三角形的角平分線
教學(xué)目標(biāo):
1、理解三角形的內(nèi)外角平分線定理;
2、會(huì)證明三角形的內(nèi)外角平分線定理;
3、通過(guò)對(duì)定理的證明,學(xué)習(xí)幾何證明方法和作輔助線的方法;
4、培養(yǎng)邏輯思維能力。
教學(xué)重點(diǎn):
1、幾何證明中的證法分析;
2、添加輔助線的方法。
教學(xué)難點(diǎn):
如何添加有用的輔助線。
教學(xué)關(guān)鍵:
抓住相似三角形的判定和性質(zhì)進(jìn)行教學(xué)。
教學(xué)方法:
“四段式”教學(xué)法,即讀、議、講、練。
一、閱讀課本,注意問(wèn)題
1、復(fù)習(xí)舊知識(shí),回答下列問(wèn)題
、僭诘妊切沃校鯓訌牡冗叺贸龅冉?又怎樣從等角得出等邊?請(qǐng)畫(huà)圖說(shuō)明。
、谳o助線的作法中,除了過(guò)兩個(gè)點(diǎn)連接一條線段外,最常見(jiàn)的就是過(guò)某個(gè)已知點(diǎn)作某條已知直線的平行線。平行線有哪些性質(zhì)?
③怎樣判斷兩個(gè)三角形是相似的?相似三角形最基本的性質(zhì)是什么?
、軒缀巫C明中怎樣構(gòu)造有用的相似三角形?
2、閱讀課本,弄清楚教材的內(nèi)容,并注意教材上是怎樣講的。
提示:課本上在這一節(jié)講了三角形的內(nèi)外角平分線定理,每個(gè)定理各講了一種證明方法。為了敘述定理的需要,課本上還講了線段的內(nèi)分點(diǎn)和外分點(diǎn)兩個(gè)概念。最后用一個(gè)例題來(lái)說(shuō)明怎樣運(yùn)用三角形的內(nèi)外角平分線定理。閱讀時(shí)要注意課本上有關(guān)問(wèn)題的敘述、分析以及作輔助線的方法。通過(guò)適當(dāng)?shù)穆?lián)想和猜測(cè),找出一些課本上尚未出現(xiàn)的新的證明方法。
3、注意下列問(wèn)題:
⑴如圖,等腰中,頂角的平分線交底邊于,那么,圖中出現(xiàn)的相等線段是xxx即xxx。通過(guò)比較得到。
、迫绻厦鎲(wèn)題中的換成任意三角形,即右圖的,平分,交于,那么,是不是還成立?請(qǐng)同學(xué)們用刻度尺量一量線段的長(zhǎng)度,計(jì)算,然后再比較(小的誤差忽略不計(jì))。
⑶三角形的內(nèi)角平分線定理說(shuō)的是什么意思?課本上是怎樣寫(xiě)已知、求證的?
、日n本上是怎樣進(jìn)行分析、證明的?都用了哪些學(xué)過(guò)的知識(shí)?證明的根據(jù)是什么?
、烧n本上證明的過(guò)程中是怎樣作輔助線的?這樣作輔助線的目的是什么?
⑹過(guò)、、三點(diǎn)能不能作出有用的輔助線?如果能,輔助線應(yīng)該怎樣作?各能作出幾條?
、司妥鞒龅妮o助線,怎樣尋找證明的思路和方法?分析的過(guò)程中用到了哪些知識(shí)?
⑻你能不能類(lèi)似地?cái)⑹鋈切蔚耐饨瞧椒志定理?
