中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

分數(shù)的基本性質(zhì)教學設(shè)計

時間:2022-07-13 17:28:54 教學設(shè)計 我要投稿

分數(shù)的基本性質(zhì)教學設(shè)計范文 (精選11篇)

  作為一名辛苦耕耘的教育工作者,總不可避免地需要編寫教學設(shè)計,教學設(shè)計要遵循教學過程的基本規(guī)律,選擇教學目標,以解決教什么的問題。你知道什么樣的教學設(shè)計才能切實有效地幫助到我們嗎?以下是小編幫大家整理的分數(shù)的基本性質(zhì)教學設(shè)計范文 ,供大家參考借鑒,希望可以幫助到有需要的朋友。

分數(shù)的基本性質(zhì)教學設(shè)計范文 (精選11篇)

  分數(shù)的基本性質(zhì)教學設(shè)計 篇1

  一、教學目標

  1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。

  2、能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  3、經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

  二、教學重、難點

  教學重點是:分數(shù)的基本性質(zhì)。

  教學難點是:對分數(shù)的基本性質(zhì)的理解。

  三、教學方法

  采用了動手做一做、觀察、比較、歸納和直觀演示的方法

  四、教學過程

 。ㄒ唬⒐适乱,揭示課題

  1、教師講故事。

  猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊!庇谑牵锿跤职训谌龎K餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?

  討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結(jié)論:三只猴子分得的餅一樣多。

  引導(dǎo):聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質(zhì)”就清楚了。(板書課題)

  2、組織討論。

 。1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關(guān)系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關(guān)系,14=28=312,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

 。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:34=68=912。

 。3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導(dǎo)學生用不同的分數(shù)表示,然后得出:12=24=2040。

  3、引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:

  分數(shù)的分子和分母變化了,

  分數(shù)的大小不變。

  它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

  (二)、比較歸納,揭示規(guī)律

  1、出示思考題。

  比較每組分數(shù)的分子和分母:

 。1)從左往右看,是按照什么規(guī)律變化的?

 。2)從右往左看,又是按照什么規(guī)律變化的?

  讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

  2、集體討論,歸納性質(zhì)。

 。1)從左往右看,由34到68,分子、分母是怎么變化的?引導(dǎo)學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到68。

  板書:

  (2)34是怎樣變化成912的呢?怎么填?學生回答后填空。

  (3)引導(dǎo)口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。

 。4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。

 。ò鍟憾汲艘韵嗤臄(shù))

  (5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。

  (板書:都除以)

 。6)引導(dǎo)思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質(zhì),讓學生說出少了什么?(少了“零除外”)討論:為什么性質(zhì)中要規(guī)定“零除外”?

 。ò鍟毫愠猓

  (7)齊讀分數(shù)的基本性質(zhì)。先讓學生找出性質(zhì)中關(guān)鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關(guān)鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質(zhì)。

  3、出示例2:把12和1024化成分母是12而大小不變的分數(shù)。

  思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?

  4、討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

  5、質(zhì)疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

  (三)、溝通說明,揭示聯(lián)系

  通過舉例,溝通分數(shù)的基本性質(zhì)與商不變性質(zhì)之間的聯(lián)系。引導(dǎo)學生運用分數(shù)與除數(shù)的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

 。ㄋ模、多層練習,鞏固深化

  1、口答。(學生口答后,要求說出是怎樣想的?)

  2、判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質(zhì)中哪幾個字不相符。)

  教學反思:

  學生是學習的主人,教師是數(shù)學學習的組織者、引導(dǎo)者與合作者。因此數(shù)學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應(yīng)調(diào)動學生的學習積極性,向?qū)W生提供充分從事數(shù)學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數(shù)學知識和技能,充分發(fā)揮學生的能動性和創(chuàng)造性!斗謹(shù)的基本性質(zhì)》的教學設(shè)計一個突出的特點就是學法的設(shè)計,從大膽猜想、實驗感知、觀察討論到概括總結(jié),完全是為學生自主探究、合作交流的學習而設(shè)計的。具體表現(xiàn)在:

  1、學生在故事情境中大膽猜想。

  通過創(chuàng)設(shè)“猴王分餅”的故事,讓學生猜測一組三個分數(shù)的大小關(guān)系,為自主探索研究“分數(shù)的基本性質(zhì)”作必要的鋪墊,同時又很好地激發(fā)了學生的學習熱情。

  2、學生在自主探索中科學驗證。

  在學生大膽猜想的基礎(chǔ)上,教師適時揭示猜想內(nèi)容,并對學生的猜想提出質(zhì)疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設(shè)自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結(jié)論的正確性,突現(xiàn)出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調(diào)學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。

  3、讓學生在分層練習中鞏固深化。

  在練習的設(shè)計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎(chǔ)上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數(shù)的基本性質(zhì)的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。

  反思教學的主要過程,覺得在讓學生用各種方法驗證結(jié)論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數(shù)學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。

  分數(shù)的基本性質(zhì)教學設(shè)計 篇2

  教學要求

 、偈箤W生理解分數(shù)的基本性質(zhì),并會應(yīng)用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

 、谂囵B(yǎng)學生觀察、分析和抽象概括能力。

  ③滲透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。

  教學重點

  理解分數(shù)的基本性質(zhì)。

  教學用具

  每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。

  教學過程

  一、創(chuàng)設(shè)情境

  1、120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

  2、說一說:

 。1)商不變的性質(zhì)是什么?

 。2)分數(shù)與除法的關(guān)系是什么?

  3、填空。

  1÷2=(1×2)÷(2×2)==。

  二、揭示課題

  讓學生大膽猜測:在除法里有商不變的性質(zhì),在分數(shù)里會不會也有類似的性質(zhì)存在呢?這個性質(zhì)是什么呢?

  隨著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。

  三、探索研究

  1、動手操作,驗證性質(zhì)。

 。1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。

 。2)觀察比較后引導(dǎo)學生得出:

 。3)從左往右看:

  由變成,平均分的份數(shù)和表示的份數(shù)有什么變化?

