中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

分數(shù)與整數(shù)相乘教學(xué)反思

時間:2022-09-22 09:22:03 教學(xué)反思 我要投稿

分數(shù)與整數(shù)相乘教學(xué)反思(通用11篇)

  身為一名剛到崗的教師,我們要有很強的課堂教學(xué)能力,在寫教學(xué)反思的時候可以反思自己的教學(xué)失誤,快來參考教學(xué)反思是怎么寫的吧!下面是小編幫大家整理的分數(shù)與整數(shù)相乘教學(xué)反思,歡迎大家借鑒與參考,希望對大家有所幫助。

分數(shù)與整數(shù)相乘教學(xué)反思(通用11篇)

  分數(shù)與整數(shù)相乘教學(xué)反思 篇1

  《分數(shù)與整數(shù)相乘》這是學(xué)生首次接觸分數(shù)乘法。分數(shù)與整相乘在運算意義上與整數(shù)乘法一致,因而算法是教學(xué)的重點。

  《課程標準》強調(diào)從學(xué)生的熟悉的生活經(jīng)驗和學(xué)習(xí)經(jīng)驗,讓數(shù)學(xué)學(xué)習(xí)成為學(xué)生“生動活潑、主動發(fā)展和富有個性的過程”,本課重視了讓學(xué)生成為學(xué)習(xí)的主人,積極主動地探究學(xué)習(xí)新知,體驗成功的快樂!

  我認為教者以下幾點做得比較好:

  1、結(jié)合現(xiàn)實的問題情境,引導(dǎo)學(xué)生理解分數(shù)乘法的意義。

  計算課是比較單調(diào)和枯燥的,為了避免單純的機械計算,將計算學(xué)習(xí)與解決問題有機結(jié)合。創(chuàng)設(shè)了班里同學(xué)為教師節(jié)做裝飾花的實際情境,引導(dǎo)學(xué)生明白分數(shù)和整數(shù)相乘的意義與整數(shù)乘法的意義相同,都是求幾個相同加數(shù)的簡便運算,又可以啟發(fā)學(xué)生用加法算出3/10×3的結(jié)果。

  2、借助同分母分數(shù)加法,自主探索分數(shù)和整數(shù)相乘的計算方法。

  由于分數(shù)和整數(shù)相乘可以轉(zhuǎn)化成幾個相同加數(shù)連加的算式,因此,例1放手讓學(xué)生嘗試計算,著重讓學(xué)生說一說計算的思考過程。因為很多學(xué)生可能憑借經(jīng)驗只知道怎么算,不知道為什么這樣算。尤其是對于分數(shù)和整數(shù)相乘時,為什么直接將分子與整數(shù)相乘的積作分子,而分母不變,學(xué)生不一定明確。因此,這節(jié)課不能僅僅滿足學(xué)生會算,更重要的是要讓學(xué)生理解分數(shù)與整數(shù)相乘的含義,關(guān)注學(xué)生理解分數(shù)與整數(shù)相乘的算理,理解和掌握為什么可以這樣算?這樣做的理由是什么?這樣做能夠很好的突出重點,突破難點,要讓學(xué)生不僅知其然,更重要的是知其所以然。教材的例題側(cè)重體現(xiàn)加法和乘法之間的轉(zhuǎn)化,板書對照清楚明晰,學(xué)生很容易發(fā)現(xiàn)乘的計算方法,。

  3、練習(xí)設(shè)計具有針對性,多樣性,激勵性,生活性。

  在本環(huán)節(jié)學(xué)生的技能得到了鞏固和提升,特別是兩個常見的改錯題引發(fā)學(xué)生自我反思、自我完善計算方法,已達到算法的自主優(yōu)化。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇2

  《分數(shù)與整數(shù)相乘》是在學(xué)生掌握整數(shù)乘法、理解分數(shù)的意義和基本性質(zhì),以及同分母分數(shù)加法的基礎(chǔ)上進行教學(xué)的,這是學(xué)生首次接觸分數(shù)乘法。本節(jié)課所要教學(xué)的內(nèi)容,雖然對于部分學(xué)生來說也許并不陌生,估計有學(xué)生可能已經(jīng)會計算分數(shù)與整數(shù)相乘的算式。但這節(jié)課的學(xué)習(xí)對于他們來說并不多余,因為很多學(xué)生可能憑借經(jīng)驗只知道怎么算,不知道為什么這樣算。尤其是對于分數(shù)和整數(shù)相乘時,為什么直接將分子與整數(shù)相乘的積作分子,而分母不變,學(xué)生不一定明確。因此,這節(jié)課不能僅僅滿足學(xué)生會算,更重要的是要讓學(xué)生理解分數(shù)與整數(shù)相乘的含義,關(guān)注學(xué)生理解分數(shù)與整數(shù)相乘的算理,理解和掌握為什么可以這樣算?這樣做的理由是什么?要讓學(xué)生不僅知其然,更重要的是知其所以然。

  本節(jié)課的教學(xué),教者緊緊圍繞:理解意義――明確算理――鞏固提高――形成技能,這幾個方面來進行教學(xué)的。雖然課堂教學(xué)還算順利,但通過本節(jié)課的教學(xué),也反映出了一些不足。下面就這節(jié)課的教學(xué)談?wù)勔恍┙毯蟾邢搿?/p>

