中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

歡迎來到瑞文網(wǎng)!

余弦定理優(yōu)秀教學(xué)設(shè)計(jì)

余弦定理優(yōu)秀教學(xué)設(shè)計(jì)

  作為一名為他人授業(yè)解惑的教育工作者,編寫教學(xué)設(shè)計(jì)是必不可少的,教學(xué)設(shè)計(jì)是教育技術(shù)的組成部分,它的功能在于運(yùn)用系統(tǒng)方法設(shè)計(jì)教學(xué)過程,使之成為一種具有操作性的程序。那么應(yīng)當(dāng)如何寫教學(xué)設(shè)計(jì)呢?下面是小編為大家整理的余弦定理優(yōu)秀教學(xué)設(shè)計(jì),歡迎閱讀與收藏。

  余弦定理優(yōu)秀教學(xué)設(shè)計(jì)1

  一、教學(xué)設(shè)計(jì)

  1、教學(xué)背景

  在近幾年教學(xué)實(shí)踐中我們發(fā)現(xiàn)這樣的怪現(xiàn)象:絕大多數(shù)學(xué)生認(rèn)為數(shù)學(xué)很重要,但很難;學(xué)得很苦、太抽象、太枯燥,要不是升學(xué),我們才不會(huì)去理會(huì),況且將來用數(shù)學(xué)的機(jī)會(huì)很少;許多學(xué)生完全依賴于教師的講解,不會(huì)自學(xué),不敢提問題,也不知如何提問題,這說明了學(xué)生一是不會(huì)學(xué)數(shù)學(xué),二是對(duì)數(shù)學(xué)有恐懼感,沒有信心,這樣的心態(tài)怎能對(duì)數(shù)學(xué)有所創(chuàng)新呢即使有所創(chuàng)新那與學(xué)生們所花代價(jià)也不成比例,其間扼殺了他們太多的快樂和個(gè)性特長。建構(gòu)主義提倡情境式教學(xué),認(rèn)為多數(shù)學(xué)習(xí)應(yīng)與具體情境有關(guān),只有在解決與現(xiàn)實(shí)世界相關(guān)聯(lián)的問題中,所建構(gòu)的知識(shí)才將更豐富、更有效和易于遷移。我們?cè)?009級(jí)進(jìn)行了“創(chuàng)設(shè)數(shù)學(xué)情境與提出數(shù)學(xué)問題”的以學(xué)生為主的“生本課堂”教學(xué)實(shí)驗(yàn),通過一段時(shí)間的教學(xué)實(shí)驗(yàn),多數(shù)同學(xué)已能適應(yīng)這種學(xué)習(xí)方式,平時(shí)能主動(dòng)思考,敢于提出自己關(guān)心的問題和想法,從過去被動(dòng)的接受知識(shí)逐步過渡到主動(dòng)探究、索取知識(shí),增強(qiáng)了學(xué)習(xí)數(shù)學(xué)的興趣。

  2、教材分析

  “余弦定理”是高中數(shù)學(xué)的主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個(gè)重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識(shí)和平面向量知識(shí)在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實(shí)際問題的重要工具,因此具有廣泛的應(yīng)用價(jià)值。本節(jié)課是“正弦定理、余弦定理”教學(xué)的第二節(jié)課,其主要任務(wù)是引入并證明余弦定理。布魯納指出,學(xué)生不是被動(dòng)的、消極的知識(shí)的接受者,而是主動(dòng)的、積極的知識(shí)的探究者。教師的作用是創(chuàng)設(shè)學(xué)生能夠獨(dú)立探究的情境,引導(dǎo)學(xué)生去思考,參與知識(shí)獲得的過程。因此,做好“余弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),而且能培養(yǎng)學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力。

