中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

相似三角形的判定定理教學(xué)設(shè)計(jì)

時(shí)間:2022-08-18 10:06:46 教學(xué)設(shè)計(jì) 我要投稿

相似三角形的判定定理教學(xué)設(shè)計(jì)(精選6篇)

  作為一位杰出的教職工,常常要根據(jù)教學(xué)需要編寫(xiě)教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以促進(jìn)我們快速成長(zhǎng),使教學(xué)工作更加科學(xué)化。我們?cè)撛趺慈?xiě)教學(xué)設(shè)計(jì)呢?下面是小編幫大家整理的相似三角形的判定定理教學(xué)設(shè)計(jì),希望能夠幫助到大家。

相似三角形的判定定理教學(xué)設(shè)計(jì)(精選6篇)

  相似三角形的判定定理教學(xué)設(shè)計(jì) 篇1

  一、教學(xué)目標(biāo)

  1.經(jīng)歷兩個(gè)三角形相似的探索過(guò)程,進(jìn)一步發(fā)展學(xué)生的探究、交流能力。

  2.掌握“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”的判定方法。

  3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問(wèn)題。

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):三角形相似的判定方法1

  2.難點(diǎn):三角形相似的判定方法1的運(yùn)用。

  三、課堂引入

  1.復(fù)習(xí)提問(wèn):

  (1)我們已學(xué)習(xí)過(guò)哪些判定三角形相似的方法?

  (2)△ABC中,點(diǎn)D在AB上,如果AC2=ADAB,那么△ACD與△ABC相似嗎?說(shuō)說(shuō)你的理由。

 。3)△ABC中,點(diǎn)D在AB上,如果∠ACD=∠B,那么△ACD與△ABC相似嗎?——引出課題。

 。4)教材P48的探究3。

  四、例題講解

  例1(教材P48例2)。

  分析:要證PA*PB=PC*PD,需要證PA/PD=PC/PB,則需要證明這四條線段所在的兩個(gè)三角形相似。由于所給的條件是圓中的兩條相交弦,故需要先作輔助線構(gòu)造三角形,然后利用圓的性質(zhì)“同弧上的圓周角相等”得到兩組角對(duì)應(yīng)相等,再由三角形相似的判定方法3,可得兩三角形相似。

  證明:略(見(jiàn)教材)。

  例2(補(bǔ)充)

  已知:如圖,矩形ABCD中,E為BC上一點(diǎn),DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的長(zhǎng)。

  分析:要求的是線段

  DF的長(zhǎng),觀察圖形,我們發(fā)現(xiàn)AB、AD、AE和DF這四條線段分別在△ABE和△AFD中,因此只要證明這兩個(gè)三角形相似,再由相似三角形的性質(zhì)可以得到這四條線段對(duì)應(yīng)成比例,從而求得DF的長(zhǎng)。由于這兩個(gè)三角形都是直角三角形,故有一對(duì)直角相等,再找出另一對(duì)角對(duì)應(yīng)相等,即可用“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”的判定方法來(lái)證明這兩個(gè)三角形相似。

  五、課堂練習(xí)

  下列說(shuō)法是否正確,并說(shuō)明理由。

  (1)有一個(gè)銳角相等的兩直角三角形是相似三角形;

 。2)有一個(gè)角相等的兩等腰三角形是相似三角形。

  六、作業(yè)

  1、已知:如圖,△ABC的高AD、BE交于點(diǎn)F。

  求證:AF/BF=EF/FD。

  2、已知:如圖,BE是△ABC的外接圓O的直徑,CD是△ABC的高。

 。1)求證:

  ACBC=BECD;

  (2)若CD=6,AD=3,BD=8,求⊙O的直徑BE的長(zhǎng)。

  相似三角形的判定定理教學(xué)設(shè)計(jì) 篇2

  【教學(xué)目標(biāo)】

  1、掌握相似三角形的判定定理1。

  2、會(huì)用三角形相似的判定定理1,來(lái)證明有關(guān)問(wèn)題;

  3、通過(guò)用三角形全等的判定方法類(lèi)比得出三角形相似的判定方法,使學(xué)生進(jìn)一步領(lǐng)悟類(lèi)比的思想方法。

  【重點(diǎn)和難點(diǎn)】

  理解相似三角形的判定定理1,并能用其來(lái)解決有關(guān)問(wèn)題

  【教 具】

  三角板、多媒體設(shè)備

  【教學(xué)設(shè)計(jì)】

  一、復(fù)習(xí)舊知識(shí),運(yùn)用類(lèi)比的思想方法引導(dǎo)學(xué)生提出問(wèn)題

  1、什么叫相似三角形?怎么表示?

