 。1)求實(shí)數(shù)k的值及函數(shù)f—1(x)的解析式;

 。2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實(shí)數(shù)m的取值范圍。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  一、平面解析幾何的基本思想和主要問(wèn)題

  平面解析幾何是用代數(shù)的方法研究幾何問(wèn)題的一門(mén)數(shù)學(xué)學(xué)科,其基本思想就是用代數(shù)的方法研究幾何問(wèn)題。例如,用直線的方程可以研究直線的性質(zhì),用兩條直線的方程可以研究這兩條直線的位置關(guān)系等。

  平面解析幾何研究的問(wèn)題主要有兩類(lèi):一是根據(jù)已知條件,求出表示平面曲線的方程;二是通過(guò)方程,研究平面曲線的性質(zhì)。

  二、直線坐標(biāo)系和直角坐標(biāo)系

  直線坐標(biāo)系,也就是數(shù)軸,它有三個(gè)要素:原點(diǎn)、度量單位和方向。如果讓一個(gè)實(shí)數(shù)與數(shù)軸上坐標(biāo)為的點(diǎn)對(duì)應(yīng),那么就可以在實(shí)數(shù)集與數(shù)軸上的點(diǎn)集之間建立一一對(duì)應(yīng)關(guān)系。

  點(diǎn)與實(shí)數(shù)對(duì)應(yīng),則稱(chēng)點(diǎn)的坐標(biāo)為,記作,如點(diǎn)坐標(biāo)為,則記作;點(diǎn)坐標(biāo)為,則記為。

  直角坐標(biāo)系是由兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成,兩條數(shù)軸的度量單位一般相同,但有時(shí)也可以不同,兩個(gè)數(shù)軸的交點(diǎn)是直角坐標(biāo)系的原點(diǎn)。在平面直角坐標(biāo)系中,有序?qū)崝?shù)對(duì)構(gòu)成的集合與坐標(biāo)平面內(nèi)的點(diǎn)集具有一一對(duì)應(yīng)關(guān)系。

  一個(gè)點(diǎn)的坐標(biāo)是這樣求得的,由點(diǎn)向軸及軸作垂線,在兩坐標(biāo)軸上形成正投影,在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的橫坐標(biāo),在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的縱坐標(biāo)。

  在學(xué)習(xí)這兩種坐標(biāo)系時(shí),要注意用類(lèi)比的方法。例如,平面直角坐標(biāo)系是二維坐標(biāo)系,它有兩個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)需用兩個(gè)實(shí)數(shù)(即一對(duì)有序?qū)崝?shù))來(lái)表示,而直線坐標(biāo)系是一維坐標(biāo)系,它只有一個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)只需用一個(gè)實(shí)數(shù)來(lái)表示。

  三、向量的有關(guān)概念和公式

  如果數(shù)軸上的任意一點(diǎn)沿著軸的正向或負(fù)向移動(dòng)到另一個(gè)點(diǎn),則說(shuō)點(diǎn)在軸上作了一次位移。位移是一個(gè)既有大小又有方向的量,通常叫做位移向量,簡(jiǎn)稱(chēng)向量,記作。如果點(diǎn)移動(dòng)的方向與數(shù)軸的正方向相同,則向量為正,否則為負(fù)。線段的長(zhǎng)叫做向量的長(zhǎng)度,記作。向量的長(zhǎng)度連同表示其方向的正負(fù)號(hào)叫做向量的坐標(biāo)(或數(shù)量),用表示。這里同學(xué)們要分清,,三個(gè)符號(hào)的含義。

  對(duì)于數(shù)軸上任意三點(diǎn),都有成立。該等式左邊表示在數(shù)軸上點(diǎn)向點(diǎn)作一次位移,等式右邊表示點(diǎn)先向點(diǎn)作一次位移,再由點(diǎn)向點(diǎn)作一次位移,它們的最終結(jié)果是相同的。

  向量的坐標(biāo)公式(或數(shù)量公式),它表示向量的數(shù)量等于終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo),這個(gè)公式非常重要。