、突卮鹁毩(xí)中的第一題。
、慰偨Y(jié)證明方法和作輔助線的方法。
⑾注意內(nèi)分點(diǎn)和外分點(diǎn)兩個(gè)概念及其應(yīng)用。
4、閱讀指導(dǎo)叢書(shū)《平面幾何》第二冊(cè)。
⑴注意輔助線中平行線的作法,通過(guò)對(duì)圖、、的觀察分析,找出解決問(wèn)題的證明方法。
⑵叢書(shū)利用正弦定理中的面積公式來(lái)證明三角形的內(nèi)角平分線定理,既把有關(guān)的知識(shí)聯(lián)系起來(lái)、拓展了解題思路,又為我們提供了一種比較簡(jiǎn)單的解決問(wèn)題的方法,值得我們借鑒。要注意三角形面積的幾種不同的計(jì)算方法。
二、互相討論,解答疑點(diǎn)
1、上面提出的問(wèn)題,希望大家獨(dú)立思考、獨(dú)立完成。根據(jù)已有的思路和線索,參照課本上的方法進(jìn)行分析。
2、思考中實(shí)在是有困難的同學(xué),可以和周?chē)耐瑢W(xué)互相討論,發(fā)表看法;也可以請(qǐng)老師幫助、提示或指點(diǎn)。
3、把同學(xué)之間討論的結(jié)果,整理成一個(gè)完整的證明過(guò)程,寫(xiě)出每一步證明的根據(jù)。最后,適當(dāng)?shù)乜偨Y(jié)一些解題的經(jīng)驗(yàn)和方法。
三、講評(píng)糾正,整理內(nèi)容
1、把學(xué)生討論的結(jié)果歸納出來(lái),加以補(bǔ)充說(shuō)明,糾正錯(cuò)誤后進(jìn)行適當(dāng)?shù)姆诸?lèi)總結(jié),點(diǎn)明證題法中的要點(diǎn)。
①證明比例式的依據(jù)是平行截割定理的推論,因此,我們作的輔助線都是平行線。
、趶纳鲜鰩追N證明方法可以看出,證明的關(guān)鍵在于通過(guò)作輔助線把某些線段“移動(dòng)”到適當(dāng)?shù)奈恢,以便根?jù)平行截割定理的推論得出所要的結(jié)論。
、圯o助平行線的作法,只能是過(guò)xxx三點(diǎn)分別作不過(guò)、三點(diǎn)的邊(線段)的平行線,和另一條邊(線段)的延長(zhǎng)線相交,構(gòu)成一個(gè)等腰三角形,達(dá)到“移動(dòng)”的目的。
2、整理教學(xué)內(nèi)容
⑴線段的內(nèi)分點(diǎn)和外分點(diǎn)
。á。┒x:
、僭诰段上,把線段分成兩條線段的點(diǎn)叫做這條線段的內(nèi)分點(diǎn)。
、谠诰段的延長(zhǎng)線上的點(diǎn)叫做這條線段的外分點(diǎn)。
(ⅱ)舉例
點(diǎn)在線段上,把線段分成了和兩條線段,所以,點(diǎn)是線段的內(nèi)分點(diǎn),線段和叫做點(diǎn)內(nèi)分線段所得的兩條線段。
點(diǎn)在線段的延長(zhǎng)線上,和、兩個(gè)端點(diǎn)構(gòu)成了、兩條線段,所以,點(diǎn)是線段的外分點(diǎn),線段和叫做點(diǎn)外分線段所得的兩條線段。
。á#l件
、賰(nèi)分點(diǎn)的條件:a)在已知線段上;
b)把已知線段分成另外兩條線段。
、谕夥贮c(diǎn)a)在已知線段的延長(zhǎng)線上;
b)和已知線段的兩端點(diǎn)構(gòu)成另外的兩條線段。
。áぃ┨厥馇闆r
a)線段的中點(diǎn)是不是線段的內(nèi)分點(diǎn)??jī)?nèi)分點(diǎn)是不是線段的中點(diǎn)?
b)線段的黃金分割點(diǎn)是不是線段的內(nèi)分點(diǎn)??jī)?nèi)分點(diǎn)是不是線段的黃金分割點(diǎn)?
c)一條已知線段有幾個(gè)中點(diǎn)?有幾個(gè)黃金分割點(diǎn)?有幾個(gè)內(nèi)分點(diǎn)?幾個(gè)外分點(diǎn)?