  (在學(xué)生回答完后,教師總結(jié))對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形,叫做相似三角形。(注意:三角形相似不一定限定在兩個(gè)三角形之間,可以是兩個(gè)以上,但不能是一個(gè)。)表示:如果?ABC與?DEF相似,則記作ABC∽DEF

  ABACBC??用數(shù)學(xué)符號(hào)表示:∵∠A=∠D,∠B=∠E,∠C=∠F,且DEDFEF,∴ABC∽DEF注意:與三角形全等的書(shū)寫(xiě)類(lèi)似,表示對(duì)應(yīng)角的字母順序需要一樣

  2、上節(jié)課我們還學(xué)習(xí)了一個(gè)判定兩三角形相似的定理,哪位同學(xué)能說(shuō)說(shuō)?

  學(xué)生回答完之后投影:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似。

  3、除了用定義和上面的定理來(lái)判定三角形相似外,還有什么方法可判定兩個(gè)三角形相似?我們知道判定兩個(gè)三角形全等的方法有“AAS”、“ASA”、“SAS”、“SSS”、“HL”等,那么類(lèi)似地,判定兩個(gè)三角形相似還有哪些方法?今天我們開(kāi)始來(lái)研究這個(gè)問(wèn)題。

  二、講授新課

  1、觀察你和同伴的三角尺,同樣角度(30度與60度,或45度與45度)的三角尺,它們相似嗎?

  2、任意畫(huà)兩個(gè)三角形,使三對(duì)角分別對(duì)應(yīng)相等,再量一量對(duì)應(yīng)邊,看看是否成比例。

  3、師生共同總結(jié)

  4、結(jié)論:三角形相似判定方法1:兩角分別相等的兩個(gè)三角形相似

  5、已知:如圖(4)所示,在?ABC與?A'B'C'中,若∠A=∠A',∠B=∠B',試猜想:?ABC與?A'B'C'是否相似?并證明你猜的結(jié)論。

  三、拓展運(yùn)用

  圖24.3.5

  課本練習(xí)1、2

  四、課堂小結(jié):

  本節(jié)課你學(xué)到了什么?有什么感悟?

  五、作業(yè):

  P75 習(xí)題23.3 第1、5題。

  相似三角形的判定定理教學(xué)設(shè)計(jì) 篇3

  一、教學(xué)目標(biāo)

  1.初步掌握三組對(duì)應(yīng)邊的比相等的兩個(gè)三角形相似的判定方法,以及兩組對(duì)應(yīng)邊的比相等且它們的夾角相等的兩個(gè)三角形相似的判定方法。

  2.經(jīng)歷兩個(gè)三角形相似的探索過(guò)程,體驗(yàn)用類(lèi)比、實(shí)驗(yàn)操作、分析歸納得出數(shù)學(xué)結(jié)論的'過(guò)程;通過(guò)畫(huà)圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗(yàn),激發(fā)學(xué)生探索知識(shí)的興趣,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性。

  3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問(wèn)題。

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):

  掌握兩種判定方法,會(huì)運(yùn)用兩種判定方法判定兩個(gè)三角形相似。

  2. 難點(diǎn):

  (1)三角形相似的條件歸納、證明;

  (2)會(huì)準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來(lái)判定三角形是否相似。

  3. 難點(diǎn)的突破方法

  (1)關(guān)于三角形相似的判定方法

  三組對(duì)應(yīng)邊的比相等的兩個(gè)三角形相似,教科書(shū)雖然給出了證明,但不要求學(xué)生自己證明,通過(guò)教師引導(dǎo)、講解證明,使學(xué)生了解證明的方法,并復(fù)習(xí)前面所學(xué)過(guò)的有關(guān)知識(shí),加深對(duì)判定方法的理解。

  (2)判定方法

  的探究是讓學(xué)生通過(guò)作圖展開(kāi)的,我們?cè)诮虒W(xué)過(guò)程中,要通過(guò)從作圖方法的遷移過(guò)程,讓學(xué)生進(jìn)一步感受,由特殊的全等三角形到一般相似三角形,以及類(lèi)比認(rèn)識(shí)新事物的方法。

  (3)講判定方法

  要扣住對(duì)應(yīng)二字,一般最短邊與最短邊,最長(zhǎng)邊與最長(zhǎng)邊是對(duì)應(yīng)邊。

  (4)判定方法

  一定要注意區(qū)別夾角相等 的條件,如果對(duì)應(yīng)相等的角不是兩條邊的夾角,這兩個(gè)三角形不一定相似,課堂練習(xí)2就是通過(guò)讓學(xué)生聯(lián)想、類(lèi)比全等三角形中SSA條件下三角形的不確定性,來(lái)達(dá)到加深理解判定方法2的條件的目的的。