  1、充分利用教材資源,挖掘算法和算理

  計算教學(xué)的課注重的是講明算理,掌握算法,一般對于學(xué)生來說,是比較單調(diào)和枯燥的,為了避免單純的機械計算,我創(chuàng)設(shè)了學(xué)生做綢花的實際情境,將計算教學(xué)與解決問題有機結(jié)合。學(xué)生通過觀察涂色的方格圖,列出算式,從而有利于理解分數(shù)乘法的意義。這樣處理,既有利于學(xué)生主動地把整數(shù)乘法的意義推廣到分數(shù)中來,即分數(shù)和整數(shù)相乘的意義與整數(shù)乘法的意義相同,都是求幾個相同加數(shù)的簡便運算,又可以啟發(fā)學(xué)生用加法算出×3的結(jié)果。但在教學(xué)中,我對一米綢帶的這幅圖沒有充分地利用好,我只是在導(dǎo)入時讓學(xué)生說了說,怎樣在圖中表示3個米,其實在這里,應(yīng)該依據(jù)圖形結(jié)合,借助圖形來說明算理,最后教師再歸納到分數(shù)乘整數(shù)的意義角度,讓學(xué)生理解分數(shù)乘法的意義與整數(shù)乘法的意義是相同的,就是求幾個相同分數(shù)的和。

  2、連續(xù)追問,深入理解算理

  在計算教學(xué)中,往往有很多教師只關(guān)注教會學(xué)生如何算,對為什么可以這樣算缺乏足夠的重視。因此,造成由于算理不清而導(dǎo)致的只會機械算,不會靈活運用的狀況。因此,在這部分的教學(xué)中,我通過連續(xù)追問,讓學(xué)生深入理解算理,讓學(xué)生明白分數(shù)乘整數(shù)為什么分母不變,分子與整數(shù)相乘作分子的道理。這樣做能夠很好的突出重點,突破難點,讓學(xué)生知其然,知其所以然。

  3、關(guān)注細節(jié),注重數(shù)學(xué)的嚴謹

  在教學(xué)先約分再計算的算法時,教者改編了教材,設(shè)計了一道比較大的整數(shù)與分數(shù)相乘的題目,對比之下簡單與復(fù)雜一目了然,起到了很好的效果。但是在展示的學(xué)生計算過程中,出現(xiàn)了約分格式不規(guī)范的情況,有些同學(xué)在約分時,把約好的數(shù)寫在原來數(shù)的右邊,我忘了提醒學(xué)生要把約好的數(shù)寫在原來數(shù)的上方,假如教師注重一下學(xué)生書寫習(xí)慣的培養(yǎng),這節(jié)課將更完善。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇3

  本節(jié)課教學(xué)時,我充分發(fā)揮了學(xué)生的積極主動性,真正地體現(xiàn)了學(xué)生的主體地位,教師真正地成為課堂的組織者和引導(dǎo)者。在例1第一問的教學(xué)中,先讓學(xué)生嘗試涂色練習(xí),然后通過猜想——觀察——發(fā)現(xiàn)規(guī)律,在小組中交流自己的發(fā)現(xiàn),而在例1的第二問得教學(xué)時我采用大膽放手,讓學(xué)生獨立嘗試完成,再讓自己看書校對,培養(yǎng)學(xué)生充分利用課本資源,學(xué)會學(xué)習(xí),最后集體補充完善分數(shù)與整數(shù)相乘的計算方法。整節(jié)課磕磕碰碰,在學(xué)生的對比、發(fā)現(xiàn)、交流中學(xué)習(xí),同時也反映出一些不足。下面我就這節(jié)課的教學(xué)談?wù)勔恍└邢搿?/p>

  1、充分利用教材資源,概括計算方法和挖掘算理

  計算教學(xué)的課堂中注重的是講明算理,掌握算法,一般對于學(xué)生來說,是比較單調(diào)和枯燥的,為了避免單純的機械計算,我創(chuàng)設(shè)了學(xué)生做綢花的實際情境,將計算教學(xué)與解決問題有機結(jié)合。學(xué)生通過觀察、涂條形圖驗證口算3/10×3的答案,再列出算式計算驗證,從而有利于理解分數(shù)乘法的意義,又滲透了猜想——驗證——應(yīng)用的數(shù)學(xué)思想。這樣處理,既有利于學(xué)生主動地把整數(shù)乘法的意義推廣到分數(shù)乘法中來,即分數(shù)和整數(shù)相乘的意義與整數(shù)乘法的意義相同,都是求幾個相同加數(shù)的和的簡便運算,又可以啟發(fā)學(xué)生用加法算出3/10×3的結(jié)果。在教學(xué)中,我抓住一米綢帶的這幅圖先讓學(xué)生涂出3/10米,然后涂出3個3/10米,再列式計算,圖形結(jié)合,借助圖形來說明算理,理解幾個相同加數(shù)的和用乘法來計算。