  3、設(shè)計(jì)思路

  建構(gòu)主義強(qiáng)調(diào),學(xué)生并不是空著腦袋走進(jìn)教室的。在日常生活中,在以往的學(xué)習(xí)中,他們已經(jīng)形成了豐富的經(jīng)驗(yàn),小到身邊的衣食住行,大到宇宙、星體的運(yùn)行,從自然現(xiàn)象到社會(huì)生活,他們幾乎都有一些自己的看法。而且,有些問題即使他們還沒有接觸過,沒有現(xiàn)成的經(jīng)驗(yàn),但當(dāng)問題一旦呈現(xiàn)在面前時(shí),他們往往也可以基于相關(guān)的經(jīng)驗(yàn),依靠他們的認(rèn)知能力,形成對(duì)問題的某種解釋。而且,這種解釋并不都是胡亂猜測(cè),而是從他們的經(jīng)驗(yàn)背景出發(fā)而推出的合乎邏輯的假設(shè)。所以,教學(xué)不能無視學(xué)生的這些經(jīng)驗(yàn),另起爐灶,從外部裝進(jìn)新知識(shí),而是要把學(xué)生現(xiàn)有的知識(shí)經(jīng)驗(yàn)作為新知識(shí)的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”出新的知識(shí)經(jīng)驗(yàn)。

  為此我們根據(jù)“情境—問題”教學(xué)模式,沿著“設(shè)置情境—提出問題—解決問題—反思應(yīng)用”這條主線,把從情境中探索和提出數(shù)學(xué)問題作為教學(xué)的出發(fā)點(diǎn),以“問題”為紅線組織教學(xué),形成以提出問題與解決問題相互引發(fā)攜手并進(jìn)的“情境—問題”學(xué)習(xí)鏈,使學(xué)生真正成為提出問題和解決問題的主體,成為知識(shí)的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學(xué)過程成為學(xué)生主動(dòng)獲取知識(shí)、發(fā)展能力、體驗(yàn)數(shù)學(xué)的過程。根據(jù)上述精神,做出了如下設(shè)計(jì):

 、賱(chuàng)設(shè)一個(gè)現(xiàn)實(shí)問題情境作為提出問題的背景;

 、趩l(fā)、引導(dǎo)學(xué)生提出自己關(guān)心的現(xiàn)實(shí)問題,逐步將現(xiàn)實(shí)問題轉(zhuǎn)化、抽象成過渡性數(shù)學(xué)問題,解決問題時(shí)需要使用余弦定理,借此引發(fā)學(xué)生的認(rèn)知沖突,揭示解斜三角形的必要性,并使學(xué)生產(chǎn)生進(jìn)一步探索解決問題的動(dòng)機(jī)。然后引導(dǎo)學(xué)生抓住問題的數(shù)學(xué)實(shí)質(zhì),引伸成一般的數(shù)學(xué)問題:已知三角形的兩條邊和他們的夾角,求第三邊。

  ③為了解決提出的問題,引導(dǎo)學(xué)生從原有的知識(shí)經(jīng)驗(yàn)中“生長”出新的知識(shí)經(jīng)驗(yàn),通過作邊BC的垂線得到兩個(gè)直角三角形,然后利用勾股定理和銳角三角函數(shù)得出余弦定理的表達(dá)式,進(jìn)而引導(dǎo)學(xué)生進(jìn)行嚴(yán)格的邏輯證明。證明時(shí),關(guān)鍵在于啟發(fā)、引導(dǎo)學(xué)生明確以下兩點(diǎn):一是證明的起點(diǎn) ;二是如何將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。

 、苡蓪W(xué)生獨(dú)立使用已證明的結(jié)論去解決中所提出的問題。

  二、教學(xué)反思

  本課中,教師立足于所創(chuàng)設(shè)的情境,通過學(xué)生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應(yīng)用反思的過程,學(xué)生成為余弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識(shí)目標(biāo)、能力目標(biāo)、情感目標(biāo)均得到了較好的落實(shí),為今后的“定理教學(xué)”提供了一些有用的借鑒。

  例如,新課的引入,我引導(dǎo)學(xué)生從向量的模下手思考:

  生:利用向量的模并借助向量的數(shù)量積。

  教師:正確!由于向量 的模長,夾角已知,只需將向量 用向量 來表示即可。易知 ,接下來只要把這個(gè)向量等式數(shù)量化即可。如何實(shí)現(xiàn)呢