  把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即(板書)。

  把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:(板書)。

  引導(dǎo)學生初步小結(jié)得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。

  (4)從右往左看:

  引導(dǎo)學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。

  板書:

  讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。

 。5)引導(dǎo)學生概括出分數(shù)的基本性質(zhì),并與前面的猜想相回應(yīng)。

 。6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)

  2、分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。

  在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。

  想一想:根據(jù)分數(shù)與除法的關(guān)系以及整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎?

  3、學習把分數(shù)化成指定分母而大小不變的分數(shù)。

  (1)出示例2,幫助學生理解題意。

  (2)啟發(fā):要把和化成分母是12而大小不變的分數(shù),分子應(yīng)該怎樣變化?變化的根據(jù)是什么?

 。3)讓學生在書上填空,請一名學生口答。教師板書:

  4、練習。教材第108頁的做一做。

  四、課堂實踐。

  練習二十三的1、3題。

  五、課堂小結(jié)

  1、這節(jié)課我們學習了什么內(nèi)容?

  2、什么是分數(shù)的基本性質(zhì)?

  六、課堂作業(yè)

  練習二十三的第2題。

  七、思考練習

  練習二十三的第10題。

  教學反思:

  “分數(shù)的基本性質(zhì)”是西師版小學數(shù)學五年級下冊的內(nèi)容,它是約分,通分的依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以,分數(shù)的基本性質(zhì)是本單元的教學重點課。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學基本知識,更重要的是數(shù)學學習的方法,從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感。目的是讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數(shù)學的思想方法,思考并解決在實際生活中所遇到的各種問題,這也是學生適應(yīng)未來生活必須的基本素質(zhì)。

  這節(jié)課是在學生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行的,我是這樣設(shè)計教學的:

  1、通過商不變的性質(zhì)、除法與分數(shù)的關(guān)系的復(fù)習,幫助學生意識到商不變的變規(guī)律與新知識的聯(lián)系,為新知識的學習做好必要的準備。讓學生根據(jù)商不變的性質(zhì)大膽猜想,分數(shù)的基本性質(zhì)是什么?說出自己的想法。

  2、充分發(fā)揮學生主體作用,引導(dǎo)學生自主探究。讓學生通過折紙游戲,操作、觀察、比較,驗證自己的猜想。涂色部分可用不同的分數(shù)表示,從而培養(yǎng)學生的動手能力,以及觀察問題、解決問題的能力。

  3、運用知識,解決實際問題。為了把知識轉(zhuǎn)化為能力,練習的設(shè)計注意了典型性、多樣性、深刻性、靈活性。歸納總結(jié)出分數(shù)的基本性質(zhì)后,先進行基本練習,深化對分數(shù)的基本性質(zhì)認識。在學完整個新知以后,在進行綜合練習,鞏固提高。通過應(yīng)用拓展,使學生加深對分數(shù)的基本性質(zhì)的理解,并培養(yǎng)學生運用所學的知識解決實際問題的能力。

  4、0除外的環(huán)節(jié)設(shè)計。在學生歸納出分數(shù)的基不性質(zhì)后,缺少0除外這個難點,我設(shè)計了判斷一個分數(shù)的分子和分母同時乘0,讓學生通過練習,馬上想到0不能做除數(shù),在分數(shù)中分母不能為0,引出:分子和分母同時乘或除以相同的數(shù),必須0除外,突破難點。

  分數(shù)的基本性質(zhì)教學設(shè)計 篇3

  教學內(nèi)容:

  人教版小學數(shù)學第十冊第107頁至108頁。

  教學目標:

  1、知識目標:通過教學使學生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。

  2、能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

  3、情感目標:讓學生在學習過程中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。

  教學準備:

  長方形紙片、彩筆、各種分數(shù)卡片。

  教學過程

  一、創(chuàng)設(shè)情境,激發(fā)興趣

  1、課件示故事。同學們,今天是快樂的,老師祝愿同學們節(jié)日快樂!在我們歡慶自己的節(jié)日時,花果山圣地也早已是一派節(jié)日喜慶的氣氛。

  【六一節(jié)到了,猴山上張燈結(jié)彩,小猴們享受著節(jié)日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊!庇谑,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多!薄

  “同學們,猴王真的分得不公平嗎?”

  二、動手操作、導(dǎo)入新課

  同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。

  任選一小組的同學臺前展示實驗報告,并匯報結(jié)論。

  教師根據(jù)學生匯報板書。

  2、組織討論。

  (1)通過操作我們發(fā)現(xiàn)三只猴子分得的餅同樣多,表示它們分得餅的分數(shù)是相等關(guān)系。那么,這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

  (2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?學生通過觀察演示得出結(jié)論教師板書:34=68=912。

  3、引入新課:黑板上二組相等的分數(shù)有什么共同的特點?學生回答后板書:分數(shù)的分子和分母,分數(shù)的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的分子和分母變化有規(guī)律嗎?我們今天就來共同探討這個變化規(guī)律。

  三、比較歸納,揭示規(guī)律。

  請每組拿出探究報告,任意選擇黑板上的二組相等分數(shù)中的一組,共同討論、探究,并完成探究報告。

  1、課件出示探究報告。

  2、分組匯報,歸納性質(zhì)。

  (1)從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。

 。ǜ鶕(jù)學生回答板書:同時乘上相同的數(shù))

 。2)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?

 。ǜ鶕(jù)學生的回答板書:除以)

  (3)有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?

 。4)綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?

  根據(jù)學生的回答,揭示課題,

  (……這叫做板書:分數(shù)的基本性質(zhì))

  對這句話你還有什么要補充的?(補充“零除外”)

  討論:為什么性質(zhì)中要規(guī)定“零除外”?

 。t筆板書:零除外)

  (5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應(yīng)的字下面點上著重號。

  師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關(guān)鍵的字詞要重讀)。

  3、智慧眼(下列的式子是否正確?為什么?)

 。1)35=3×25=65(生:35的分子與分母沒有同時乘以2,分數(shù)的大小改變。)

 。2)512=5÷512÷6=12(生:512的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)的大小也不同)

 。3)112=1×312÷3=34(生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數(shù)的大小不相等。)

  (4)25=2×x5×x=2x5x(生:x在這里代表任何數(shù),當x=0時,分數(shù)的大小改變。)

  4、示課件討論:現(xiàn)在你知道猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數(shù)表示為?如果要五塊呢?