  在計算教學(xué)中,往往有時我們往往會只關(guān)注教會學(xué)生如何計算,對為什么可以這樣計算缺乏足夠的重視,而造成了由于算理不清而導(dǎo)致的只會機械計算,不會靈活運用的狀況。因此,在這部分的教學(xué)中,我通過圖文結(jié)合,引導(dǎo)觀察,巧妙地用色筆作記號,再適時追問,引導(dǎo)學(xué)生深入理解算理,讓學(xué)生明白分數(shù)乘整數(shù)為什么分母不變,分子與整數(shù)相乘的積作分子的道理。這樣做能夠很好地突出重點,突破難點,讓學(xué)生知其然,更知其所以然。最后學(xué)生歸納、補充,初步感知分數(shù)與整數(shù)相乘的計算方法。

  2、實現(xiàn)教學(xué)的個性化,發(fā)展學(xué)生的能力。

  相比去年教學(xué)本課時,我又做了大膽地嘗試,備這節(jié)課時又想起去年執(zhí)教鎮(zhèn)教研課的情景,用同年級的老師的話是“課堂教學(xué)流暢,一氣呵成,要想有所突破,會很難”。細想感覺學(xué)生的積極性是很高,算理也理解得很透徹,但總有種學(xué)生是“牽得過多,主觀能動性發(fā)揮得不太好,所以在教學(xué)例1第二問時我改變了原來的方式,大膽放手,先讓學(xué)生獨立嘗試計算做5朵這樣的綢花要用綢帶多少米?再打開書本互相補充學(xué)習(xí),并觀察比較哪一種方法更好?最后交流完善分數(shù)與整數(shù)相乘的計算方法(能先約分的要先約分再計算),并互相質(zhì)疑。其用意是在利用身邊的資源,培養(yǎng)學(xué)生學(xué)會學(xué)習(xí),并能將自己的發(fā)現(xiàn)用語言表達出來。為“課堂教學(xué)過關(guān)”做了一次大膽地嘗試,但情況不是十分理想,特別是學(xué)生的數(shù)學(xué)語言表達能力不強。在今后的教學(xué)中,我要更多地關(guān)注學(xué)生小組合作學(xué)習(xí)能力,交流能力,自學(xué)能力,引導(dǎo)學(xué)生學(xué)會學(xué)習(xí)數(shù)學(xué)。

  通過這節(jié)課的改革嘗試,我深深體會到:在平時的課堂教學(xué)中,我們應(yīng)該大膽放手讓學(xué)生去探索、歸納,充分地相信孩子,把學(xué)習(xí)的主動權(quán)交還給孩子,教師要具有引發(fā)學(xué)生思考的能力,促使形成合作、探索、質(zhì)疑、互助的良好學(xué)習(xí)氛圍。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇4

  《分數(shù)與整數(shù)相乘》是首次教學(xué)分數(shù)乘法,教材除了從實際問題引出,還盡量與整數(shù)乘法靠近,充分利用已有的知識、經(jīng)驗,構(gòu)建新運算的意義與算法。創(chuàng)造遷移的條件,引導(dǎo)學(xué)生主動寫出分數(shù)乘法算式;營造探索的氛圍,放手讓學(xué)生創(chuàng)新分數(shù)乘整數(shù)的方法。本節(jié)課的教學(xué),教者緊緊圍繞:理解意義――明確算理――鞏固提高――形成技能,這幾個方面來進行教學(xué)的。下面就這節(jié)課的教學(xué)談?wù)勔恍┍救寺牶蟾邢搿?/p>

  一、利用已有知識引導(dǎo)學(xué)生實現(xiàn)正遷移。

  《分數(shù)乘整數(shù)》是分數(shù)乘法單元的第一課時,本課主要讓學(xué)生通過自主探索,了解分數(shù)與整數(shù)相乘的意義,知道“求幾個幾分之幾相加的和”可以用乘法計算,初步理解并掌握分數(shù)與整數(shù)相乘的計算方法。而分數(shù)與整數(shù)相乘的意義與整數(shù)相乘的意義相同,所以這節(jié)課在引入課題時教者設(shè)計了下面的一道習(xí)題:(1)做一朵綢花要3分米綢帶,小麗做4朵這樣的綢花,一共用多少厘米綢帶?通過讓學(xué)生列式并追問為什么都用乘法計算,激活學(xué)生已有的對整數(shù)乘法意義的認識。然后再通過改題呈現(xiàn)例1:做一朵綢花要米綢帶,小芳做3朵這樣的綢花,一共用幾分之幾米綢帶?學(xué)生順理成章地列出了例1的乘法算式,通過追問這題為什么也用乘法計算?學(xué)生自然地將整數(shù)乘法的意義遷移到分數(shù)乘整數(shù)的意義中,實現(xiàn)了知識的正遷移。

  二、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實”,加強算法的探究。

  在學(xué)習(xí)本課之前,其實許多學(xué)生大概知道了分數(shù)乘整數(shù)的計算方法,但對于為什么要這樣算就不清楚了。如果再按照一般的教學(xué)程序(呈現(xiàn)問題——探討研究——得出結(jié)論)進行教學(xué),學(xué)生就會覺得“這些知識我早就知道了,沒什么可學(xué)的了!,從而失去探究的興趣。教師的主導(dǎo)作用在于設(shè)計恰當?shù)慕虒W(xué)形式,調(diào)動不同層次的學(xué)生的學(xué)習(xí)興趣。于是在教學(xué)時×3的算法時直接問:你知道怎么乘嗎,你認為整數(shù)3與分數(shù)的什么相乘呢?教者重點在讓學(xué)生明白為什么要這樣乘。抓住這一質(zhì)疑點,提出:“為什么只把分子與整數(shù)相乘,分母不變”接下來的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。由質(zhì)疑開始的探索是學(xué)生為滿足自身需要而進行的主動探索,因此學(xué)生在課堂上迫不及待地,積極主動地進行討論,從不同的角度解決疑問。