  學(xué)生8:通過向量數(shù)量積的運(yùn)算。

  通過教師的引導(dǎo),學(xué)生不難發(fā)現(xiàn) 還可以寫成 , 不共線,這是平面向量基本定理的一個(gè)運(yùn)用。因此在一些解三角形問題中,我們還可以利用平面向量基本定理尋找向量等式,再把向量等式化成數(shù)量等式,從而解決問題。

  (從學(xué)生的“最近發(fā)展區(qū)”出發(fā),證明方法層層遞進(jìn),激發(fā)學(xué)生探求新知的欲望,從而感受成功的喜悅。)

  創(chuàng)設(shè)數(shù)學(xué)情境是“情境·問題·反思·應(yīng)用”教學(xué)的基礎(chǔ)環(huán)節(jié),教師必須對(duì)學(xué)生的身心特點(diǎn)、知識(shí)水平、教學(xué)內(nèi)容、教學(xué)目標(biāo)等因素進(jìn)行綜合考慮,對(duì)可用的情境進(jìn)行比較,選擇具有較好的教育功能的情境。

  從應(yīng)用需要出發(fā),創(chuàng)設(shè)認(rèn)知沖突型數(shù)學(xué)情境,是創(chuàng)設(shè)情境的常用方法之一!坝嘞叶ɡ怼本哂袕V泛的應(yīng)用價(jià)值,故本課中從應(yīng)用需要出發(fā)創(chuàng)設(shè)了教學(xué)中所使用的數(shù)學(xué)情境。該情境源于教材解三角形應(yīng)用舉例的例1實(shí)踐說明,這種將教材中的例題、習(xí)題作為素材改造加工成情境,是創(chuàng)設(shè)情境的一條有效途徑。只要教師能對(duì)教材進(jìn)行深入、細(xì)致、全面的研究,便不難發(fā)現(xiàn)教材中有不少可用的素材。

  “情境·問題·反思·應(yīng)用”教學(xué)模式主張以問題為“紅線”組織教學(xué)活動(dòng),以學(xué)生作為提出問題的主體,如何引導(dǎo)學(xué)生提出問題是教學(xué)成敗的關(guān)鍵,教學(xué)實(shí)驗(yàn)表明,學(xué)生能否提出數(shù)學(xué)問題,不僅受其數(shù)學(xué)基礎(chǔ)、生活經(jīng)歷、學(xué)習(xí)方式等自身因素的影響,還受其所處的環(huán)境、教師對(duì)提問的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設(shè)適宜的數(shù)學(xué)情境(不僅具有豐富的內(nèi)涵,而且還具有“問題”的誘導(dǎo)性、啟發(fā)性和探索性),而且要真正轉(zhuǎn)變對(duì)學(xué)生提問的態(tài)度,提高引導(dǎo)水平,一方面要鼓勵(lì)學(xué)生大膽地提出問題,另一方面要妥善處理學(xué)生提出的問題。關(guān)注學(xué)生學(xué)習(xí)的結(jié)果,更關(guān)注學(xué)生學(xué)習(xí)的過程;關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更關(guān)注學(xué)生在數(shù)學(xué)活動(dòng)中所表現(xiàn)出來的情感與態(tài)度;關(guān)注是否給學(xué)生創(chuàng)設(shè)了一種情境,使學(xué)生親身經(jīng)歷了數(shù)學(xué)活動(dòng)過程。把“質(zhì)疑提問”,培養(yǎng)學(xué)生的數(shù)學(xué)問題意識(shí),提高學(xué)生提出數(shù)學(xué)問題的能力作為教與學(xué)活動(dòng)的起點(diǎn)與歸宿。

  余弦定理優(yōu)秀教學(xué)設(shè)計(jì)2

  一. 教學(xué)目標(biāo):

  1.知識(shí)與技能:認(rèn)識(shí)正弦、余弦定理,了解三角形中的邊與角的關(guān)系。

  2.過程與方法:通過具體的探究活動(dòng),了解正弦、余弦定理的內(nèi)容,并從具體的實(shí)例掌握正弦、余弦定理的應(yīng)用。

  3.情感態(tài)度與價(jià)值觀:通過對(duì)實(shí)例的探究,體會(huì)到三角形的和諧美,學(xué)會(huì)穩(wěn)定性的重要。

  二. 教學(xué)重、難點(diǎn):