  四、回歸書本,探源獲知

  1、瀏覽課本第107—108頁的內(nèi)容。

  2、看了書,你又有什么收獲?還有什么疑問嗎?

  3、師生答疑。

  你會運用分數(shù)與除數(shù)的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)嗎?

  4、自主學習并完成例2,請二名學生說出思路。

  五、多層練習,鞏固深化。

  1、熱身房。35=3×()5×()=9()

  824=8÷()24÷()=()3

  學生口答后,要求說出是怎樣想的?

  分數(shù)的基本性質(zhì)教學設(shè)計 篇4

  一、教學目標:

  1、讓學生經(jīng)歷分數(shù)基本性質(zhì)的探究過程,理解和掌握分數(shù)的基本性質(zhì),初步建立數(shù)學模型。

  2、利用分數(shù)的基本性質(zhì)把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。

  3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數(shù)學學習興趣。

  二、教學重點:

  理解掌握分數(shù)的基本性質(zhì),它是約分,通分的依據(jù)

  三、教學難點:

  理解和掌握分數(shù)的基本性質(zhì),初步建立數(shù)學模型。

  四、教學準備:

  課件、正方形的紙。

  五、教學設(shè)計過程:

 。ㄒ唬┻w移舊知、提出猜想

  1、回憶舊知

  猜信封:老師手上的信封里有一個數(shù)、一道算式,我抽出其中一張,誰能猜出另一張是什么?出示:2÷3

  你為什么這樣猜呢?引導(dǎo)學生回憶分數(shù)與除法的關(guān)系。媒體演示:分數(shù)與除法的關(guān)系:

  被除數(shù)÷除數(shù)=

  誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導(dǎo)學生回憶什么是商不變的性質(zhì)?媒體出示:商不變的性質(zhì):

  被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。

  2、提出猜想:

  既然分數(shù)與除法的關(guān)系這么緊密、除法有商不變性質(zhì),那分數(shù)是否也會有這樣的性質(zhì),請大家大膽猜想一下。(學生可能根據(jù)商不變性質(zhì)推導(dǎo)出分數(shù)的基本性質(zhì),學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)

 。ǘ炞C猜想,建構(gòu)新知

  A、看圖分類

  下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數(shù),并把相同的分數(shù)分在一起。

  B、討論方法

  師:你是怎么判斷它們相等的?

  師:它們相等,用算式可以怎么表示?

  1/2=2/4=4/8

  C、研究規(guī)律

  師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?

  利用研究卡進行研究。

  確定的研究對象

  分子和分母同時乘上或者

  除以一個相同的數(shù)

  得到的分數(shù)

  研究對象與得到的分數(shù)相等嗎?

  相等()不相等()

  猜想是否成立?

  成立()不成立()

  充分利用學生的生成資源:揭示課題:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。(板書)

  師:為什么要0除外?

  師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

  練習:2/3=()/18、6/21=2/()、3/5=21/()、27/39=()/13

  師:這里面什么變了,什么不變?(生:分子和分母變了,但分數(shù)的大小不變)

  師:分子與分母是怎樣變化的?(同時乘或除以相同的數(shù),0除外)

  師:分數(shù)的基本性質(zhì)與商不變性質(zhì)有什么聯(lián)系?

  D、質(zhì)疑完善

  3/4=3×()/4×()

  師:括號中可以填哪些數(shù)?

  預(yù)設(shè):可以填無數(shù)個數(shù)

  師:如果只用一個數(shù)來表示,填什么數(shù)好?

  預(yù)設(shè):字母

  師:這個字母有什么特殊要求嗎?(0除外)

  得到一個初級的數(shù)學模型。3/4=3×X/4×X(X≠0)

  讓學生打開課本進行閱讀、內(nèi)化,并想一想還有什么問題嗎?

  (三)練習升華

  1、5/7=()/35、3/4=9/()、3/()=12/20、16/24=()/3

  2、把5/6和1/4都化為分母為12而大小不變的分數(shù)。

  3、把2/3和3/4都化為分子為6而大小不變的分數(shù)。

  4、把2/5的分子加上2以后,要使分數(shù)的大小不變,分母應(yīng)加上多少?

  5、和哪一個分數(shù)大,你能講出判斷的依據(jù)嗎?

 。ㄋ模┛偨Y(jié)延伸

  師:這節(jié)課學了什么?

  師:如果一個分數(shù)為A/B,你能用一個式子來表示分數(shù)的基本性質(zhì)嗎?

  A/B=A×X/B×X(X≠0)或A/B=A÷X/B÷X(X≠0)(板書)

  六、作業(yè)

  p87—1、2

  板書設(shè)計

  分數(shù)基本性質(zhì)

  分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

  A/B=A×X/B×X(X≠0)或A/B=A÷X/B÷X(X≠0)

  6÷8

  3÷4

  12÷16

  分數(shù)的基本性質(zhì)教學設(shè)計 篇5

  教學目標:

  結(jié)合趣味故事經(jīng)歷認識分數(shù)的基本性質(zhì)的過程。

  初步理解分數(shù)的基本性質(zhì),會應(yīng)用分數(shù)的基本性質(zhì)進行分數(shù)的改寫。

  經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣

  教學重點:

  理解掌握分數(shù)的基本性質(zhì)。

  教學難點:

  歸納分數(shù)的性質(zhì)。

  學生準備:

  長方形紙片。

  一、創(chuàng)設(shè)故事情境,激發(fā)學生學習興趣并揭示課題。

  編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創(chuàng)設(shè)問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設(shè)計這個故事的目的是使學生在已有生活經(jīng)驗和分數(shù)知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數(shù)的基本性質(zhì)提供實踐經(jīng)驗。在看完故事后向?qū)W生提問你了解到了哪些數(shù)學信息,想到了什么問題?

  讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數(shù)大小是相等的。而這兩個分數(shù)的分子和分母都不相等,可分數(shù)卻相等,這其中有什么規(guī)律呢,從而來揭示課題。

  二、小組合作,探究新知:

  1、動手操作、形象感知

  出示課件,讓學生觀察討論圖中分數(shù)的涂色部分是多少?