  三、實現(xiàn)教學(xué)的個性化,發(fā)展學(xué)生的思維。

  每個學(xué)生都有各自的生活經(jīng)驗和知識基礎(chǔ),面對需要解決的問題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實出發(fā)來構(gòu)建知識的,這就決定了不同的孩子在解決同一問題時會有不同的視角。在本節(jié)課中,教者放手讓學(xué)生用自己思維方式進行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識,充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過對分數(shù)乘整數(shù)的意義的理解,將分數(shù)乘整數(shù)與分數(shù)加法的計算方法聯(lián)系起來思考;有的學(xué)生通過計算分數(shù)單位的個數(shù)來理解;有的學(xué)生講清了分母不能與整數(shù)相乘,只能將分子與整數(shù)相乘的道理;還有的學(xué)生將分數(shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果。

  聽了這節(jié)課我深深地體會到,新課程的計算教學(xué),不是簡單的出示一道計算的算式,而是讓學(xué)生通過具體的'情景,讓學(xué)生列式,計算結(jié)束后,還要讓學(xué)生回到原題中來理解這樣計算的依據(jù),這一點非常重要,包括教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會阻礙學(xué)生的思維發(fā)展。也是我們再上計算教學(xué)時要特別注意的地方。

  在探究計算過程中,要讓學(xué)生充分的表達,說說自己是怎樣算的,可以采取個別說說,同桌說說,全班交流的方法。最后讓學(xué)生得出分數(shù)乘整數(shù)的一般方法,而不是教師出示法則,讓學(xué)生去簡單記憶。

  注重學(xué)生的反饋,學(xué)生才是課堂的主體,教師在教學(xué)時要充分挖掘?qū)W生的資源,讓學(xué)生的錯誤資源在課堂上充分的展示,提醒其他同學(xué)在以后的練習(xí)中不要再出現(xiàn)這種錯誤。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇5

  本節(jié)課的教學(xué)我繼續(xù)采用了“數(shù)形結(jié)合”的數(shù)學(xué)方法,對于課堂中的“探究活動”沒有直接放手,我認為學(xué)生對“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義的理解還不夠深刻,因此我把整個教學(xué)過程分為三個層次:

 。1)引導(dǎo)學(xué)生通過用圖形表示算式,再用算式表示圖形,深化“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義,感知分數(shù)乘分數(shù)的計算過程。

 。2)讓學(xué)生先解釋算式的意義,然后用圖形表示這個意義,最后再根據(jù)圖形表示出算式的計算過程,這樣做的目的是通過“以形論數(shù)”和“以數(shù)表形”的過程使學(xué)生鞏固分數(shù)乘法的意義,體會分數(shù)乘分數(shù)的計算過程。

 。3)學(xué)生運用數(shù)形結(jié)合的方法獨立完成教材中的試一試,進一步達成以上目標,并為總結(jié)分數(shù)乘分數(shù)的計算方法積累認知。這樣的教學(xué)的效果較為理想。這是因為在本節(jié)課中我進一步培養(yǎng)學(xué)生主動運用畫圖的解決問題的策略,有扶到放讓學(xué)生經(jīng)歷探索的過程,讓學(xué)生體驗深刻的原因吧。

  1、數(shù)形結(jié)合的思想在本單元教學(xué)中的滲透和其作用。

  由于分數(shù)乘法的意義和計算法則的道理比較抽象,學(xué)生理解起來不是很容易,所以利用圖形使抽象的問題直觀化,在本單元教學(xué)中就顯得尤其重要了。

  2、對學(xué)生探索過程的理解。

  在本單元的教學(xué)目標中,“探索”是一個關(guān)鍵詞——“結(jié)合具體的情境,在操作活動中,探索并理解分數(shù)乘法的意義”、“探索并掌握分數(shù)乘法的計算方法,并能正確計算” 。這是由數(shù)學(xué)目標中“數(shù)學(xué)過程”“問題解決”兩個維度決定的;同時“探索”的過程也是達成“情感、態(tài)度和價值觀”目標的重要途徑。

  在教學(xué)過程中,組織學(xué)生進行對數(shù)學(xué)知識的探索活動,要根據(jù)不同的材料和背景采用不同的策略才能達到是活動有效的目的。由于學(xué)生剛剛認識“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義,并且用圖形表征分數(shù)乘分數(shù)的計算過程比較復(fù)雜,因此采用“扶一扶,放一放”的策略就比較妥當了。具體的講就是:教師通過簡單的具體事例進行集體引導(dǎo),這便是“扶一扶”。再通過具體的探索要求幫助學(xué)生嘗試著探索比較復(fù)雜的實例,這便是“放一放”。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇6

  本節(jié)課在教學(xué)中充分借助學(xué)生已有的知識基礎(chǔ),通過觀察、涂畫、比較、歸納等活動,通過例題的直觀操作,通過知識的遷移幫助學(xué)生理解了分數(shù)乘分數(shù)的意義,初步掌握了分數(shù)乘分數(shù)的計算方法。在教學(xué)中我注重了以下幾點;

