初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),寫(xiě)總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,因此好好準(zhǔn)備一份總結(jié)吧。我們?cè)撛趺慈?xiě)總結(jié)呢?下面是小編收集整理的初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇1
1、三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。
2、三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。
4、中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。
5、角平分線(xiàn):三角形的一個(gè)內(nèi)角的平分線(xiàn)與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。
6、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
7、多邊形:在平面內(nèi),由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線(xiàn)組成的角叫做多邊形的外角。
10、多邊形的對(duì)角線(xiàn):連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對(duì)角線(xiàn)。
11、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
13、公式與性質(zhì):
(1)三角形的內(nèi)角和:三角形的內(nèi)角和為180°
(2)三角形外角的性質(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
(3)多邊形內(nèi)角和公式:邊形的內(nèi)角和等于?180°
(4)多邊形的外角和:多邊形的外角和為360°
(5)多邊形對(duì)角線(xiàn)的條數(shù):
、?gòu)倪呅蔚囊粋(gè)頂點(diǎn)出發(fā)可以引條對(duì)角線(xiàn),把多邊形分成個(gè)三角形。
、谶呅喂灿袟l對(duì)角線(xiàn)。
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇2
第一章勾股定理
1、探索勾股定理
、俟垂啥ɡ恚褐苯侨切蝺芍苯沁叺钠椒胶偷扔谛边叺钠椒,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2
2、一定是直角三角形嗎
、偃绻切蔚娜呴L(zhǎng)a b c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形一定是直角三角形
3、勾股定理的應(yīng)用
第二章實(shí)數(shù)
1、認(rèn)識(shí)無(wú)理數(shù)
、儆欣頂(shù):總是可以用有限小數(shù)和無(wú)限循環(huán)小數(shù)表示
、跓o(wú)理數(shù):無(wú)限不循環(huán)小數(shù)
2、平方根
、偎銛(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算數(shù)平方根
、谔貏e地,我們規(guī)定:0的算數(shù)平方根是0
、燮椒礁阂话愕,如果一個(gè)數(shù)x的平方等于a,即x2=a。那么這個(gè)數(shù)x就叫做a的平方根,也叫做二次方根
、芤粋(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根
、菡龜(shù)有兩個(gè)平方根,一個(gè)是a的算數(shù)平方,另一個(gè)是—,它們互為相反數(shù),這兩個(gè)平方根合起來(lái)可記作±
⑥開(kāi)平方:求一個(gè)數(shù)a的平方根的運(yùn)算叫做開(kāi)平方,a叫做被開(kāi)方數(shù)
3、立方根
、倭⒎礁阂话愕,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根,也叫三次方根
②每個(gè)數(shù)都有一個(gè)立方根,正數(shù)的立方根是正數(shù);0立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
、坶_(kāi)立方:求一個(gè)數(shù)a的立方根的運(yùn)算叫做開(kāi)立方,a叫做被開(kāi)方數(shù)
4、估算
、俟浪,一般結(jié)果是相對(duì)復(fù)雜的小數(shù),估算有精確位數(shù)
5、用計(jì)算機(jī)開(kāi)平方
6、實(shí)數(shù)
、賹(shí)數(shù):有理數(shù)和無(wú)理數(shù)的統(tǒng)稱(chēng)
、趯(shí)數(shù)也可以分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)
、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個(gè)點(diǎn)都對(duì)應(yīng)一個(gè)實(shí)數(shù),在數(shù)軸上,右邊的點(diǎn)永遠(yuǎn)比左邊的點(diǎn)表示的數(shù)大
7、二次根式
、俸x:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開(kāi)方數(shù)
、 =(a≥0,b≥0),=(a≥0,b>0)
、圩詈(jiǎn)二次根式:一般地,被開(kāi)方數(shù)不含分母,也不含能開(kāi)的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡(jiǎn)二次根式
、芑(jiǎn)時(shí),通常要求最終結(jié)果中分母不含有根號(hào),而且各個(gè)二次根式時(shí)最簡(jiǎn)二次根式
第三章位置與坐標(biāo)
1、確定位置
①在平面內(nèi),確定一個(gè)物體的位置一般需要兩個(gè)數(shù)據(jù)
2、平面直角坐標(biāo)系
、俸x:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系
、谕ǔ5兀瑑蓷l數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)o被稱(chēng)為直角坐標(biāo)系的原點(diǎn)
、劢⒘似矫嬷苯亲鴺(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對(duì)來(lái)表示
、茉谄矫嬷苯亲鴺(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針?lè)较蚪凶龅诙笙,第三象限,第四象限,坐?biāo)軸上的點(diǎn)不在任何一個(gè)象限
、菰谥苯亲鴺(biāo)系中,對(duì)于平面上任意一點(diǎn),都有唯一的一個(gè)有序?qū)崝?shù)對(duì)(即點(diǎn)的坐標(biāo))與它對(duì)應(yīng);反過(guò)來(lái),對(duì)于任意一個(gè)有序?qū)崝?shù)對(duì),都有平面上唯一的一點(diǎn)與它對(duì)應(yīng)