  A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?

  B、追問:你能通過繼續(xù)對折,每次找一個和1/4相等的其他分數(shù)嗎?

  C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數(shù)表示涂色的部分,得到的分數(shù)與1/4是否相等。交流時讓不同對折方法的學生充分展示。

  2、觀察比較、探究規(guī)律

 。1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。

 。2既然這三個分數(shù)相等,那么我們可以用什么符號把它們連接起來?

  (3)這三個分數(shù)的分子、分母都不相同,為什么分數(shù)的大小卻相等的?你們能找出它們的變化規(guī)律嗎?請同學們四人為一組,討論這兩個問題

  (4)通過從左到右的觀察、比較、分析,你發(fā)現(xiàn)了什么?

  使學生認識到這四個正方形同樣大,雖然平均分的份數(shù)不一樣,但陰影部分的面積相等,四個分數(shù)也相等。課件出示連等式子。

  【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維!

  3、引導(dǎo)觀察:請大家觀察每個等式中的兩個分數(shù),它們的分子、分母是怎樣變化的?

  觀察思考后。在課文上填空,再在小組內(nèi)交流。然后教師再集中指導(dǎo)觀察:

  先從左往右看:1/4是怎樣變?yōu)榕c它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規(guī)律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規(guī)律?

  4、歸納規(guī)律

  提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?

  學生交流歸納,最后全班反饋“分數(shù)的分子和分母同時乘或除以相同的數(shù)﹙0除外﹚,分數(shù)的大小不變,這是分數(shù)的基本性質(zhì)”

  5、小結(jié)

  同學們在這節(jié)課的學習中表現(xiàn)得很出色,說一說你有什么收獲或體會?

  【通過小結(jié),既對整個課堂學習的內(nèi)容有一個總結(jié),又能讓學生產(chǎn)生后續(xù)學習和探究的欲望,將學生的學習興趣延伸到了下節(jié)課】

  四、鞏固強化,拓展應(yīng)用

  多樣的練習可以讓學生及時鞏固所學知識,又調(diào)動了學生學習的積極性。

  五、游戲找朋友。

  六、布置作業(yè)。

  分數(shù)的基本性質(zhì)教學設(shè)計 篇6

  設(shè)計意圖:

  本課主要本著遵循小學數(shù)學課程標準“創(chuàng)設(shè)問題情境提出問題解決問題建立數(shù)學模型解釋數(shù)學模型運用數(shù)學模型拓展數(shù)學模型”的指導(dǎo)思想而設(shè)計的。

  1、通過故事創(chuàng)設(shè)問題情境,貼近學生生活,有利于激發(fā)學生學習興趣。

  2、從故事情境中提出問題,體現(xiàn)數(shù)學來源于生活。

  3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產(chǎn)生的過程。

  4、從幾組分數(shù)中分析,找到分數(shù)的基本性質(zhì),從而初步建立數(shù)學模型。

  5、設(shè)計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。、

  6、在游戲活動中對數(shù)學知識進行拓展運用。

  教學目標

  1.知識與技能

  (1)經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。

  (2)能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  2.過程與方法

  (1) 經(jīng)歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質(zhì)作出簡要的、合理的說明。

  (2) 培養(yǎng)學生的觀察、比較、歸納、總結(jié)概括能力。

  (3)能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。

  3.情感態(tài)度與價值觀

  (1)經(jīng)歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。

  (2)體驗數(shù)學與日常生活密切相關(guān)。

  教學重點

  理解分數(shù)的基本性質(zhì)

  教學難點

  能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)

  教學準備

  師:電腦課件 學生:圓紙片 長方形紙

  教學步驟:

  一、故事引人,揭示課題。

  1.教師講故事。

  話說唐僧師徒四人去西天去取經(jīng),這天走在路上,唐僧感覺餓了,就叫孫悟空去化齋,孫悟空答應(yīng)了聲駕起筋斗云走了,不一會,他就帶回了三塊一樣大的餅,唐僧說:三塊餅,我們四個人怎么吃呢?孫悟空說:“你分給我一塊餅的四分之一就行了” 唐僧就把第一塊餅平均分成四塊,給了一塊給孫悟空。沙僧說:“我想要兩塊”

  唐僧把第二塊餅平均分成八塊,給了2塊給沙僧。豬八戒比較貪心,他說:“我要三塊,我要三塊”,于是唐僧把第三塊餅又平均分成12塊,給了豬八戒3塊。同學們,你知道孫悟空、豬八戒、沙僧三人誰分的多嗎?

  [ 一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設(shè)疑,激起了學生探求新知的欲望。]

  2、組織討論,動手操作。

  (1)小組討論,誰分的多

  (2)拿出三張紙,分別涂出它們的1/4、2/8、3/12。

  (3)比較涂色部分的大小,有什么發(fā)現(xiàn),得出什么結(jié)論。

  既然他們?nèi)齻分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關(guān)系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關(guān)系,1/4=2/8=3/12,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

  (4)教師演示

  3、教學例1

  (1)引導(dǎo)比較。

  師問:這四個分數(shù),為什么分母不同呢?前兩個分數(shù)的分子為什么都是1?

  你知道其中哪些分數(shù)是相等的嗎?

  根據(jù)學生回答板書:1/3=2/6=3/9

  師追問:你是怎么知道這三個分數(shù)相等的?(圖中觀察出來的)

  (2)師演示驗證大小。

  (3)完成“練一練”第1題

  學生先涂色表示已知分數(shù),再在右圖中涂出相等部分。

  完成填空后,說說怎么想的。

  4、教學例2。

  (1)組織操作。

  師:取出正方形紙,先對折,用涂色部分表示它的1/2。

  學生完成折紙、涂色。

  師問:你能通過繼續(xù)對折,找出和1/2相等的其它分數(shù)嗎?

  學生在小組中操作,教師巡視指導(dǎo)。

  學生展開折法并匯報,可能出現(xiàn)的方法有:

  連續(xù)對折兩次,平均分成4份。如圖:

  1/2=1/4

 、谶B續(xù)對折三次,平均分成8份。如圖:

  1/2=4/8

 、圻B續(xù)對折四次,平均分成16份。

  師追問:每次對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數(shù)表示?