  重點(diǎn):

  正弦、余弦定理應(yīng)用以及公式的變形

  難點(diǎn):

  運(yùn)用正、余弦定理解決有關(guān)斜三角形問題。

  知識(shí)梳理

  1.正弦定理和余弦定理

  在△ABC中,若角A,B,C所對(duì)的邊分別是a,b,c,則

  (1)S=2ah(h表示邊a上的高)

  (2)S=2bcsin A=2sin C=2acsin B

  (3)S=2r(a+b+c)(r為△ABC內(nèi)切圓半徑)

  問題1:在△ABC中,a=3,b2,A=60°求c及B C 問題2在△ABC中,c=6 A=30° B=120°求a b及C

  問題3在△ABC中,a=5,c=4,cos A=16,則b=

  通過對(duì)上述三個(gè)較簡單問題的解答指導(dǎo)學(xué)生總結(jié)正余弦定理的應(yīng)用; 正弦定理可以解決

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對(duì)角,求另一邊和其他兩角

  余弦定理可以解決

  (1)已知三邊,求三個(gè)角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角

  我們不難發(fā)現(xiàn)利用正余弦定理可以解決三角形中“知三求三” 知三中必須要有一邊

  應(yīng)用舉例

  【例1】 (1)(2013·湖南卷)在銳角△ABC中,角A,B所對(duì)的邊長分別為a,b.若2asin B3b,則角A等于 ( )

  A.3 B.4 C.6

  (2)(20xx·杭州模擬)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a=1,c=2,B=45°,則sin C=______.

  解析 (1)在△ABC中,由正弦定理及已知得2sin A·sin B=3sin B, ∵B為△ABC的內(nèi)角,∴sin B≠0. 3

  ∴sin A=2又∵△ABC為銳角三角形,

  ∴A∈02,∴A=3

  (2)由余弦定理,得b2=a2+c2-2accos B=1+32-2×2=25,即b=5. c·sin B

  所以sin Cb4

  答案 (1)A (2)5

  【訓(xùn)練1】 (1)在△ABC中,a=3,c=2,A=60°,則C=

  A.30° B.45° C.45°或135° D.60°

  (2)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若a2-b2=3bc,sin C=3sin B,則A=

  A.30° B.60° C.120° D.150°

  解析 (1)由正弦定理,得sin 60°sin C,解得:sin C=2,又c<a,所以C<60°,所以C=45°

  (2)∵sin C=23sin B,由正弦定理,得c=23b, b2+c2-a2-3bc+c2-3bc+3bc3∴cos A=2bc==2bc2bc2, 又A為三角形的內(nèi)角,∴A=30°.

  答案 (1)B (2)A

  規(guī)律方法

  已知兩角和一邊,該三角形是確定的,其解是唯一的;

  已知兩邊和一邊的對(duì)角,該三角形具有不唯一性,通常根據(jù)三角函數(shù)值的有界性和大邊對(duì)大角定理進(jìn)行判斷。

  【例2】 (20xx·臨沂一模)在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asin A=(2b-c)sin B+(2c-b)sin C. (1)求角A的大。

  (2)若sin B+sin C=3,試判斷△ABC的形狀。

  解 (1)由2asin A=(2b-c)sin B+(2c-b)sin C,

  得2a2=(2b-c)b+(2c-b)c,

  即bc=b2+c2-a2, b2+c2-a21

  ∴cos A=2bc=2,

  ∴A=60°.

  (2)∵A+B+C=180°,

  ∴B+C=180°-60°=120°

  由sin B+sin C=3,

  得sin B+sin(120°-B)=3,

  ∴sin B+sin 120°cos B-cos 120°sin B=3. 33

  ∴2sin B+2B=3,

  即sin(B+30°)=1. ∵0°<b<120°,< p="">

  ∴30°<b+30°<150°.< p="">

  ∴B+30°=90°,B=60°.