。á。┒ɡ恚喝切蔚膬(nèi)角平分線分對(duì)邊所得的兩條線段與夾這個(gè)角的兩邊對(duì)應(yīng)成比例。
。áⅲ┮阎褐,平分,交于。
求證:xxx。
。á#┖(jiǎn)單分析
從結(jié)論來(lái)考慮,橫著看,兩個(gè)比的前項(xiàng)、在中,兩個(gè)比的后項(xiàng)、在中。按照相似三角形的性質(zhì),只要∽,那么,結(jié)論就是成立的。但是,與不是一對(duì)相似三角形,所以,不可能用相似三角形來(lái)證明。豎著看,有和,事實(shí)上,不成一個(gè)三角形。若是從“平行線分兩條線段所得的.線段對(duì)應(yīng)成比例”(平行截割定理的推論)來(lái)考慮,顯然,圖中也沒(méi)有平行線。因此,要想得到結(jié)論,只有把其中的某條線段進(jìn)行適當(dāng)?shù)囊苿?dòng),使其構(gòu)成相似三角形的對(duì)應(yīng)邊,或者成為兩條直線上被平行線截得的對(duì)應(yīng)線段。這樣,我們就確定了輔助線的作法以平行線為主。
例如,把線段繞著它的端點(diǎn)旋轉(zhuǎn)適當(dāng)?shù)慕嵌鹊綀D中的位置(即的延長(zhǎng)線)。由于旋轉(zhuǎn)不改變線段的長(zhǎng)度,所以,從旋轉(zhuǎn)情況可得。由于平分,所以,連接后可以證明。因此,實(shí)際證明時(shí),一般都敘述為“過(guò)點(diǎn)作交的延長(zhǎng)線于”。不管是哪種說(shuō)法,其結(jié)果都是一樣的。類(lèi)似地,我們還可以把線段繞著它的端點(diǎn)旋轉(zhuǎn)適當(dāng)?shù)慕嵌鹊蕉它c(diǎn)落在線段的延長(zhǎng)線上,同樣也可以證明。
。áぃ┳C法提要
、僮C法一:如上圖,過(guò)點(diǎn)作交的延長(zhǎng)線于,可以得到:a)(為什么?);b)(為什么?)。通過(guò)等量代換便可以得到結(jié)論。同樣,過(guò)點(diǎn)作的平行線和邊的延長(zhǎng)線相交,也可以證得結(jié)論,證明的方法是完全一樣的。
、谧C法二:如右圖,過(guò)點(diǎn)作交的延長(zhǎng)線于,可以得到:a)(為什么?);b)(為什么?)。通過(guò)等量代換便可以得到所要的結(jié)論。同樣,過(guò)點(diǎn)作的平行線和的延長(zhǎng)線相交,也可以得到結(jié)論,證明的方法是完全一樣的。
、圩C法三:如右圖,過(guò)點(diǎn)作交于,可以得到:a)(為什么?);b)(為什么?);c)。通過(guò)等量代換便可以得到所要的結(jié)論。同樣,過(guò)點(diǎn)作的平行線和相交,也可以得到結(jié)論,證明的方法是完全一樣的。
④證法四:如下頁(yè)圖,過(guò)點(diǎn)作交于,根據(jù)三角形的面積公式可得:xxx
又根據(jù)正弦定理的面積公式有:
通過(guò)比較就可以得到:所要的結(jié)論。
。á。┒ɡ恚喝切蔚耐饨瞧椒志外分對(duì)邊所得的兩條線段與夾這個(gè)角的兩邊對(duì)應(yīng)成比例。
。áⅲ┮阎褐校堑囊粋(gè)外角,平分,交的延長(zhǎng)線于。
求證:xxx。
。á#┖(jiǎn)單分析:(類(lèi)同內(nèi)角平分線定理的分析方法)
。áぃ┳C法提要;(類(lèi)同內(nèi)角平分線定理的分析方法)
四、小結(jié)全節(jié),練習(xí)鞏固
1、小結(jié)
、艃蓚(gè)定理
。á。┤切蔚膬(nèi)角平分線定理
。áⅲ┤切蔚耐饨瞧椒志定理
、谱C明方法
分為四大類(lèi)共七種方法。
2、練習(xí)
、沤滩,2、3兩題。
、蒲a(bǔ)充題:
①畫(huà)任意一個(gè)三角形的某個(gè)角的內(nèi)外角平分線,說(shuō)明內(nèi)外角平分線之間的關(guān)系,證明你的結(jié)論。
、诋(huà)等腰三角形的外角平分線,說(shuō)明外角平分線和底邊之間的關(guān)系,證明你的結(jié)論。
3、作業(yè)
教材,17、18兩題。
【三角形的角平分線】相關(guān)文章:
《角平分線的性質(zhì)》教學(xué)反思范文12-25
角平分線性質(zhì)定理的證明方法10-12
三角形面積的計(jì)算01-13
相似三角形說(shuō)課稿11-12
三角形中位線說(shuō)課稿11-02
三角形全等的判定說(shuō)課稿11-03
三角形的內(nèi)角和試講稿11-16