3、軸對(duì)稱(chēng)與坐標(biāo)變化
、訇P(guān)于x軸對(duì)稱(chēng)的兩個(gè)點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱(chēng)的兩個(gè)點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)
第四章一次函數(shù)
1、函數(shù)
①一般地,如果在一個(gè)變化過(guò)程中有兩個(gè)變量x和y,并且對(duì)于變量x的每一個(gè)值,變量y都有唯一的值與它對(duì)應(yīng),那么我們稱(chēng)y是x的函數(shù)其中x是自變量
②表示函數(shù)的方法一般有:列表法、關(guān)系式法和圖象法
、蹖(duì)于自變量在可取值范圍內(nèi)的一個(gè)確定的值a,函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值稱(chēng)為當(dāng)自變量等于a的函數(shù)值
2、一次函數(shù)與正比例函數(shù)
①若兩個(gè)變量x,y間的對(duì)應(yīng)關(guān)系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱(chēng)y是x的一次函數(shù),特別的,當(dāng)b=0時(shí),稱(chēng)y是x的正比例函數(shù)
3、一次函數(shù)的圖像
、僬壤瘮(shù)y=kx的圖像是一條經(jīng)過(guò)原點(diǎn)(0,0)的直線(xiàn)。因此,畫(huà)正比例函數(shù)圖像是,只要再確定一點(diǎn),過(guò)這個(gè)點(diǎn)與原點(diǎn)畫(huà)直線(xiàn)就可以了
、谠谡壤瘮(shù)y=kx中,當(dāng)k>0時(shí),y的值隨著x值的增大而減小;當(dāng)k<0時(shí),y的值隨著x的值增大而減小
③一次函數(shù)y=kx+b的圖像是一條直線(xiàn),因此畫(huà)一次函數(shù)圖像時(shí),只要確定兩個(gè)點(diǎn),再過(guò)這兩點(diǎn)畫(huà)直線(xiàn)就可以了。一次函數(shù)y=kx+b的圖像也稱(chēng)為直線(xiàn)y=kx+b
④一次函數(shù)y=kx+b的圖像經(jīng)過(guò)點(diǎn)(0,b)。當(dāng)k>0時(shí),y的值隨著x值的增大而增大;當(dāng)k<0時(shí),y的值隨著x值的增大而減小
4、一次函數(shù)的應(yīng)用
、僖话愕,當(dāng)一次函數(shù)y=kx+b的函數(shù)值為0時(shí),相應(yīng)的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程kx+b=0
第五章二元一次方程組
1、認(rèn)識(shí)二元一次方程組
①含有兩個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程
②共含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組
、鄱淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解
2、求解二元一次方程組
、賹⑵渲幸粋(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱(chēng)為代入消元法,簡(jiǎn)稱(chēng)代入法
、谕ㄟ^(guò)兩式子加減,消去其中一個(gè)未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱(chēng)加減法
3、應(yīng)用二元一次方程組
、匐u兔同籠
4、應(yīng)用二元一次方程組
、僭鰷p收支
5、應(yīng)用二元一次方程組
、倮锍瘫系臄(shù)
6、二元一次方程組與一次函數(shù)
①一般地,以一個(gè)二元一次方程的解為坐標(biāo)的點(diǎn)組成的圖像與相應(yīng)的一次函數(shù)的圖像相同,是一條直線(xiàn)
、谝话愕兀瑥膱D形的角度看,確定兩條直線(xiàn)相交點(diǎn)的坐標(biāo),相當(dāng)于求相應(yīng)的二元一次方程組的解,解一個(gè)二元一次方程組相當(dāng)于確定相應(yīng)兩條直線(xiàn)交點(diǎn)的坐標(biāo)
7、用二元一次方程組確定一次函數(shù)表達(dá)式
、傧仍O(shè)出函數(shù)表達(dá)式,再根據(jù)所給條件確定表達(dá)式中未知的系數(shù),從而得到函數(shù)表達(dá)式的方法,叫做待定系數(shù)法。
8、三元一次方程組
、僭谝粋(gè)方程組中,各個(gè)式子都含有三個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫做三元一次方程
②像這樣,共含有三個(gè)未知數(shù)的三個(gè)一次方程所組成的一組方程,叫做三元一次方程組
、廴淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)三元一次方程組的解。
第六章數(shù)據(jù)的分析
1、平均數(shù)
、僖话愕,對(duì)于n個(gè)數(shù)x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡(jiǎn)稱(chēng)平均數(shù)記為。
、谠趯(shí)際問(wèn)題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)
2、中位數(shù)與眾數(shù)
①中位數(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)
②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)
、燮骄鶖(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢(shì)的統(tǒng)計(jì)量
、苡(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。
、葜形粩(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息
、薷鱾(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒(méi)有特別意義
3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)
4、數(shù)據(jù)的離散程度
、賹(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢(shì)外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對(duì)于集中趨勢(shì)的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱(chēng)為極差),就是刻畫(huà)數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量