  ∴A=B=C=60°,

  △ABC為等邊三角形.

  規(guī)律方法

  解決判斷三角形的形狀問題,一般將條件化為只含角的三角函數(shù)的關(guān)系式,然后利用三角恒等變換得出內(nèi)角之間的關(guān)系式;

  或?qū)l件化為只含有邊的關(guān)系式,然后利用常見的化簡變形得出三邊的關(guān)系。另外,在變形過程中要注意A,B,C的范圍對(duì)三角函數(shù)值的影響。

  課堂小結(jié)

  1.在解三角形的問題中,三角形內(nèi)角和定理起著重要作用,在解題時(shí)要注意根據(jù)這個(gè)定理確定角的范圍及三角函數(shù)值的符號(hào),防止出現(xiàn)增解或漏解。

  2.正、余弦定理在應(yīng)用時(shí),應(yīng)注意靈活性,尤其是其變形應(yīng)用時(shí)可相互轉(zhuǎn)化.如a2=b2+c2-2bccos A可以轉(zhuǎn)化為sin2 A=sin2 B+sin2 C-2sin Bsin Ccos A,利用這些變形可進(jìn)行等式的化簡與證明。

  余弦定理優(yōu)秀教學(xué)設(shè)計(jì)3

  教材分析這是高三一輪復(fù)習(xí),內(nèi)容是必修5第一章解三角形。本章內(nèi)容準(zhǔn)備復(fù)習(xí)兩課時(shí)。本節(jié)課是第一課時(shí)。標(biāo)要求本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后應(yīng)落實(shí)在解三角形的應(yīng)用上。通過本節(jié)學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

  (1)通過對(duì)任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理解三角形。

  (2)能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法判斷三角形形狀的問題。本章內(nèi)容與三角函數(shù)、向量聯(lián)系密切。

  作為復(fù)習(xí)課一方面將本章知識(shí)作一個(gè)梳理,另一方面通過整理歸納幫助學(xué)生進(jìn)一步達(dá)到相應(yīng)的學(xué)習(xí)目標(biāo)。

  學(xué)情分析學(xué)生通過必修5的學(xué)習(xí),對(duì)正弦定理、余弦定理的內(nèi)容已經(jīng)了解,但對(duì)于如何靈活運(yùn)用定理解決實(shí)際問題,怎樣合理選擇定理進(jìn)行邊角關(guān)系轉(zhuǎn)化從而解決三角形綜合問題,學(xué)生還需通過復(fù)習(xí)提點(diǎn)有待進(jìn)一步理解和掌握。

  教學(xué)目標(biāo)知識(shí)目標(biāo):

  (1)學(xué)生通過對(duì)任意三角形邊長和角度關(guān)系的探索,掌握正弦、余弦定理的內(nèi)容及其證明方法;會(huì)運(yùn)用正、余弦定理與三角形內(nèi)角和定理,面積公式解斜三角形的兩類基本問題。

 。2)學(xué)生學(xué)會(huì)分析問題,合理選用定理解決三角形綜合問題。

  能力目標(biāo):

  培養(yǎng)學(xué)生提出問題、正確分析問題、獨(dú)立解決問題的能力,培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問題的運(yùn)算能力,培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思維能力。

  情感目標(biāo):

  通過生活實(shí)例探究回顧三角函數(shù)、正余弦定理,體現(xiàn)數(shù)學(xué)來源于生活,并應(yīng)用于生活,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,在教學(xué)過程中激發(fā)學(xué)生的探索精神。

  教學(xué)方法探究式教學(xué)、講練結(jié)合

  重點(diǎn)難點(diǎn)

  1、正、余弦定理的對(duì)于解解三角形的合理選擇;