  得到的這些分數(shù)與1/2相等嗎?能不能再寫一些與1/2相等的數(shù)?

  板書:1/2=2/4=4/8=8/16=16/32……

  (2)發(fā)現(xiàn)規(guī)律。

  師:你有什么發(fā)現(xiàn)?(如學生觀察有困難,可進行以下提示)

 、、從左往右看,它們的分子、分母是怎樣變化的?你有什么發(fā)現(xiàn)?

  學生觀察、思考,在小組中交流。

  師問:觀察例1中的1/3=2/6=3/9,有這樣的規(guī)律嗎?

  分數(shù)的基本性質(zhì)教學設(shè)計 篇7

  【教學內(nèi)容】:

  【教學目標】:

  1、使學生理解和掌握分數(shù)的基本性質(zhì),并會應(yīng)用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

  2、通過猜想、驗證、歸納、總結(jié)等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結(jié)合的思考方法,感受抽象、推理的基本數(shù)學思想。

  3、在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣,提高學生發(fā)現(xiàn)問題的能力。

  【教學重點】:

  經(jīng)歷質(zhì)疑、猜想、驗證、觀察、歸納的學習過程,探究分數(shù)的基本性質(zhì)。

  【教學難點】:

  理解和掌握分數(shù)的基本性質(zhì)。

  【教學方法】:

  本節(jié)課我綜合采用了談話法,情境創(chuàng)設(shè)法、引導(dǎo)探究法、直觀演示法,組織學生經(jīng)歷觀察,猜測,得出結(jié)論。

  【學法指導(dǎo)】:

  為了有效的達成上述教學目標,秉著新課程標準的精神指導(dǎo),在整個教學活動中力求充分體現(xiàn)學數(shù)學就是做數(shù)學,數(shù)學教學就是數(shù)學活動的教學的理念,以學生為主體,以學生發(fā)展為本。在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法。引導(dǎo)學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。

  【教學準備】:

  1、媒體準備:白板

  2、資源準備:PPT

  【資源運用】:

  1、導(dǎo)入——課件出示問題-——喚醒舊知

  2、探究新知——PPT課件——突破重點、分解難點

  3、拓展延伸

  【教學過程】:

  一、聯(lián)系舊知,質(zhì)疑引思。

  1、在自然數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的自然數(shù)嗎?

  2、在小數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的小數(shù)嗎?

  3、在分數(shù)的范圍內(nèi),可以找到兩個大小相等但分子和分母又都不相同的分數(shù)嗎?

  誰能說一個與《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先相等的分數(shù)?你怎么知道它們相等呢?如果讓你證明他們確實和《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先相等,你準備怎么證明?

  【喚醒學生已有知識經(jīng)驗而且引發(fā)學生的數(shù)學思考,為主動探究新知積聚動力!

  二、自主操作,驗證猜想

  1、初步驗證

  (1)提出問題

  誰能說一個與《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先相等的分數(shù)?你怎么知道它們相等呢?

  如果讓你證明他們確實和《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先相等,你準備怎么證明?

 。2)匯報方法

  2、深入驗證:

  (1)在紙上寫上一組你認為可能相等的分數(shù);

 。2)用你喜歡的方法來證明。

 。3)學生操作。

  (4)匯報交流。

  3、概括性質(zhì),深化理解

 。1)在操作的過程中,你有什么發(fā)現(xiàn)?分子分母怎樣變化分數(shù)的大小才不變?

 。2)歸納概括,總結(jié)規(guī)律,揭示課題。

 。3)根據(jù)我們以前學過的分數(shù)與除法的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),來說明分數(shù)的基本性質(zhì)嗎?

  4、運用規(guī)律,完成例2。

  (1)理解題意

 。2)要把他們化成分母是12而大小不變的分數(shù),分子應(yīng)該怎么變化?變化的根據(jù)是什么?

 。3)獨立完成,交流匯報

  【給學生提供開放的探究空間,滿足學生的探索欲望。】

  三、知識應(yīng)用,鞏固提升

  1、判斷

  (1)分數(shù)的分子、分母同時乘以或除以一個數(shù),分數(shù)的大小不變。

  (2)兩個分數(shù)的分子、分母都不相同,這兩個分數(shù)一定不相等。

 。3)《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的分子乘以3,分母除以3,分數(shù)的大小不變。

  2、五年級有《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的學生參加象棋活動,有《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的學生參加象棋活動,有《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的學生參加手工活動,參加哪個小組的人數(shù)多?

  3、把《分數(shù)的基本性質(zhì)》教學設(shè)計石泉縣城關(guān)第二小學賈從先的分子加上10,分母怎樣變化,

  才能使分數(shù)的大小不變?

  四、回顧總結(jié),完善認知

  通過本節(jié)課的學習,你有什么收獲?

  【教學反思】:

  1、課前準備不足,我用的20xx版做的,結(jié)果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。

  2、教學機智不足,沒有關(guān)注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。

  3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結(jié)束語言有歧義。

  分數(shù)的基本性質(zhì)教學設(shè)計 篇8

  【教材依據(jù)】

  《分數(shù)的基本性質(zhì)》是九年義務(wù)教育北師大版五年級上冊第三單元的內(nèi)容。

  【設(shè)計理念】

  根據(jù)新課標的基本要求,我以培養(yǎng)學生的創(chuàng)新意識和實踐能力為重點,在教學中創(chuàng)設(shè)情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結(jié)果”的開放式教學流程。讓學生在問題情境中激活內(nèi)在要求,大膽猜想,使實驗成為內(nèi)在需求。通過觀察操作、經(jīng)歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。

  【學情與教材分析】

  《分數(shù)的基本性質(zhì)》是北師大版小學數(shù)學教材五年級上冊第三單元《分數(shù)》的教學內(nèi)容,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是約分和通分的基礎(chǔ),而約分和通分又是分數(shù)四則運算的重要基礎(chǔ),因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。學生之前已經(jīng)掌握了商不變的性質(zhì),在教學之后將其與分數(shù)的基本性質(zhì)進行聯(lián)系,有意識地加強分數(shù)與除法的關(guān)系,以便把舊知識遷移到新的知識中來。

  【教學目標】

  1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的`基本性質(zhì)。

  2、能運用分數(shù)基本性質(zhì),把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。

  3、經(jīng)歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。

  【教學重點】

  運用分數(shù)的基本性質(zhì),把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  【教學難點】

  聯(lián)系分數(shù)與除法的關(guān)系,理解分數(shù)的基本性質(zhì),溝通知識間的聯(lián)系。

  【教學準備】

  多媒體課件長方形白紙、圓片,彩色筆等。

  【教學過程】

  一、創(chuàng)設(shè)情境,激趣導(dǎo)入

  師:同學們,新的學期到來了,你們剛?cè)胄@時覺得我們學校都發(fā)生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農(nóng)場),說到開心農(nóng)場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據(jù)自己的預(yù)習告訴老師校長笑什么?