  一、創(chuàng)設(shè)情境、直觀導(dǎo)入

  在教學(xué)中為了突破教學(xué)的難點,使學(xué)生能夠真正理解分數(shù)乘法計算法則的算理,一開始我就請同學(xué)們看黑板上貼的長方形紙,涂色部分分別表示這張紙的幾分之幾?,通過對長方形紙的涂色,很好的揭示這一道理。將抽象的算理與直觀的示意圖結(jié)合起來,使抽象思維和形象思維結(jié)合起來。在解決算理時,通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化,從而啟發(fā)計算思維。比如畫斜線的1份占1/2的1/4,此時的單位"1"是1/2,但是對于整個長方形來說是1/8,此時的單位“1”是一個長方形。

  二、關(guān)注算理的推導(dǎo)

  “新課程標準”指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間交往互動與共同發(fā)展的過程!边@一新的理念說明:數(shù)學(xué)教學(xué)活動將是學(xué)生經(jīng)歷一個數(shù)學(xué)化的過程,是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動。因此,本課時力圖讓學(xué)生親自經(jīng)歷學(xué)習(xí)過程。即讓學(xué)生在動手操作——探究算法——舉例驗證——交流評價——法則統(tǒng)整等一系列活動中經(jīng)歷“分數(shù)乘分數(shù)”計算法則的形成過程。

  新知教學(xué)時我出示“1/2×1/3”猜一猜這個算式表示什么意義?我提示學(xué)生想一想分數(shù)與整數(shù)的意義看一看適合分數(shù)與分數(shù)相乘嗎?最后學(xué)生得出,“1/2×1/3”表示二分之一的三分之一是多少。這時,我告訴學(xué)生這道算式也可以表示三分之一的二分之一是多少。我想肯定有同學(xué)能夠很好掌握,可是肯定也會有一部分學(xué)生不能理解,于是我接著要求學(xué)生用畫圖的形式表示出這個算式的意義。這樣既可以幫助學(xué)生自主地理解分數(shù)與分數(shù)相乘的意義也加深學(xué)生對“分數(shù)與分數(shù)相乘”計算法則的理解。

  當學(xué)生畫出這個算式所表示的意義時,我問學(xué)生,從圖中你能看出“1/2×1/3”的結(jié)果嗎?學(xué)生一下子就說了結(jié)果1/6,然后我又出了幾個分數(shù)與分數(shù)相乘的算式要求學(xué)生先畫圖再說出得數(shù)這樣經(jīng)過幾次動手操作,學(xué)生對分數(shù)乘法的計算有了深刻的理解。

  三、注重學(xué)法的滲透

  本課時從教學(xué)的整體設(shè)計上是由“特殊”去引發(fā)學(xué)生的猜想,再來舉例驗證、然后歸納概括,力圖讓學(xué)生體會從特殊到一般的不完全歸納思想。首先讓學(xué)生通過活動概括得出“分數(shù)乘分數(shù)”只要“分子不變,分母相乘”或“分子相乘,分母相乘”的計算方法,再由學(xué)生自己用畫圖、折紙、分數(shù)的意義等方法來驗證這種計算方法,發(fā)現(xiàn)了“分數(shù)乘分數(shù),分子不變,分母相乘”的特殊性,以及“分數(shù)乘分數(shù),分子相乘,分母相乘”的普遍性。這其間滲透了科學(xué)的學(xué)習(xí)方法和實事求是的科學(xué)精神。

  這樣在計算教學(xué)中關(guān)注學(xué)生的自主探究,讓學(xué)生自己去做、去悟、去經(jīng)歷、去體驗,去創(chuàng)造,既培養(yǎng)了學(xué)生合作意識,提高學(xué)習(xí)的自主性,又使學(xué)生在理解掌握方法的同時提高解決問題的能力,形成良好的數(shù)學(xué)情感與價值觀。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇7

  本節(jié)課的重點是理解一個數(shù)乘分數(shù)的意義,掌握一個數(shù)乘分數(shù)的計算法則,同樣也是難點。我在教學(xué)中嘗試著讓學(xué)生通過折一折、畫一畫,以直觀的方法讓學(xué)生在理解分數(shù)乘分數(shù)的意義的過程中直接發(fā)現(xiàn)結(jié)果,然后根據(jù)折出來的結(jié)果探索計算法則,放棄了教材中兩次折、畫的方法。剛上完課,表面上感覺按部就班地完成了教學(xué)任務(wù),可是總感覺缺少點什么,教學(xué)過程有點脫節(jié)。

  敢于沖擊教材。

  改變了情景中的主人公,把教材中的粉墻改成了一位老師家的墻,開門見山,直奔主題。這樣更能激起學(xué)生質(zhì)疑的興趣。

  關(guān)注動態(tài)生成。

  在課的開始,我激活了教學(xué)內(nèi)容,讓學(xué)生在課的開始就面對“老師家粉刷墻壁”的信息,讓學(xué)生提出問題,產(chǎn)生疑問,引起學(xué)生的認知沖突,產(chǎn)生解決問題的欲望,激發(fā)了學(xué)生解決問題的沖動。在學(xué)生形成的關(guān)于問題的多種原始想法中,我關(guān)注了動態(tài)的生成,抓住鮮活的生成資源,篩選出了關(guān)鍵的問題,使本節(jié)課的目標及教學(xué)重點成為學(xué)生的探討焦點,體現(xiàn)了教與學(xué)的主體地位。