  2、正、余弦定理與三角形的有關(guān)性質(zhì)的綜合運(yùn)用。

  教學(xué)策略

  1、重視多種教學(xué)方法有效整合。

  2、重視提出問題、解決問題策略的指導(dǎo)。

  3、重視加強(qiáng)前后知識(shí)的密切聯(lián)系。

  4、重視加強(qiáng)數(shù)學(xué)實(shí)踐能力的培養(yǎng)。

  5、注意避免過于繁瑣的形式化訓(xùn)練。

  6、教學(xué)過程體現(xiàn)“實(shí)踐→認(rèn)識(shí)→實(shí)踐”。

  設(shè)計(jì)意圖:

  學(xué)生通過必修5的學(xué)習(xí),對(duì)正弦定理、余弦定理的內(nèi)容已經(jīng)了解,但對(duì)于如何靈活運(yùn)用定理解決實(shí)際問題,怎樣合理選擇定理進(jìn)行邊角關(guān)系轉(zhuǎn)化從而解決三角形綜合問題,學(xué)生還需通過復(fù)習(xí)提點(diǎn)有待進(jìn)一步理解和掌握。作為復(fù)習(xí)課一方面要將本章知識(shí)作一個(gè)梳理,另一方面要通過整理歸納幫助學(xué)生學(xué)會(huì)分析問題,合理選用并熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決三角形綜合問題和實(shí)際應(yīng)用問題。

  數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。雖然是復(fù)習(xí)課,但我們不能一味的講題,在教學(xué)中應(yīng)體現(xiàn)以下教學(xué)思想:

 、胖匾暯虒W(xué)各環(huán)節(jié)的合理安排:

  在生活實(shí)踐中提出問題,再引導(dǎo)學(xué)生帶著問題對(duì)新知進(jìn)行探究,然后引導(dǎo)學(xué)生回顧舊知識(shí)與方法,引出課題。激發(fā)學(xué)生繼續(xù)學(xué)習(xí)新知的欲望,使學(xué)生的知識(shí)結(jié)構(gòu)呈一個(gè)螺旋上升的狀態(tài),符合學(xué)生的認(rèn)知規(guī)律。

 、浦匾暥喾N教學(xué)方法有效整合,以講練結(jié)合法、分析引導(dǎo)法、變式訓(xùn)練法等多種方法貫穿整個(gè)教學(xué)過程。

  ⑶重視提出問題、解決問題策略的指導(dǎo)。共3頁,當(dāng)前第1頁123

  ⑷重視加強(qiáng)前后知識(shí)的密切聯(lián)系。對(duì)于新知識(shí)的探究,必須增加足夠的預(yù)備知識(shí),做好銜接。要對(duì)學(xué)生已有的知識(shí)進(jìn)行分析、整理和篩選,把對(duì)學(xué)生后繼學(xué)習(xí)中有需要的.知識(shí)選擇出來,在新知識(shí)介紹之前進(jìn)行復(fù)習(xí)。

  ⑸注意避免過于繁瑣的形式化訓(xùn)練。從數(shù)學(xué)教學(xué)的傳統(tǒng)上看解三角形內(nèi)容有不少高度技巧化、形式化的問題,我們?cè)诮虒W(xué)過程中應(yīng)該注意盡量避免這一類問題的出現(xiàn)。

  二、實(shí)施教學(xué)過程

  (一)創(chuàng)設(shè)情境、揭示提出課題

  引例:要測(cè)量南北兩岸a、b兩個(gè)建筑物之間的距離,在南岸選取相距a點(diǎn)km的c點(diǎn),并通過經(jīng)緯儀測(cè)的,你能計(jì)算出a、b之間的距離嗎?若人在南岸要測(cè)量對(duì)岸b、d兩個(gè)建筑物之間的距離,該如何進(jìn)行?