、跀(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫(huà)
、鄯讲钍歉鱾(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)
、芷渲惺莤1x2......xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根
、菀话愣,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
第七章平行線(xiàn)的證明
1、為什么要證明
、賹(shí)驗(yàn)、觀察、歸納得到的結(jié)論可能正確,也可能不正確,因此,要判斷一個(gè)數(shù)學(xué)結(jié)論是否正確,僅僅依靠實(shí)驗(yàn)、觀察、歸納是不夠的,必須進(jìn)行有根有據(jù)的證明
2、定義與命題
①證明時(shí),為了交流方便,必須對(duì)某些名稱(chēng)和術(shù)語(yǔ)形成共同的認(rèn)識(shí),為此,就要對(duì)名稱(chēng)和術(shù)語(yǔ)的含義加以描述,做出明確的規(guī)定,也就是給它們的定義
②判斷一件事情的句子,叫做命題
、垡话愕,每個(gè)命題都由條件和結(jié)論兩部分組成。條件是已知的選項(xiàng),結(jié)論是已知選項(xiàng)推出的事項(xiàng)。命題通?梢詫(xiě)成“如果....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結(jié)論
、苷_的命題稱(chēng)為真命題,不正確的命題稱(chēng)為假命題
、菀f(shuō)明一個(gè)命題是假命題,常常可以舉出一個(gè)例子,使它具備命題的條件,而不具有命題的結(jié)論,這種例子稱(chēng)為反例
⑥歐幾里得在編寫(xiě)《原本》時(shí),挑選了一部分?jǐn)?shù)學(xué)名詞和一部分公認(rèn)的真命題作為證實(shí)其他命題的出發(fā)點(diǎn)和依據(jù)。其中數(shù)學(xué)名詞稱(chēng)為原名,公認(rèn)的真命題稱(chēng)為公理,除了公理外,其他命題的真假都需要通過(guò)演繹推理的方法進(jìn)行判斷
、哐堇[推理的過(guò)程稱(chēng)為證明,經(jīng)過(guò)證明的真命題稱(chēng)為定理,每個(gè)定理都只能用公理、定義和已經(jīng)證明為真的命題來(lái)證明
a.本套教科書(shū)選用九條基本事實(shí)作為證明的出發(fā)點(diǎn)和依據(jù),其中八條是:兩點(diǎn)確定一條直線(xiàn)
b.兩點(diǎn)之間線(xiàn)段最短
c.同一平面內(nèi),過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直
d.兩條直線(xiàn)被第三條直線(xiàn)所截,如果同位角相等,那么這兩條直線(xiàn)平行(簡(jiǎn)述為:同位角相等,兩直線(xiàn)平行)
e.過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)與這條直線(xiàn)平行
f.兩邊及其夾角分別相等的兩個(gè)三角形全等
g.兩角及其夾邊分別相等的兩個(gè)三角形全等
h.三邊分別相等的兩個(gè)三角形全等
、啻送猓瑪(shù)與式的運(yùn)算律和運(yùn)算法則、等式的有關(guān)性質(zhì),以及反映大小關(guān)系的有關(guān)性質(zhì)都可以作為證明的依據(jù)
、 定理:同角(等角)的補(bǔ)角相等
同角(等角)的余角相等
三角形的任意兩邊之和大于第三邊
對(duì)頂角相等
3、平行線(xiàn)的判定
① 定理:兩條直線(xiàn)被第三條直線(xiàn)所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線(xiàn)平行,簡(jiǎn)述為:內(nèi)錯(cuò)角相等,兩直線(xiàn)平行
② 定理:兩條直線(xiàn)被第三條直線(xiàn)所截,如果同旁?xún)?nèi)角互補(bǔ),那么這兩條直線(xiàn)平行,簡(jiǎn)述為:同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行。
4、平行線(xiàn)的性質(zhì)
、 定理:兩條平行直線(xiàn)被第三條直線(xiàn)所截,同位角相等。簡(jiǎn)述為:兩直線(xiàn)平行,同位角相等
、 定理:兩條平行直線(xiàn)被第三條直線(xiàn)所截,內(nèi)錯(cuò)角相等。簡(jiǎn)述為:兩直線(xiàn)平行,內(nèi)錯(cuò)角相等
、 定理:兩條平行直線(xiàn)被第三條直線(xiàn)所截,同旁?xún)?nèi)角互補(bǔ)。簡(jiǎn)述為:兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)
、 定理:平行于同一條直線(xiàn)的兩條直線(xiàn)平行
5、三角形內(nèi)角和定理
、 三角形內(nèi)角和定理:三角形的內(nèi)角和等于180°
、 定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
定理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
、 我們通過(guò)三角形的內(nèi)角和定理直接推導(dǎo)出兩個(gè)新定理。像這樣,由一個(gè)基本事實(shí)或定理直接推出的定理,叫做這個(gè)基本事實(shí)或定理的推論,推論可以當(dāng)定理使用。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)匯總
(一)運(yùn)用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項(xiàng)式分解因式。于是有:
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)2
a2—2ab+b2=(a—b)2
如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
。ǘ┢椒讲罟
1.平方差公式
。1)式子: a2—b2=(a+b)(a—b)
。2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。
。ㄈ┮蚴椒纸
1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。
(四)完全平方公式
。1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反過(guò)來(lái),就可以得到:
a2+2ab+b2 =(a+b)2
a2—2ab+b2 =(a—b)2
這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。
上面兩個(gè)公式叫完全平方公式。
。2)完全平方式的形式和特點(diǎn)
、夙(xiàng)數(shù):三項(xiàng)