  相似三角形的判定定理教學(xué)設(shè)計(jì) 篇4

  教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1、掌握相似三角形的定義、表示法,并能根據(jù)定義判斷兩個(gè)三角形是否相似。

  2、能根據(jù)相似比進(jìn)行計(jì)算。

 。ǘ┠芰τ(xùn)練要求

  1、能根據(jù)定義判斷兩個(gè)三角形是否相似,訓(xùn)練學(xué)生的判斷能力。

  2、能根據(jù)相似比求長(zhǎng)度和角度,培養(yǎng)學(xué)生的運(yùn)用能力。

  (三)情感與價(jià)值觀要求

  通過(guò)與相似多邊形有關(guān)概念的類(lèi)比,滲透類(lèi)比的教學(xué)思想,并領(lǐng)會(huì)特殊與一般的關(guān)系。

  教學(xué)重點(diǎn)

  相似三角形的定義及運(yùn)用。

  教學(xué)難點(diǎn)

  根據(jù)定義求線段長(zhǎng)或角的度數(shù)。

  教學(xué)方法

  類(lèi)比討論法

  教具準(zhǔn)備

  投影片三張

  第一張(記作§4.5 A)

  第二張(記作§4.5 B)

  第三張(記作§4.5 C)

  教學(xué)過(guò)程

 、、創(chuàng)設(shè)問(wèn)題情境,引入新課

  [師]上節(jié)課我們學(xué)習(xí)了相似多邊形的定義及記法,F(xiàn)在請(qǐng)大家回憶一下。

  [生]對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)多邊形叫做相似多邊形。

  相似多邊形對(duì)應(yīng)邊的比叫做相似比。

  [師]很好。請(qǐng)問(wèn)相似多邊形指的是哪些多邊形呢?

  [生]只要邊數(shù)相同,滿足對(duì)應(yīng)角相等、對(duì)應(yīng)邊成比例的多邊形都包括。比如相似三角形,相似五邊形等。

  [師]由此看來(lái),相似三角形是相似多邊形的一種。今天,我們就來(lái)研究相似三角形。

  相似三角形的判定定理教學(xué)設(shè)計(jì) 篇5

  一、教學(xué)目標(biāo)

  1、使學(xué)生了解直角三角形相似定理的證明方法并會(huì)應(yīng)用。

  2、繼續(xù)滲透和培養(yǎng)學(xué)生對(duì)類(lèi)比數(shù)學(xué)思想的認(rèn)識(shí)和理解。

  3、通過(guò)了解定理的證明方法,培養(yǎng)和提高學(xué)生利用已學(xué)知識(shí)證明新命題的能力。

  4、通過(guò)學(xué)習(xí),了解由特殊到一般的唯物辯證法的觀點(diǎn)。

  二、教學(xué)設(shè)計(jì)

  類(lèi)比學(xué)習(xí),探討發(fā)現(xiàn)

  三、重點(diǎn)及難點(diǎn)

  1.教學(xué)重點(diǎn):是直角三角形相似定理的應(yīng)用。

  2.教學(xué)難點(diǎn):是了解直角三角形相似判定定理的證題方法與思路。

  四、課時(shí)安排

  3課時(shí)

  五、教具學(xué)具準(zhǔn)備

  多媒體、常用畫(huà)圖工具、

  六、教學(xué)步驟

  [復(fù)習(xí)提問(wèn)]

  1、我們學(xué)習(xí)了幾種判定三角形相似的方法?(5種)

  2、敘述預(yù)備定理、判定定理1、2、3(也可用小紙條讓學(xué)生默寫(xiě))。

  其中判定定理1、2、3的證明思路是什么?(①作相似,證全等;②作全等,證相似)

  3、什么是“勾股定理”?什么是比例的合比性質(zhì)?

  【講解新課】

  類(lèi)比判定直角三角形全等的“HL”方法,讓學(xué)生試推出:

  直角三角形相似的判定定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。

  已知:如圖,在中,

  求證:

  建議讓學(xué)生自己寫(xiě)出“已知、求征”。

  這個(gè)定理有多種證法,它同樣可以采用判定定理1、2、3那樣的證明思路與方法,即“作相似、證全等”或“作全等、證相似”,教材上采用了代數(shù)證法,利用代數(shù)法證明幾何命題的思想方法很重要,今后我們還會(huì)遇到。應(yīng)讓學(xué)生對(duì)此有所了解。

  定理證明過(guò)程中的“都是正數(shù)……其中都是正數(shù)”告訴學(xué)生一定不能省略,這是因?yàn)槊}“若,到”是假命題(可舉例說(shuō)明),而命題“若,且、均為正數(shù),則”是真命題。