 。ǘ⿵(fù)習(xí)回顧、知識(shí)梳理

  1.正弦定理:

  正弦定理的變形:

  利用正弦定理,可以解決以下兩類有關(guān)三角形的問題。

 。1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角。(從而進(jìn)一步求出其他的邊和角)

  2.余弦定理:

  a2=b2+c2-2bccosa;

  b2=c2+a2-2cacosb;

  c2=a2+b2-2abcosc。

  cosa=;

  cosb=;

  cosc=。

  利用余弦定理,可以解決以下兩類有關(guān)三角形的問題:

 。1)已知三邊,求三個(gè)角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角。

  3.三角形面積公式:

 。ㄈ┳灾鳈z測(cè)、知識(shí)鞏固

 。ㄋ模┑淅龑(dǎo)航、知識(shí)拓展

  【例1】 △abc的三個(gè)內(nèi)角a、b、c的對(duì)邊分別是a、b、c,如果a2=b(b+c),求證:a=2b。

  剖析:研究三角形問題一般有兩種思路。一是邊化角,二是角化邊。

  證明:用正弦定理,a=2rsina,b=2rsinb,c=2rsinc,代入a2=b(b+c)中,得sin2a=sinb(sinb+sinc)sin2a-sin2b=sinbsinc

  因?yàn)閍、b、c為三角形的三內(nèi)角,所以sin(a+b)≠0。所以sin(a-b)=sinb。所以只能有a-b=b,即a=2b。

  評(píng)述:利用正弦定理,將命題中邊的關(guān)系轉(zhuǎn)化為角間關(guān)系,從而全部利用三角公式變換求解。

  思考討論:該題若用余弦定理如何解決?

  【例2】已知a、b、c分別是△abc的三個(gè)內(nèi)角a、b、c所對(duì)的邊,

 。1)若△abc的面積為,c=2,a=600,求邊a,b的值;

 。2)若a=ccosb,且b=csina,試判斷△abc的形狀。

  (五)變式訓(xùn)練、歸納整理

  【例3】已知a、b、c分別是△abc的三個(gè)內(nèi)角a、b、c所對(duì)的邊,若bcosc=(2a—c)cosb

 。1)求角b

  (2)設(shè),求a+c的值。

  剖析:同樣知道三角形中邊角關(guān)系,利用正余弦定理邊化角或角化邊,從而解決問題,此題所變化的是與向量相結(jié)合,利用向量的模與數(shù)量積反映三角形的邊角關(guān)系,把本質(zhì)看清了,問題與例2類似解決。

  此題分析后由學(xué)生自己作答,利用實(shí)物投影集體評(píng)價(jià),再做歸納整理。

 。ń獯鹇裕

  課時(shí)小結(jié)(由學(xué)生歸納總結(jié),教師補(bǔ)充)

  1、解三角形時(shí),找三邊一角之間的關(guān)系常用余弦定理,找兩邊兩角之間的關(guān)系常用正弦定理。

  2、根據(jù)所給條件確定三角形的形狀,主要有兩種途徑:①化邊為角;②化角為邊。并常用正余弦定理實(shí)施邊角轉(zhuǎn)化。

  3、用正余弦定理解三角形問題可適當(dāng)應(yīng)用向量的數(shù)量積求三角形內(nèi)角與應(yīng)用向量的模求三角形的邊長。

  4、應(yīng)用問題可利用圖形將題意理解清楚,然后用數(shù)學(xué)模型解決問題。

  5、正余弦定理與三角函數(shù)、向量、不等式等知識(shí)相結(jié)合,綜合運(yùn)用解決實(shí)際問題。

  課后作業(yè):

  材料三級(jí)跳。

  創(chuàng)設(shè)情境,提出實(shí)際應(yīng)用問題,揭示課題。

  學(xué)生在探究問題時(shí)發(fā)現(xiàn)是解三角形問題,通過問答將知識(shí)作一梳理。

  學(xué)生通過課前預(yù)熱1、2、3、的快速作答,對(duì)正余弦定理的基本運(yùn)用有了一定的回顧。

  學(xué)生探討。

  知識(shí)的關(guān)聯(lián)與拓展

  正余弦定理與三角形內(nèi)角和定理,面積公式的綜合運(yùn)用對(duì)學(xué)生來說也是難點(diǎn),尤其是根據(jù)條件判斷三角形形狀。此處列舉例2讓學(xué)生進(jìn)一步體會(huì)如何選擇定理進(jìn)行邊角互化。