  生1:四、五、六年級分的地一樣多。

  生2:……

  師:到底校長分的公平不公平,我們來做個實驗吧?

  二、動手操作,探究新知

  1,小組合作,實驗探究。

  師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。

  2,匯報結(jié)果

  師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。

  生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。

  生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。

  生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。

  生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。

  生5:……

  3、課件展示,得出結(jié)論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質(zhì)資源課件演示分地的過程,師生共同觀察總結(jié)得到校長分的地一樣多。)

 。ㄔO(shè)計意圖:這樣設(shè)計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)

  4、探索分數(shù)的基本性質(zhì)。

  師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?

  生:相等。

  師:同學們請看這組分數(shù)有什么特點?(板書=)

  生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。

  師:請同學們從左往右仔細觀察,第一個分數(shù)和第二個分數(shù)相比分子分母發(fā)生了什么變化?第一個和第二個,第二個和第三個呢?

  生:分子分母同時乘2,……

  師:誰能用一句換來描述一下這個規(guī)律?

  生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)

  師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?

  生:分數(shù)的分子分母同時除以相同的數(shù)。

  師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書分數(shù)的基本性質(zhì))。

  師:結(jié)合我們的預(yù)習,對于分數(shù)的基本性質(zhì)同學們還有什么不同的意見?

  生:0除外。

  師:為什么0要除外?

  生:因為分數(shù)的分母不能為0.

  師:(補充板書0除外)在分數(shù)的基本性質(zhì)中,那幾個詞比較重要?

  生:同時相同0除外

  師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質(zhì)和誰比較相似?

  生:商不變的性質(zhì)。

  師:為什么?

  生:我們學過分數(shù)與除法的關(guān)系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。

  師:數(shù)學知識中有許多知識如像商不變性質(zhì)與分數(shù)的基本性質(zhì)是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。

  三:應(yīng)用新知,練習鞏固。

 。ㄒ唬┚氁痪

 。ǘ┟蛴螒颉@蠋熓种杏幸粋箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。

  (二)判斷(搶答)

  1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。

  2、把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。

  3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。

  (四)測一測

  1、把和都化成分母是10而大小不變的分數(shù)。

  2、把和都化成分子是4而大小不變的分數(shù)。

  3、的分子增加2,要是分數(shù)大小不變,分母應(yīng)增加幾?

  四:總結(jié)。

  1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?

  2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)

  五:作業(yè)練習冊2、4題

  【板書設(shè)計】

  分數(shù)的基本性質(zhì)

  給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。

  【教學反思】

  本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!

  這樣的設(shè)計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導(dǎo)入就是引導(dǎo)學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。

  本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經(jīng)驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。

  在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設(shè)計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設(shè)計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。

  分數(shù)的基本性質(zhì)教學設(shè)計 篇9

  教學目標:

  1、通過教學使學生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。

  2、培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

  3、讓學生在學習過程中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。

  重點難點:

  從相等的分數(shù)中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。理解分數(shù)的基本性質(zhì)。

  教具學具:

  課件,每人一張白紙,一張圓紙片,彩筆

  教學時間:

  1課時

  教學流程:

  一、復(fù)習引入

  1、120÷30的商是多少?被除數(shù)和除數(shù)同時擴大3倍,商是多少?被除數(shù)和除數(shù)同時縮小10倍,商是多少?

  120÷30=4

 。120×3)÷(30×3)

  =360÷90

  =4

  120÷30=4

 。120÷10)÷(30÷10)

  =12÷3

  =4

  在除法中,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù)(零除外),商不變。

  除法與分數(shù)之間有什么聯(lián)系?

  被除數(shù)÷ 除數(shù)=被除數(shù)/除數(shù)

  教師板書:分數(shù)的基本性質(zhì)

  二、動手操作

 。1)用分數(shù)表示涂色部分。

 。 )

 。 ) )

 。 ) )

  ①請大家拿出1張長方形紙片,現(xiàn)在我們把它對折平均分成4份,涂出其中的3份,寫上分數(shù)。

  ②把它繼續(xù)對折平均分成8份,看看原來的3/4現(xiàn)在成了?(6/8)

 、劾^續(xù)折成16份,看看原來的3/4現(xiàn)在又成了?(12/16)

  (2)小結(jié):原來,這張紙的3/4 、6/8、 和它的12/16同樣大!看來不管選擇哪種折法,分到的數(shù)都一樣多!

  (教師隨機板書 )3/4=3×2/4×2=6/8=6×2/8×2=12/16

 。2)用分數(shù)表示涂色部分。

  ( ) )

  ( ) )

  ( ) )

  根據(jù)上面的過程,你能得到一組相等的分數(shù)嗎?

  8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

  三、發(fā)現(xiàn)規(guī)律

  1、請大家觀察每個等式中的兩個分數(shù),它們的分子。分母是怎樣變化的?

  學生觀察、思考,完成上面的圖形,再在小組內(nèi)交流。

  學生交流后,教師集中指導(dǎo)觀察,板書這組數(shù)字,說出其中的規(guī)律。

  3/4=6/8=12/16 8/12=4/6=2/3

  從這些數(shù)字中可以得出:

  分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。(相同的數(shù),這個數(shù)能不能是0 ?)

  教師舉例說明:3/4,8/12分子和分母分別乘以零,分數(shù)大小怎么樣?