  敢于放手研討。

  為了突破本節(jié)課的教學(xué)難點,在課堂上我讓學(xué)生折一折、畫一畫,以折紙涂色活動為主線,給學(xué)生提供了大量的動手操作的時間和觀察交流,思考的空間,鼓勵學(xué)生獨立思考,從不同的角度去探究問題。折紙是為了理解意義。當學(xué)生由1/2×2的意義推測出1/4×1/2的意義是表示求1/4的1/2是多少時,我知道學(xué)生并不理解為什么這樣說。正是通過折紙,學(xué)生理解了1/4的意義,1/2的意義,才能理解1/4×1/2的意義。因為學(xué)生只有理解了分數(shù)的意義,才能理解分數(shù)乘分數(shù)的意義。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇8

  這部分教材是在學(xué)生已學(xué)過整數(shù)乘法的意義和分數(shù)加法計算的基礎(chǔ)上進行教學(xué)的。通過教學(xué),我感觸頗多:

  一、引導(dǎo)自主探索,了解分數(shù)與整數(shù)相乘的意義。

  1、導(dǎo)入新課時,引導(dǎo)學(xué)生涂色表示3個 米,目的是讓學(xué)生認識到求3個 米可以用加法計算,也可以用乘法計算,再借助所列的加法算式初步理解分數(shù)與整數(shù)相乘的意義,并為引導(dǎo)學(xué)生探索分數(shù)與整數(shù)相乘的計算方法進行了知識結(jié)構(gòu)上的鋪墊。

  2、通過交流與討論,引導(dǎo)學(xué)生主動聯(lián)系已有的知識經(jīng)驗進行分析、歸納和類推, ×3=?進一步發(fā)展學(xué)生合情推理能力,體驗探索學(xué)習(xí)的樂趣。

  二、加強過程體驗,體會過程約分比結(jié)果約分更簡便。

  在解決例1的第(2)題時,我在處理算法多樣化與算法優(yōu)化時設(shè)計了88×8/11 =?的練習(xí),讓學(xué)生用兩種方法計算,加強過程體驗,學(xué)生通過親身體驗后,體會到過程約分比結(jié)果約分更簡便且不易錯,形成一種內(nèi)在需求,優(yōu)化算法。

  存在不足:本課算理強調(diào)還不夠,特別是練一練第1題,在學(xué)生獨立完成后,我在組織交流時不夠充分,只交流了學(xué)生的計算方法和結(jié)果,忽視了學(xué)生是如何涂出4個3/16的,后來我發(fā)現(xiàn)學(xué)生涂得方法很多,其實通過學(xué)生涂色寫算式,可以溝通分數(shù)乘法和分數(shù)加法間的聯(lián)系,進一步體會分數(shù)與整數(shù)相乘的意義,體會“求幾個幾分之幾相加的和”可以用乘法計算的算理,我沒有很好地把握教材這一練習(xí)設(shè)計的意圖,沒有敏銳地把握教學(xué)資源,很好地鞏固算理。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇9

  一、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實”。

  在教學(xué)分數(shù)乘整數(shù)之前,其實班里已經(jīng)有不少學(xué)生知道了分數(shù)乘整數(shù)的計算方法。如果再按照一般的教學(xué)程序進行教學(xué),學(xué)生就會覺得“這些知識我早就知道了,沒什么可學(xué)的了!,從而失去探究的興趣。于是在教學(xué)時,我提出:“為什么結(jié)果是9/10?為什么要把分子與整數(shù)相乘?”接下來的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。

  二、實現(xiàn)教學(xué)學(xué)習(xí)的個性化。

  每個學(xué)生都有各自的生活經(jīng)驗和知識基礎(chǔ),面對需要解決的問題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實出發(fā)來構(gòu)建知識的,這就決定了不同的孩子在解決同一問題時會有不同的視角。在本節(jié)課中,我放手讓學(xué)生用自己思維方式進行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識,充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過對分數(shù)乘整數(shù)的意義的理解,將分數(shù)乘整數(shù)與分數(shù)加法的計算方法聯(lián)系起來思考;有的學(xué)生通過在老師給的練習(xí)紙上涂色來得到結(jié)果;有的學(xué)生講清了為什么將分子與整數(shù)相乘的道理;還有的學(xué)生將分數(shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果。由此我深深地體會到,包括教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會阻礙學(xué)生的思維發(fā)展。

  三、對教材進行重組。

  本節(jié)課時一節(jié)枯燥乏味的計算課,因此我利用烏龜和兔子進行智力比賽的方式來刺激學(xué)生求知解題的欲望,讓孩子們在充滿競爭和挑戰(zhàn)的環(huán)境氛圍下,不知不覺地完成書本上的基本練習(xí)。當然我也對教材的聯(lián)系題目進行了重組和改編。如練一練第一題,我就把4個改成了3個,這樣就使得這題避免約分,先解決不用約分的計算方法,再進行約分的教學(xué)。使整節(jié)課自然分成兩部分來進行。