  有相等坐標(biāo)的兩個(gè)向量相等,看做同一個(gè)向量;反之,兩個(gè)相等向量坐標(biāo)必相等。

  注意:①相等的所有向量看做一個(gè)整體,作為同一向量,都等于以原點(diǎn)為起點(diǎn),坐標(biāo)與這所有向量相等的那個(gè)向量。②向量與數(shù)軸上的實(shí)數(shù)(或點(diǎn))是一一對(duì)應(yīng)的,零向量即原點(diǎn)。

  四、兩點(diǎn)的距離公式和中點(diǎn)公式

  1。對(duì)于數(shù)軸上的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則的距離為,的中點(diǎn)的坐標(biāo)為。

  由于表示數(shù)軸上兩點(diǎn)與的距離,所以在解一些簡(jiǎn)單的含絕對(duì)值的方程或不等式時(shí),常借助于數(shù)形結(jié)合思想,將問(wèn)題轉(zhuǎn)化為數(shù)軸上的距離問(wèn)題加以解決。例如,解方程時(shí),可以將問(wèn)題看作在數(shù)軸上求一點(diǎn),使它到,的距離之和等于。

  2。對(duì)于直角坐標(biāo)系中的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則兩點(diǎn)的距離為,的中點(diǎn)的坐標(biāo)滿(mǎn)足。

  兩點(diǎn)的距離公式和中點(diǎn)公式是解析幾何中最基本、最常用的公式之一,要求同學(xué)們能熟練掌握并能靈活運(yùn)用。

  五、坐標(biāo)法

  坐標(biāo)法是數(shù)學(xué)中一種重要的數(shù)學(xué)思想方法,它是借助于坐標(biāo)系來(lái)研究幾何圖形的一種方法,是數(shù)形結(jié)合的典范。這種方法是在平面上建立直角坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線看成滿(mǎn)足某種條件的點(diǎn)的集合或軌跡,用曲線上點(diǎn)的坐標(biāo)所滿(mǎn)足的方程表示曲線,通過(guò)研究方程,間接地來(lái)研究曲線的性質(zhì)。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  一:函數(shù)模型及其應(yīng)用

  本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識(shí)點(diǎn)。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實(shí)際應(yīng)用題。

  1、常見(jiàn)的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對(duì)數(shù)函數(shù)模型、分段函數(shù)模型等。

  2、用函數(shù)解應(yīng)用題的基本步驟是:

  (1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實(shí)際意義);

 。2)設(shè)量建模;

 。3)求解函數(shù)模型;

 。4)簡(jiǎn)要回答實(shí)際問(wèn)題。

  常見(jiàn)考法:

  本節(jié)知識(shí)在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問(wèn)題,屬于拔高題,難度較大。

  誤區(qū)提醒:

  1、求解應(yīng)用性問(wèn)題時(shí),不僅要考慮函數(shù)本身的定義域,還要結(jié)合實(shí)際問(wèn)題理解自變量的取值范圍。

  2、求解應(yīng)用性問(wèn)題時(shí),首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語(yǔ)言轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言,建立相應(yīng)的數(shù)學(xué)模型。

  【典型例題】

  例1:

 。1)某種儲(chǔ)蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的本息和(不計(jì)復(fù)利)。

 。2)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫(xiě)出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計(jì)算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。

  例2:

  某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資單位是萬(wàn)元)

 。1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式。

 。2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能是企業(yè)獲得利潤(rùn),其利潤(rùn)約為多少萬(wàn)元。(精確到1萬(wàn)元)。

【高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

數(shù)學(xué)高一函數(shù)知識(shí)點(diǎn)總結(jié)11-03

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-08

高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)12-01

高一數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)12-01

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-19

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-03

高一數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)04-11

高一數(shù)學(xué)函數(shù)的知識(shí)點(diǎn)總結(jié)01-15

高一數(shù)學(xué)下知識(shí)點(diǎn)總結(jié)02-18

高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12-15