  得出分數(shù)基本性質(zhì): 分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。這叫做分數(shù)基本性質(zhì)。

  在除法中,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù)(零除外),商不變。這叫做商不變性質(zhì)。

  3、課件出一組分數(shù)讓學生練習填

  2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()

  四、練一練(課件出示)

  1、判斷.(手勢表示。)

  (1)分數(shù)的分子、分母都乘或除以相同的數(shù),分數(shù)的大小不變。() (2)把 15 /20 的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大小不變。()

 。3) 3 /4 的分子乘3,分母除以3,分數(shù)的大小不變。 ( )

 。 4)把3/5的分子加上4,要使分數(shù)的大小不變,分母加4。 ( )

  2、把5 /6和1/4都化成分母是12大小不變的分數(shù)。(課件出示 )

  3、數(shù)學游戲(課件出示)

  說出相等的分數(shù) 1/4和2/8

 。1)你能根據(jù)分數(shù)的基本性質(zhì),再寫出一組相等的分數(shù)?

  所寫的分數(shù)是否相等?你是怎樣想的?

  (2)根據(jù)分數(shù)與除法的關(guān)系,你能用商不變的規(guī)律來說明分數(shù)的基本性質(zhì)嗎?

  五、課本練習中的第1,2題。

  六、課堂總結(jié)

  這節(jié)課你學到了什么?什么是分數(shù)的基本性質(zhì)?你是怎樣理解的分數(shù)的基本性質(zhì)要注意什么?我們以前學過的什么性質(zhì)跟分數(shù)的基本性質(zhì)類似?誰能用整數(shù)除法中商不變的性質(zhì)來說明分數(shù)的基本性質(zhì)?

  七、板書設(shè)計:

  3/4=3×2/4×2=6/8=6×2/8×2=12/16

  8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

  分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。這叫做分數(shù)基本性質(zhì)。

  分數(shù)的基本性質(zhì)教學設(shè)計 篇10

  教學目標:

  知識與技能:通過教學使學生理解的掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母(或分子)相同而大小不變的分數(shù),并能應(yīng)用這一性質(zhì)解決簡單的實際問題。

  過程與方法:引導(dǎo)學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據(jù)地思考、探究問題,培養(yǎng)學生的抽象概括能力。

  情感、態(tài)度和價值觀:使學生受到數(shù)學思想方法的熏陶,培養(yǎng)樂于探究的學習態(tài)度。

  教學重點:

  理解和掌握分數(shù)的基本性質(zhì)。

  教學難點:

  應(yīng)用分數(shù)的基本性質(zhì)解決問題。

  教學準備:

  預(yù)習生成單、作業(yè)紙、課件

  教學課時:

  一課時

  教學過程:

  一、導(dǎo)入新課,揭示課題

  1、師:通過昨天的預(yù)習,你知道我們今天要學習什么內(nèi)容?(生:分數(shù)的基本性質(zhì))

  2、師:針對這個內(nèi)容,同學們做了充分的預(yù)習,相信你們一定提出了不同的數(shù)學問題,現(xiàn)在請組長帶領(lǐng)組員提煉出你們組最想研究的問題。

  3、指名學生匯報。

  4、師:同學們,不管你們提出什么樣的問題,都與分數(shù)的基本性質(zhì)有關(guān),今天我們就帶著這些問題走進課堂。

  二、檢查預(yù)習,自主探究

  1.出示預(yù)習生成單:(師:我們已經(jīng)預(yù)習了這部分內(nèi)容,請同學們組內(nèi)交流一下你們的預(yù)習成果,形成統(tǒng)一意見準備匯報。)

  2.指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)

  3.(學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數(shù)的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應(yīng)及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的分數(shù)嗎?教師及時的板演,

  4.師:其他同學還有補充嗎?你們得出這個結(jié)論了嗎?

  三、合作交流,探究新知

  1.師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數(shù)的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規(guī)律呢?我們通過合作交流來探究這個問題。

  2.出示合作要求(課件),指名學生讀一讀。

  3.學生合作交流,探究學習。

  4.學生匯報中教師要及時糾正學生的語言要規(guī)范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數(shù)的分子和分母之間的變化規(guī)律是怎樣?

  5.指導(dǎo)匯報,總結(jié)規(guī)律。誰能完整的說一下你們剛才總結(jié)出的規(guī)律?

  6.教師歸納板書:分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。

  7.請同學們讀一讀這句話,想一想:還有需要補充的內(nèi)容嗎?(0除外)

  8.再讀一讀,說說這句話中哪個詞比較關(guān)鍵。

  9.拓展深化,加深理解,完成練習,思考:分數(shù)的基本性質(zhì)與商不變的性質(zhì)之間的聯(lián)系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。

  9.教師小結(jié):通過剛才的學習,孩子們的表現(xiàn)特別出彩,老師相信你們接下來的表現(xiàn)會更棒。

  四、應(yīng)用拓展,新知內(nèi)化

  1.出示例2,指名讀題,理解題意。

  2.師:你覺得解決這道題應(yīng)該利用什么知識?(生:分數(shù)的基本性質(zhì))

  3.學生獨立在練習本上完成,指名板演,集體訂正。

  4.小結(jié):剛才,我們通過自主學習、小組探究知道了什么是分數(shù)的基本性質(zhì),下面就應(yīng)用分數(shù)的基本性來解決一些實際問題。

  五、當堂檢測

  (一)、下面每組中的兩個分數(shù)是否相等?相等的在括號里畫“√”,不相等的畫“X”。

  和()和()和()和()

 。ǘ、填空。

 。剑剑剑剑剑

  (三)、把下列分數(shù)化成分母是10而大小不變的分數(shù)。

  ===

 。ㄋ模、涂色表示出與給定分數(shù)相等的分數(shù)。

  (五)、如果一堂課40分鐘,哪個班做練習用的時間長?

  六、課堂小結(jié):通過這節(jié)課的學習,你學會了什么?