、谟袃身(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。
、塾幸豁(xiàng)是這兩個(gè)數(shù)的積的兩倍。
。3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。
。4)完全平方公式中的`a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。
。5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。
。ㄎ澹┓纸M分解法
我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x。但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)×(a +b)。
這種利用分組來(lái)分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來(lái)分解因式。
。┨峁蚴椒
1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符?hào),直到可確定多項(xiàng)式的公因式。
2. 運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:
1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù)。
2.將常數(shù)項(xiàng)分解成滿(mǎn)足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:
、 列出常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;
、趪L試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。
3.將原多項(xiàng)式分解成(x+q)(x+p)的形式。
。ㄆ撸┓质降某顺
1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。
2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡(jiǎn)分式。
3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。
4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。
5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按—1的偶次方為正、奇次方為負(fù)來(lái)處理。當(dāng)然,簡(jiǎn)單的分式之分子分母可直接乘方。
6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減。
。ò耍┓?jǐn)?shù)的加減法
1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)。
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。
3.一般地,通分結(jié)果中,分母不展開(kāi)而寫(xiě)成連乘積的形式,分子則乘出來(lái)寫(xiě)成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。
4.通分的依據(jù):分式的基本性質(zhì)。
5.通分的關(guān)鍵:確定幾個(gè)分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。
6.類(lèi)比分?jǐn)?shù)的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減。
9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào)。
10.對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。
11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化。
12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式。
(九)含有字母系數(shù)的一元一次方程
1.含有字母系數(shù)的一元一次方程
引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程 ax=b(a≠0)
在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對(duì)x來(lái)說(shuō),字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學(xué)過(guò)的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇3
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長(zhǎng)a,b,c有這種關(guān)系,那么這個(gè)三角形是直角三角形。
3、勾股數(shù)
滿(mǎn)足的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。
常見(jiàn)的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。
二、證明
1、對(duì)事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180度。
(1)證明三角形內(nèi)角和定理的思路是將原三角形中的三個(gè)角湊到一起組成一個(gè)平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內(nèi)角是互為補(bǔ)角。
3、三角形的外角與它不相鄰的內(nèi)角關(guān)系
(1)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
(2)三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
4、證明一個(gè)命題是真命題的基本步驟
(1)根據(jù)題意,畫(huà)出圖形。
(2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫(xiě)出已知、求證。
(3)經(jīng)過(guò)分析,找出由已知推出求證的途徑,寫(xiě)出證明過(guò)程。在證明時(shí)需注意:①在一般情況下,分析的過(guò)程不要求寫(xiě)出來(lái)。②證明中的每一步推理都要有根據(jù)。如果兩條直線(xiàn)都和第三條直線(xiàn)平行,那么這兩條直線(xiàn)也相互平行。
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇4
第二章 分解因式
一. 分解因式
※1. 把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
※2. 因式分解與整式乘法是互逆關(guān)系.