  本課是在學(xué)生學(xué)習(xí)了三角函數(shù)、平面幾何、平面向量、正弦和余弦定理的基礎(chǔ)上而設(shè)置的復(fù)習(xí)內(nèi)容,因此本課的教學(xué)有較多的處理辦法。從解三角形的問題出發(fā),對(duì)學(xué)過的知識(shí)進(jìn)行分類,采用的例題是精心準(zhǔn)備的,講解也是至關(guān)重要的。一開始的復(fù)習(xí)回顧學(xué)生能夠很好的回答正弦定理和余弦定理的基本內(nèi)容,但對(duì)于兩個(gè)定理的變形公式不知,也就是說對(duì)于公式的應(yīng)用不熟練。設(shè)計(jì)中的自主檢測(cè)幫助學(xué)生回顧記憶公式,對(duì)學(xué)生更有針對(duì)性的進(jìn)行了訓(xùn)練。學(xué)生還是出現(xiàn)了問題,在遇到第一個(gè)正弦方程時(shí),是只有一組解還是有兩組解,這是難點(diǎn)。例1、例2是常規(guī)題,讓學(xué)生應(yīng)用數(shù)學(xué)知識(shí)求解問題,可用正弦定理,也可用余弦定理,幫助學(xué)生鞏固正弦定理、余弦定理知識(shí)。

  本節(jié)課授課對(duì)象為高三6班的學(xué)生,上課氛圍非;钴S?紤]到這是一節(jié)復(fù)習(xí)課,學(xué)生已經(jīng)知道了定理的內(nèi)容,沒有經(jīng)歷知識(shí)的發(fā)生與推導(dǎo),所以興趣不夠,較沉悶。奧蘇貝爾指出,影響學(xué)習(xí)的最重要因素是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識(shí)狀況去進(jìn)行教學(xué)。因而,在教學(xué)中,教師了解學(xué)生的真實(shí)的思維活動(dòng)是一切教學(xué)工作的實(shí)際出發(fā)點(diǎn)。教師應(yīng)當(dāng)"接受"和"理解"學(xué)生的真實(shí)思想,盡管它可能是錯(cuò)誤的或幼稚的,但卻具有一定的"內(nèi)在的"合理性,教師不應(yīng)簡單否定,而應(yīng)努力去理解這些思想的產(chǎn)生與性質(zhì)等等,只有真正理解了學(xué)生思維的發(fā)生發(fā)展過程,才能有的放矢地采取適當(dāng)?shù)慕虒W(xué)措施以便幫助學(xué)生不斷改進(jìn)并最終實(shí)現(xiàn)自己的目標(biāo)。由于這種探究課型在平時(shí)的教學(xué)中還不夠深入,有些學(xué)生往往以一種觀賞者的身份參與其中,主動(dòng)探究意識(shí)不強(qiáng),思維水平?jīng)]有達(dá)到足夠的提升。這些都是不足之處,比較遺憾。但相信隨著課改實(shí)驗(yàn)的深入,這種狀況會(huì)逐步改善。畢竟輕松愉快的課堂是學(xué)生思維發(fā)展的天地,是合作交流、探索創(chuàng)新的主陣地,是思想教育的好場(chǎng)所。所以新課標(biāo)下的課堂將會(huì)是學(xué)生和教師共同成長的舞臺(tái)!

【余弦定理優(yōu)秀教學(xué)設(shè)計(jì)】相關(guān)文章:

匆匆優(yōu)秀教學(xué)設(shè)計(jì)12-27

《臺(tái)階》優(yōu)秀教學(xué)設(shè)計(jì)12-22

《觀潮》優(yōu)秀教學(xué)設(shè)計(jì)02-10

《臺(tái)階》優(yōu)秀教學(xué)設(shè)計(jì)12-22

《赤壁》優(yōu)秀教學(xué)設(shè)計(jì)12-20

離騷優(yōu)秀教學(xué)設(shè)計(jì)10-27

觀潮教學(xué)設(shè)計(jì)優(yōu)秀10-23

《背影》優(yōu)秀教學(xué)設(shè)計(jì)10-31

背影優(yōu)秀教學(xué)設(shè)計(jì)10-28

余弦定理說課稿6篇11-12