  四、存在的一些問題。

  本節(jié)課總體來說比較成功,課堂上的內(nèi)容都比較順利的完成了,但是在讓學(xué)生體會先約分比較簡單時,出現(xiàn)了些問題。在做完例題第二個問題之后,依然有不少學(xué)生依然覺得先計算好,于是我就出示了四道題目,其中最后一題數(shù)據(jù)較大,可以很好的引導(dǎo)學(xué)生得出正確的結(jié)論。但我現(xiàn)在覺得,如果在例題教學(xué)完之后就直接完成那個8/11×99,這樣就更加直接了,學(xué)生立刻就能體會到先約分的好處了,那么再做其它需要進行約分的題目就方便了。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇10

  反思本節(jié)課,無論是教學(xué)目標的定位,還是教學(xué)過程的組織,都反映出一種新的教學(xué)理念。我認為主要有以下幾個方面:

  一、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài)

  新課程標準指出:“要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更要關(guān)注他們在教學(xué)活動中所表現(xiàn)出來的情感和態(tài)度!睘榇,教師在教學(xué)中為了讓學(xué)生能真正主動地、投入地參與到探究過程中來,就應(yīng)該設(shè)法讓其在一開始就產(chǎn)生探究的內(nèi)在需要,這是非常關(guān)鍵的。因此,這就需要老師既兼顧知識本身的特點,又兼顧學(xué)生的認知和學(xué)生已有的水平,尋找合適的切入口,讓學(xué)生感受到眼前問題的挑戰(zhàn)性和可探索性,從而產(chǎn)生“我也來研究研究這個問題”的興趣。這節(jié)課一開始,我就讓學(xué)生經(jīng)歷折紙操作——合作交流——尋找計算方法這一過程,使學(xué)生發(fā)現(xiàn)并掌握分數(shù)單位乘分數(shù)單位的計算方法。由于在這個過程中討論的素材都來源于學(xué)生,他們討論自己的學(xué)習(xí)材料,熱情特別高漲,興趣特別濃厚,都想通過自己的努力,尋找出“我的發(fā)現(xiàn)”,而對自己尋找出的法則印象特別深,同時又產(chǎn)生了繼續(xù)探索、驗證兩個一般分數(shù)相乘的計算方法的欲望。

  二、關(guān)注結(jié)論,更關(guān)注過程

  傳統(tǒng)教學(xué)是教師利用復(fù)合投影片等手段,讓學(xué)生理解“分數(shù)乘分數(shù)”的算理,再利用其計算法則進行大量練習(xí),以實現(xiàn)“熟能生巧”!靶抡n程標準”指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間交往互動與共同發(fā)展的過程!边@一新的理念說明:數(shù)學(xué)教學(xué)活動將是學(xué)生經(jīng)歷的 一個數(shù)學(xué)化的過程,是學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動。因此,教學(xué)本課時力圖讓學(xué)生親自經(jīng)歷學(xué)習(xí)過程,即讓學(xué)生在動手操作——探究算法-舉例驗證——交流評價——法則整理等一系列活動中經(jīng)歷“分數(shù)乘分數(shù)”計算法則的形成過程。這里實現(xiàn)了讓學(xué)生自己去做、去悟、去經(jīng)歷、去體驗、去創(chuàng)造,同時也考慮了學(xué)生解題策略的自主選擇,顧及了合作意識的培養(yǎng),我深信這比單純掌握計算方法再熟練生巧更有意義。

  三、 科學(xué)的學(xué)習(xí)方法的滲透

  新課程標準指出:“幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗!彼越處熢谝龑(dǎo)學(xué)生經(jīng)過不斷思考獲得規(guī)律的過程中,著眼點不能知識規(guī)律的本身,更重要的是一種“發(fā)現(xiàn)”的體驗。在這種體驗中感受數(shù)學(xué)的思維方法,體會科學(xué)的學(xué)習(xí)方法。本課從教學(xué)的整體設(shè)計上是由“特殊”去引發(fā)學(xué)生的猜想,再來舉例驗證,然后歸納概括,力圖讓學(xué)生體會從特殊到一般的不完全歸納思想。首先讓學(xué)生通過活動概括得出“分數(shù)乘分數(shù)”只要“分子不變,分母相乘”或“分子相乘,分母相乘”即可的計算方法,再由學(xué)生自己用折紙、化小數(shù)、分數(shù)的意義等方法來驗證這種計算方法,發(fā)現(xiàn)了“分數(shù)乘分數(shù),分子不變,分母相乘”特殊性,以及“分數(shù)乘分數(shù),分子相乘,分母相乘”的普遍性。這其間滲透了科學(xué)的學(xué)習(xí)方法和實事求是的科學(xué)精神。

  四、 困惑之處

  如何關(guān)注全體?本課第一階段研究“幾分之幾乘幾分之幾”時,由于學(xué)生是在自己操作的基礎(chǔ)上去發(fā)現(xiàn)規(guī)律的,所以全體學(xué)生興趣高漲,都積極主動地參與到了探究的過程。而到第二階段去驗證交流“幾分之幾乘幾分之幾”中,除了用折紙法驗證交流外,其余的環(huán)節(jié)幾乎都被幾名“優(yōu)等生”“占領(lǐng)”,雖然教師多次這樣引導(dǎo):“誰能聽懂他的意思?你能再解釋一下嗎?”,“用他的方法去試試看!钡糠謱W(xué)生還是不能參與其中,成了“伴學(xué)者”。所以,如何面對學(xué)生的差異,促使學(xué)生人人都能在原有的基礎(chǔ)上得到不同的發(fā)展,是課堂教學(xué)中值得探索的一個課題。