因式分解與整式乘法的區(qū)別和聯(lián)系:
(1)整式乘法是把幾個(gè)整式相乘,化為一個(gè)多項(xiàng)式;
(2)因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式相乘.
二. 提公共因式法
※1. 如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式.這種分解因式的方法叫做提公因式法.
※2. 概念內(nèi)涵:
(1)因式分解的最后結(jié)果應(yīng)當(dāng)是積
(2)公因式可能是單項(xiàng)式,也可能是多項(xiàng)式;
(3)提公因式法的理論依據(jù)是乘法對(duì)加法的分配律,ab +ac=a(b+c)
(1)注意項(xiàng)的符號(hào)與冪指數(shù)是否搞錯(cuò);
(2)公因式是否提徹底;
(3)多項(xiàng)式中某一項(xiàng)恰為公因式,提出后,括號(hào)中這一項(xiàng)為+1,不漏掉.
三. 運(yùn)用公式法
※1. 如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式.這種分解因式的方法叫做運(yùn)用公式法.
※2. 主要公式:
(1)平方差公式:
①應(yīng)是二項(xiàng)式或視作二項(xiàng)式的多項(xiàng)式;
、诙(xiàng)式的每項(xiàng)(不含符號(hào))都是一個(gè)單項(xiàng)式(或多項(xiàng)式)的平方;
③二項(xiàng)是異號(hào).
(2)完全平方公式:
、賾(yīng)是三項(xiàng)式;
、谄渲袃身(xiàng)同號(hào),且各為一整式的平方;
、圻有一項(xiàng)可正負(fù),且它是前兩項(xiàng)冪的底數(shù)乘積的2倍.
※5. 因式分解的思路與解題步驟:
(1)先看各項(xiàng)有沒(méi)有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積;
(4)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.
四. 一元一次不等式:
※1. 只含有一個(gè)未知數(shù),且含未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1. 像這樣的不等式叫做一元一次不等式.
※2. 解一元一次不等式的過(guò)程與解一元一次方程類(lèi)似,特別要注意,當(dāng)不等式兩邊都乘以一個(gè)負(fù)數(shù)時(shí),不等號(hào)要改變方向.
※3. 解一元一次不等式的步驟:
①去分母;
、谌ダㄌ(hào);
③移項(xiàng);
、芎喜⑼(lèi)項(xiàng);
、菹禂(shù)化為1(注意不等號(hào)方向改變的問(wèn)題)
※4. 不等式應(yīng)用的探索(利用不等式解決實(shí)際問(wèn)題)
列不等式解應(yīng)用題基本步驟與列方程解應(yīng)用題相類(lèi)似,即:
、賹彛赫J(rèn)真審題,找出題中的不等關(guān)系,要抓住題中的關(guān)鍵字眼,如大于、小于、不大于、不小于等含義;
、谠O(shè):設(shè)出適當(dāng)?shù)奈粗獢?shù);
、哿校焊鶕(jù)題中的不等關(guān)系,列出不等式;
、芙猓航獬鏊械牟坏仁降慕饧;
、荽穑簩(xiě)出答案,并檢驗(yàn)答案是否符合題意.
五. 一元一次不等式與一次函數(shù)
六. 一元一次不等式組
※1. 定義:由含有一個(gè)相同未知數(shù)的幾個(gè)一元一次不等式組成的不等式組,叫做一元一次不等式組.
