八年級上冊《探索勾股定理》第一課時說課稿
勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。接下來小編為你帶來八年級上冊《探索勾股定理》第一課時說課稿,希望對你有幫助。
一、 教材分析
(一)教材地位
這節(jié)課是九年制義務教育初級中學教材北師大版八年級第一章第一節(jié)《探索勾股定理》第一課時,它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
。ǘ┙虒W目標
知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.
過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結(jié)合和從特殊到一般的思想.
情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學.
。ㄈ┙虒W重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.
二、教法與學法分析:
學情分析:八年級學生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:結(jié)合八年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉(zhuǎn)化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.
三、 教學過程設計
1.創(chuàng)設情境,提出問題
2.實驗操作,模型構(gòu)建
3.回歸生活,應用新知
4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)
(一)創(chuàng)設情境提出問題
(1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 2002年國際數(shù)學 的一枚紀念郵票 大會會標 設計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值.
(2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié).
二、實驗操作模型構(gòu)建
1.等腰直角三角形(數(shù)格子)
2.一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想.
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.
通過以上實驗歸納總結(jié)勾股定理.
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律.
三.回歸生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心.
四、知識拓展鞏固深化
基礎題,情境題,探索題.
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的'個體差異,關注學生的個性發(fā)展.知識的運用得到升華.
基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維.
情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。
探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力.
五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?
作業(yè): 李景萍《探索勾股定理》第一課時說課稿 1、課本習題2.1 2、搜集有關勾股定理證明的資料.
板書設計 探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
李景萍《探索勾股定理》第一課時說課稿
設計說明::1.探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結(jié)合及從特殊到一般的思想方法.
2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平.
【八年級上冊《探索勾股定理》第一課時說課稿】相關文章:
八年級上冊《探索勾股定理》第一課時說課稿11-29
《探索勾股定理》第一課時說課稿01-08
《探索勾股定理》第一課時說課稿12-06
《探索勾股定理》的說課稿11-30
探索勾股定理說課稿06-11
探索勾股定理的說課稿06-13
探索勾股定理說課稿07-10
《探索勾股定理》說課稿02-21
數(shù)學《探索勾股定理》說課稿06-15