  分數(shù)與整數(shù)相乘教學(xué)反思 篇11

  首先,感謝于華靜老師親臨指導(dǎo),雖然時間緊湊,沒有過多的準備時間,上完一節(jié)家常課,但是通過課上反應(yīng)的情況足夠看出老師的個人素質(zhì)欠佳。就這節(jié)課談一談我對本節(jié)課的認識:

  《分數(shù)乘分數(shù)》重點是鞏固和進化理解分數(shù)乘法的意義,探索分數(shù)乘分數(shù)的計算法則。在教學(xué)實踐中我繼續(xù)采用“數(shù)形結(jié)合”的數(shù)學(xué)方法,幫助學(xué)生達成以上的兩個數(shù)學(xué)目標。對于課堂中的“探究活動”沒有直接放手,這是因為學(xué)生對“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義的理解還不夠深刻,因此在整個得教學(xué)過程分為三個層次:

  (1)引導(dǎo)學(xué)生通過用圖形表示算式,再用算式表示圖形,深化“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義,感知分數(shù)乘分數(shù)的計算過程。在本環(huán)節(jié)中我主要是讓學(xué)生借助數(shù)量關(guān)系式“工作效率乘時間=工作總量”來列出算式讓后通過畫圖或者折紙來表示出算式的意義。其實在探究意義的時候關(guān)鍵是在學(xué)生已經(jīng)對分數(shù)乘整數(shù)的基礎(chǔ)上進行感知的。我沒敢詢問學(xué)生1/5×2與2×1/5表示的意義不同,從這能看出教師不能完全放開,生怕學(xué)生牽引不住,局限了學(xué)生思維的發(fā)展。

  (2)以1/5×1/2為例,讓學(xué)生先解釋算式的意義,然后用圖形表示這個意義,最后在根據(jù)圖形表示出算式的計算過程,這樣做的目的是通過“以形論數(shù)”和“以數(shù)表形”的過程是學(xué)生鞏固分數(shù)乘法的意義,體會分數(shù)乘分數(shù)的計算過程。雖然想的不錯,但是我落實的不是很理想,在學(xué)生利用手段探究的過程中,我設(shè)想的策略不是很適合,折紙這一手段浪費了課上足夠多的時間,導(dǎo)致后面沒有時間處理重難點。這就要求老師在備課的時候切合學(xué)生的實際來思考那種策略更容易切效率較高的達到目的。

  (3)學(xué)生運用數(shù)形結(jié)合的方法獨立完成教材中的試一試,進一步達成以上目標,并為總結(jié)分數(shù)乘分數(shù)的計算方法積累認知。整體教學(xué)的效果很好。

  由于學(xué)生有比較堅實的整數(shù)乘法意義的基礎(chǔ),所以對于探索分數(shù)乘整數(shù)的意義和計算法則的探索完全可以讓學(xué)生獨立進行。而在分數(shù)乘分數(shù)計算過程的探索中,由于學(xué)生剛剛認識“求一個數(shù)的幾分之幾是多少”的分數(shù)乘法意義,并且用圖形表征分數(shù)乘分數(shù)的計算過程比較復(fù)雜,因此采用“扶一扶,放一放”的策略就比較好。

  設(shè)想總是美好的,落實起來卻不盡人意,主要表現(xiàn)在,老師在處理重難點的時候,例子太少,沒有讓學(xué)生體會到計算的必要性,調(diào)動起學(xué)生的探究欲望。而在重點突破的時候?qū)哟尾幻黠@,學(xué)生沒有真正掌握算理,計算方法處理的很草率,學(xué)生沒有充分理解。

  課后學(xué)生在計算分數(shù)乘分數(shù)時能根據(jù)計算法則進行計算,但對于計算過程的約分,部分學(xué)生的約分意識不強,如3的倍數(shù),7的倍數(shù),甚至更大質(zhì)數(shù)的倍數(shù),學(xué)生不知道約分,使結(jié)果不是最簡,還要加強訓(xùn)練。

  通過這節(jié)課,能看出一節(jié)課的好壞關(guān)鍵是在老師的備課,老師備課時內(nèi)容要充分,重點把握得當,節(jié)奏緊湊。尤其是在計算課中,算理和算法是重難點,老師一定要講透講明才能幫助學(xué)生理解。

【分數(shù)與整數(shù)相乘教學(xué)反思】相關(guān)文章:

分數(shù)與整數(shù)相乘教學(xué)反思06-30

《分數(shù)與整數(shù)相乘》的教學(xué)反思06-18

《分數(shù)與整數(shù)相乘》教學(xué)反思07-10

分數(shù)與整數(shù)相乘的教學(xué)反思07-10

分數(shù)與整數(shù)相乘教學(xué)反思11-13

分數(shù)與整數(shù)相乘教學(xué)反思7篇07-09

《分數(shù)和整數(shù)相乘》教學(xué)反思范文(精選5篇)04-18

《分數(shù)和整數(shù)相乘》說課稿范文06-23

《分數(shù)與整數(shù)相乘》教案(精選8篇)09-06