※2. 一元一次不等式組中各個(gè)不等式解集的公共部分叫做不等式組的解集.
如果這些不等式的解集無(wú)公共部分,就說(shuō)這個(gè)不等式組無(wú)解.
幾個(gè)不等式解集的公共部分,通常是利用數(shù)軸來(lái)確定.
※3. 解一元一次不等式組的步驟:
(1)分別求出不等式組中各個(gè)不等式的解集;
(2)利用數(shù)軸求出這些解集的公共部分,
(3)寫(xiě)出這個(gè)不等式組的解集.
兩個(gè)一元一次不等式組的解集的四種情況(a、b為實(shí)數(shù),且a
(同大取大;同小取小;大小小大中間找;大大小小無(wú)解)
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇5
62定理2關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分
63逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng)
64等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
65等腰梯形的兩條對(duì)角線(xiàn)相等
66等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
67對(duì)角線(xiàn)相等的梯形是等腰梯形
68平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
69推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
70推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊
71三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半
72梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇6
、倬(xiàn)段有兩條對(duì)稱(chēng)軸,是這條線(xiàn)段的垂直平分線(xiàn)和線(xiàn)段所在的直線(xiàn)。
、诮怯幸粭l對(duì)稱(chēng)軸,是角平分線(xiàn)所在的直線(xiàn)。
③等腰三角形有一條對(duì)稱(chēng)軸,是頂角平分線(xiàn)所在的直線(xiàn)。
④等邊三角形有三條對(duì)稱(chēng)軸,分別是三個(gè)頂角平分線(xiàn)所在的直線(xiàn)。
、菥匦斡袃蓷l對(duì)稱(chēng)軸,是相鄰兩邊的垂直平分線(xiàn)。
、拚叫斡兴臈l對(duì)稱(chēng)軸,是相鄰兩邊的垂直平分線(xiàn)和對(duì)角線(xiàn)所在的直線(xiàn)。
⑦菱形有兩條對(duì)稱(chēng)軸,是對(duì)角線(xiàn)所在的直線(xiàn)。
、嗟妊菪斡幸粭l對(duì)稱(chēng)軸,是兩底垂直平分線(xiàn)。
⑨正多邊形有與邊數(shù)相同條的對(duì)稱(chēng)軸。
、鈭A有無(wú)數(shù)條對(duì)稱(chēng)軸,是任何一條直徑所在的直線(xiàn)。
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇7
一、 每周干家務(wù)活的時(shí)間
※1、所要考察的對(duì)象的全體叫做總體;
把組成總體的每一個(gè)考察對(duì)象叫做個(gè)體;
從總體中取出的一部分個(gè)體叫做這個(gè)總體的一個(gè)樣本.
※2、為一特定目的而對(duì)所有考察對(duì)象作的全面調(diào)查叫做普查;
為一特定目的而對(duì)部分考察對(duì)象作的調(diào)查叫做抽樣調(diào)查.
二、數(shù)據(jù)的收集
※1、抽樣調(diào)查的特點(diǎn): 調(diào)查的范圍小、節(jié)省時(shí)間和人力物力優(yōu)點(diǎn).但不如普查得到的調(diào)查結(jié)果精確,它得到的只是估計(jì)值.
而估計(jì)值是否接近實(shí)際情況還取決于樣本選得是否有代表性.
第六章 證明(一)
二、 定義與命題
※1、 一般地,能明確指出概念含義或特征的句子,稱(chēng)為定義.
定義必須是嚴(yán)密的.一般避免使用含糊不清的術(shù)語(yǔ),例如"一些"、"大概"、"差不多"等不能在定義中出現(xiàn).
※2、可以判斷它是正確的或是錯(cuò)誤的句子叫做命題.
正確的命題稱(chēng)為真命題,錯(cuò)誤的命題稱(chēng)為假命題.
※3、 數(shù)學(xué)中有些命題的正確性是人們?cè)陂L(zhǎng)期實(shí)踐中總結(jié)出來(lái)的,并且把它們作為判斷其他命題真假的原始依據(jù),這樣的真命題叫做公理.
※4、有些命題可以從公理或其他真命題出發(fā),用邏輯推理的方法判斷它們是正確的,并且可以進(jìn)一步作為判斷其他命題真假的依據(jù),這樣的真命題叫做定理.