  例4已知:如圖……當(dāng)BD與、之間滿足怎樣的關(guān)系時(shí)。

  解(略)

  教師在講解例題時(shí),應(yīng)指出要使∽。應(yīng)有點(diǎn)A與C,B與D,C與B成對(duì)應(yīng)點(diǎn),對(duì)應(yīng)邊分別是斜邊和一條直角邊。

  還可提問(wèn):

  (1)當(dāng)BD與、滿足怎樣的關(guān)系時(shí)?(答案:)

 。2)如圖,當(dāng)BD與、滿足怎樣的關(guān)系式時(shí),這兩個(gè)三角形相似?(不指明對(duì)應(yīng)關(guān)系)

 。ù鸢福夯騼煞N情況)

  探索性題目是已知命題的結(jié)論,尋找使結(jié)論成立的題設(shè),是探索充分條件,所以有一定難度,教材為了降低難度,在例4中給了探索方向,即“BD與滿足怎樣的關(guān)系式!

  這種題目體現(xiàn)分析問(wèn)題的思維方法,對(duì)培養(yǎng)學(xué)生研究問(wèn)題的習(xí)慣有好處,教師要給予足夠重視,但由于有一定難度,只要求學(xué)生了解這類(lèi)問(wèn)題的思考方法,不應(yīng)提高要求或增加難度。

 。坌〗Y(jié)]

  1、直角三角形相似的判定除了本節(jié)定理外,前面判定任意三角形相似的方法對(duì)直角三角形同樣適用。

  2、讓學(xué)生了解了用代數(shù)法證幾何命題的思想方法。

  3、關(guān)于探索性題目的處理。

  七、布置作業(yè)

  教材P239中A組9、教材P240中B組3。

  相似三角形的判定定理教學(xué)設(shè)計(jì) 篇6

  一、教學(xué)目標(biāo)

  1.經(jīng)歷兩個(gè)三角形相似的探索過(guò)程,進(jìn)一步發(fā)展學(xué)生的探究、交流能力。

  2.掌握“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”的判定方法。

  3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問(wèn)題。

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):三角形相似的判定方法3--“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”

  2.難點(diǎn):三角形相似的判定方法3的運(yùn)用。

  3.難點(diǎn)的突破方法

  (1)在兩個(gè)三角形中,只要滿足兩個(gè)對(duì)應(yīng)角相等,那么這兩個(gè)三角形相似,這是三角形相似中最常用的一個(gè)判定方法。

  (2)公共角、對(duì)頂角、同角的余角(或補(bǔ)角)、同弧上的圓周角都是相等的,是判別兩個(gè)三角形相似的重要依據(jù)。

  (3)如果兩個(gè)三角形是直角三角形, 則只要再找到一對(duì)銳角相等即可說(shuō)明這兩個(gè)三角形相似。

  三、例題的意圖

  本節(jié)課安排了兩個(gè)例題,例1是教材P48的例2,是一個(gè)圓中證相似的題目,這個(gè)題目比較簡(jiǎn)單,可以讓學(xué)生來(lái)分析、讓學(xué)生說(shuō)出思維的方法、讓學(xué)生自己寫(xiě)出證明過(guò)程。并讓學(xué)生掌握遇到等積式,應(yīng)先將其化為比例式的方法。

  例2是一個(gè)補(bǔ)充的題目,選擇這個(gè)題目是希望學(xué)生通過(guò)這個(gè)題的學(xué)習(xí),掌握利用三角形相似的知識(shí)來(lái)求線段長(zhǎng)的方法,為下節(jié)課學(xué)習(xí)“27.2.2 相似三角形的應(yīng)用舉例”打基礎(chǔ)。

  四、課堂引入

  1.復(fù)習(xí)提問(wèn):

  (1)我們已學(xué)習(xí)過(guò)哪些判定三角形相似的方法?

  (2)如圖,△ABC中,點(diǎn)D在AB上,如果AC2=AD?AB。

【相似三角形的判定定理教學(xué)設(shè)計(jì)】相關(guān)文章:

最新相似三角形的判定定理教學(xué)設(shè)計(jì)范文04-06

相似三角形的判定定理及性質(zhì)09-09

相似三角形的判定定理是什么09-09

相似三角形的判定教學(xué)反思12-08

《相似三角形的判定》教學(xué)反思10-31

矩形的判定定理教學(xué)設(shè)計(jì)(精選7篇)08-18

三角形判定定理09-29

初三數(shù)學(xué)相似三角形的判定教學(xué)計(jì)劃03-07

八年級(jí)數(shù)學(xué)上冊(cè)《相似三角形判定定理》教學(xué)反思06-21