  板書設(shè)計:

  分數(shù)的基本性質(zhì)

  分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

  這節(jié)課最多的考慮就是分數(shù)的基本性質(zhì)這個規(guī)律怎樣才能讓學生真正的夯實,怎樣設(shè)計才能讓學生水到渠成的加深了理解。在練習的設(shè)計和過渡語的設(shè)計都是關(guān)鍵。

  分數(shù)的基本性質(zhì)教學設(shè)計 篇11

  教材分析

  1.分數(shù)基本性質(zhì)是約分和通分的基礎(chǔ),而約分、通分又是分數(shù)四則運算的重要基礎(chǔ),因此,理解分數(shù)基本性質(zhì)顯得尤為重要。而分數(shù)與除法的關(guān)系以及除法中的商不變規(guī)律,與這部分知識緊密聯(lián)系,是學習這部分內(nèi)容的基礎(chǔ)。

  2.教材安排了兩個學習活動,讓學生尋找相等的分數(shù),通過活動使學生初步體驗分數(shù)的大小相等關(guān)系,為觀察發(fā)現(xiàn)分數(shù)的基本性質(zhì)提供的豐富的學習資料,然后引導(dǎo)學生分別觀察這兩組相等的分數(shù),尋找每組分數(shù)的分子、分母的變化規(guī)律,并展開充分的交流討論,在此基礎(chǔ)上歸納出:分數(shù)的分子和分母都乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。

  學情分析

  學生已明確商不變規(guī)律,分數(shù)與除法的關(guān)系等知識,這些都為本課學習做了知識上的鋪墊。五年級學生已經(jīng)初步養(yǎng)成了合作學習的習慣,并具有了一定的分析和解決問題的能力,因此能夠在教師的引導(dǎo)下完成“質(zhì)疑—探索——釋疑——應(yīng)用”這一完整的學習過程。

  因此在教學中,我主要采用引導(dǎo)學生探索以及小組合作學習相結(jié)合的方法,讓學生探索出分數(shù)的基本性質(zhì),并會運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同但大小相等的分數(shù),能有效地提高教學效率。

  教學目標

  經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)基本性質(zhì)。

  能運用分數(shù)基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

  教學重點和難點

  理解分數(shù)基本性質(zhì),能運用分數(shù)基本性質(zhì)轉(zhuǎn)化分數(shù)。

  教學過程

  一、復(fù)習導(dǎo)入

  二、探究新知

  實踐操作,探究規(guī)律

  觀察發(fā)現(xiàn):初步概括分數(shù)基本性質(zhì)

  括歸納分數(shù)基本性質(zhì)

  三、課堂練習

  四、課堂小結(jié)

  出示復(fù)習題口答卡片, 復(fù)習商不變的規(guī)律、分數(shù)與除法的關(guān)系。

  講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學們可知道誰吃的餅最多?”

  提出問題: 這些分數(shù)都相等嗎?

  觀察這組相等的分數(shù),你發(fā)現(xiàn)了什么?把你的發(fā)現(xiàn)說給同伴聽。

  分子、分母都乘或除以一個數(shù),這個數(shù)可以是0嗎?為什么?

  1、課本P43的“試一試”

  2、數(shù)學游戲:說出相等的分數(shù)3、課本P44的“練一練”第1~2、4

  通過這節(jié)課的學習、你學會了那些知識

  口答

  小組討論

  拿出準備好的圓形紙片,折一折,畫一畫、涂一涂

  小組討論、交流

  小組討論、交流

  做練習,完成后集體交流。

  說說,讀分數(shù)基本性質(zhì)

  復(fù)習舊知,為學習新知識作鋪墊。

  將例1改編成故事 提出問題,讓學生對故事中的人物進行直觀評價,為后續(xù)探究營造良好氛圍。

  讓學生通過實踐操作,激發(fā)學生參與學習探究的興趣,通過合作探究,初步感知有些分數(shù)的分子、分母不同,但分數(shù)的大小卻相等。

  引導(dǎo)學生通過不同形式的觀察,逐步總結(jié)出存在的規(guī)律,這樣由淺入深,循序漸進,有利于學生探究學習知識。

  在學生初步發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,進一步理解分數(shù)的基本性質(zhì),并對分數(shù)的基本性質(zhì)進行全面概括。

  讓學生利用分數(shù)的基本性質(zhì)解決問題,使學生對分數(shù)的基本性質(zhì)理解的更深刻,同時體驗解決問題的樂趣。

  對本節(jié)課的所學知識的回顧,及所學知識點的總結(jié)。

  板書設(shè)計(需要一直留在黑板上主板書)分數(shù)基本性質(zhì)被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(零除外),商不變,這就是商不變的規(guī)律分數(shù)的分子和分母都乘或除以相同的數(shù)(零除外),分數(shù)的大小不變,這叫做分數(shù)基本性質(zhì)。

  教學反思:

  分數(shù)的基本性質(zhì)在小學階段是數(shù)運算的又一次質(zhì)的飛躍與擴展,是重要的一個環(huán)節(jié)。我在引導(dǎo)學生觀察探究中,重視學生的主動參與,多次組織學生小組討論交流,讓每個小組成員都能充分的說說自己的看法,相互交流,相互啟迪,以感知分數(shù)的分子、分母是按一定的規(guī)律變化而分數(shù)大小不變。體現(xiàn)了理解與掌握數(shù)與數(shù)之間聯(lián)系、變化的觀點。

  在本節(jié)課中,由于我對學困生關(guān)注度不高,,使得他們在分數(shù)基本性質(zhì)應(yīng)用的過程中產(chǎn)生了困難。小組合作探究中的小組學習亦要不斷地完善。

【分數(shù)的基本性質(zhì)教學設(shè)計】相關(guān)文章:

《分數(shù)的基本性質(zhì)》教學設(shè)計06-05

分數(shù)的基本性質(zhì)教學設(shè)計03-19

《分數(shù)基本性質(zhì)》教學設(shè)計07-01

分數(shù)的基本性質(zhì)的教學設(shè)計07-08

分數(shù)的基本性質(zhì)教學設(shè)計09-08

《分數(shù)基本性質(zhì)》教學設(shè)計07-01

《分數(shù)基本性質(zhì)》的教學設(shè)計01-22

分數(shù)的基本性質(zhì)的教學設(shè)計12-19

關(guān)于《分數(shù)的基本性質(zhì)》的教學設(shè)計04-27

分數(shù)的基本性質(zhì)教學設(shè)計范文03-08