5、根據(jù)題設(shè)、定義以及公理、定理等,經(jīng)過(guò)邏輯推理,來(lái)判斷一個(gè)命題是否正確,這樣的推理過(guò)程叫做證明.
三. 為什么它們平行
※1、平行判定公理: 同位角相等,兩直線(xiàn)平行.(并由此得到平行的判定定理)
※2、平行判定定理: 同旁?xún)?nèi)互補(bǔ),兩直線(xiàn)平行.
※3、平行判定定理: 同錯(cuò)角相等,兩直線(xiàn)平行.
四、如果兩條直線(xiàn)平行
※1. 兩條直線(xiàn)平行的性質(zhì)公理: 兩直線(xiàn)平行,同位角相等;
※2. 兩條直線(xiàn)平行的性質(zhì)定理: 兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;
※3. 兩條直線(xiàn)平行的性質(zhì)定理: 兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ).
五、三角形和定理的證明
※1. 三角形內(nèi)角和定理: 三角形三個(gè)內(nèi)角的和等于180°
2. 一個(gè)三角形中至多只有一個(gè)直角
3. 一個(gè)三角形中至多只有一個(gè)鈍角
4. 一個(gè)三角形中至少有兩個(gè)銳角
六、關(guān)注三角形的外角
※1. 三角形內(nèi)角和定理的兩個(gè)推論:
推論1: 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;
推論2: 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇8
一. 分式
※1. 兩個(gè)整數(shù)不能整除時(shí),出現(xiàn)了分?jǐn)?shù);類(lèi)似地,當(dāng)兩個(gè)整式不能整除時(shí),就出現(xiàn)了分式.
整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么稱(chēng) 為分式,對(duì)于任意一個(gè)分式,分母都不能為零.
※2. 進(jìn)行分?jǐn)?shù)的化簡(jiǎn)與運(yùn)算時(shí),常要進(jìn)行約分和通分,其主要依據(jù)是分?jǐn)?shù)的基本性質(zhì):
分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變.
※3. 一個(gè)分式的分子、分母有公因式時(shí),可以運(yùn)用分式的基本性質(zhì),把這個(gè)分式的分子、分母同時(shí)除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.
※4. 分子與分母沒(méi)有公因式的分式,叫做最簡(jiǎn)分式.
二. 分式的乘除法法則
兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘(簡(jiǎn)記為:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù))
三. 分式的加減法
※1. 分式與分?jǐn)?shù)類(lèi)似,也可以通分.
根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分.
※2. 分式的加減法:
分式的加減法與分?jǐn)?shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.
(1)同分母的分式相加減,分母不變,把分子相加減;
(2)異號(hào)分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p;
※3. 概念內(nèi)涵:
通分的關(guān)鍵是確定最簡(jiǎn)分母,其方法如下:
(1)最簡(jiǎn)公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);
(2)最簡(jiǎn)公分母的字母,取各分母所有字母的最高次冪的積,
(3)如果分母是多項(xiàng)式,則首先對(duì)多項(xiàng)式進(jìn)行因式分解.
四. 分式方程
※1. 解分式方程的一般步驟:
、僭诜匠痰膬蛇叾汲艘宰詈(jiǎn)公分母,約去分母,化成整式方程;
、诮膺@個(gè)整式方程;
、郯颜椒匠痰母朐匠虣z驗(yàn).
※2. 列分式方程解應(yīng)用題的一般步驟:
①審清題意;
、谠O(shè)未知數(shù);
、鄹鶕(jù)題意找相等關(guān)系,列出(分式)方程;
④解方程,并驗(yàn)根;
⑤寫(xiě)出答案.
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇9
一)運(yùn)用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項(xiàng)式分解因式。于是有:a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。
(三)因式分解
1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。
初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 篇10
1推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
2等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合
3推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
4等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
5推論1三個(gè)角都相等的三角形是等邊三角形
6推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
7在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
8直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
9定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
10逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
【初二年級(jí)的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-03
初二數(shù)學(xué)上冊(cè)期末總結(jié)09-15
初二數(shù)學(xué)教師教學(xué)總結(jié)12-31
初二語(yǔ)文文學(xué)常識(shí)知識(shí)點(diǎn)總結(jié)04-15
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-20
初二數(shù)學(xué)教師教學(xué)總結(jié)(11篇)12-31
初二數(shù)學(xué)教師教學(xué)總結(jié)11篇12-31
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)08-09