中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

探索勾股定理說(shuō)課稿

時(shí)間:2022-07-10 19:27:38 說(shuō)課稿 我要投稿

探索勾股定理說(shuō)課稿

  在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,很有必要精心設(shè)計(jì)一份說(shuō)課稿,說(shuō)課稿有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。那么寫說(shuō)課稿需要注意哪些問(wèn)題呢?下面是小編為大家收集的探索勾股定理說(shuō)課稿,僅供參考,大家一起來(lái)看看吧。

探索勾股定理說(shuō)課稿

探索勾股定理說(shuō)課稿1

  一、教材分析

  教材所處的地位與作用

  “探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊(cè)內(nèi)容!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

  二、教學(xué)目標(biāo)

  綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:

  1、知識(shí)目標(biāo)

  知道勾股定理的由來(lái),初步理解割補(bǔ)拼接的面積證法。

  掌握勾股定理,通過(guò)動(dòng)手操作利用等積法理解勾股定理的證明過(guò)程。

  2、能力目標(biāo)

  在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問(wèn)題的能力。

  3、情感目標(biāo)

  通過(guò)觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過(guò)程。

  介紹“趙爽弦圖”,讓學(xué)生感受到中國(guó)古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛(ài)國(guó)情感。

  三、教學(xué)重難點(diǎn)

  本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

  四、教學(xué)問(wèn)題診斷

  本節(jié)主要攻克的問(wèn)題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來(lái)說(shuō),有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒(méi)有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

  五、教法與學(xué)法分析

  [教學(xué)方法與手段]針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

  [學(xué)法分析]在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。

  六、教學(xué)流程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,引入新課

  本節(jié)課開(kāi)始利用多媒體介紹了在北京召開(kāi)的20xx年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)!昂玫拈_(kāi)始是成功的一半”,在課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開(kāi)啟學(xué)生思維的閘門,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。

  2、觀察發(fā)現(xiàn),類比猜想

  讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測(cè):是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié)論。最后對(duì)此結(jié)論通過(guò)在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測(cè)——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過(guò)程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長(zhǎng)出的正方形中網(wǎng)格不規(guī)則,沒(méi)法數(shù)出。通過(guò)同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來(lái)的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過(guò)割補(bǔ)變?yōu)橐?guī)則。

  3、實(shí)驗(yàn)探究,證明結(jié)論

  因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

  4、練兵之際

  這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒(méi)有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。

  5、自己動(dòng)手,拼出弦圖

  讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長(zhǎng)為a、b、c的直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛(ài)的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們?cè)跀?shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開(kāi)闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。

  6、總結(jié)反思

  通過(guò)這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方法來(lái)學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過(guò)讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過(guò)自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

  七、設(shè)計(jì)說(shuō)明

  1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。

探索勾股定理說(shuō)課稿2

  一、說(shuō)教材分析:

  (一)本節(jié)內(nèi)容在全書(shū)和章節(jié)的地位

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(華東版),八年級(jí)第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和觀察分析問(wèn)題的能力;通過(guò)實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。

  (二)三維教學(xué)目標(biāo):

  1.【知識(shí)與能力目標(biāo)】

 、崩斫獠⒄莆展垂啥ɡ淼膬(nèi)容和證明,能靈活運(yùn)用勾股定理及其計(jì)算;

  ⒉通過(guò)觀察分析,大膽猜想,并且探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

  2.【過(guò)程與方法目標(biāo)】

  在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)思想,并且體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。

  3.【情感態(tài)度與價(jià)值觀】通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)和熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。

  (三)教學(xué)重點(diǎn)、難點(diǎn):

  【教學(xué)重點(diǎn)】勾股定理的.證明與運(yùn)用

  【教學(xué)難點(diǎn)】用面積法等方法證明勾股定理

  【難點(diǎn)成因】對(duì)于勾股定理的得出,首先需要學(xué)生通過(guò)動(dòng)手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運(yùn)用數(shù)學(xué)的思想意識(shí),但學(xué)生在這一方面的可預(yù)見(jiàn)性和耐挫折能力并不是很成熟,從而形成困難。

  【突破措施】:

  ⒈創(chuàng)設(shè)情景,激發(fā)思維:創(chuàng)設(shè)生動(dòng)、啟發(fā)性的問(wèn)題情景,激發(fā)學(xué)生的問(wèn)題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過(guò)程;

 、沧灾魈剿鳎矣诓孪耄撼浞肿屪约簞(dòng)手操作,大膽猜想數(shù)學(xué)問(wèn)題的結(jié)論,老師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;

 、硰垞P(yáng)個(gè)性,展示風(fēng)采:實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書(shū)記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺(tái)利用“多媒體視頻展示臺(tái)”展示本組的優(yōu)秀作品,其他小組給予評(píng)價(jià)。這樣既保證討論的有效性,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。

  二、說(shuō)教法與學(xué)法分析

  【教法分析】數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對(duì)初二年級(jí)學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景-動(dòng)手操作-歸納驗(yàn)證-問(wèn)題解決-課堂小結(jié)-布置作業(yè)”六個(gè)方面。

  【學(xué)法分析】新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對(duì)性的引導(dǎo)學(xué)生并且參入到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,使得學(xué)生真正的成為學(xué)習(xí)的主人。

  三、說(shuō)教學(xué)過(guò)程設(shè)計(jì)

  (一)創(chuàng)設(shè)情景

  多媒體課件演示FLASH小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  問(wèn)題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,求第三邊?”的問(wèn)題。學(xué)生會(huì)感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。這種以實(shí)際問(wèn)題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來(lái)源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。

  (二)動(dòng)手操作

 、闭n件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個(gè)正方形,你從中能得出什么結(jié)論?

  學(xué)生可能會(huì)考慮到各種不同的思考方法,老師要給予肯定,并且要鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過(guò)正方形的面積之間的關(guān)系發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則 AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

 、簿o接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。

  ⒊再問(wèn):當(dāng)邊長(zhǎng)不為整數(shù)的直角三角形是否也是存在這一結(jié)論呢?投影例題:一個(gè)邊長(zhǎng)分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會(huì)到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

  (三)歸納驗(yàn)證

  【歸納】通過(guò)動(dòng)手操作、合作交流,探索邊長(zhǎng)為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長(zhǎng)為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過(guò)程中感受學(xué)數(shù)學(xué)的樂(lè)趣,,使學(xué)生學(xué)會(huì)“文字語(yǔ)言”與“數(shù)學(xué)語(yǔ)言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整一堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識(shí),解決問(wèn)題。

  【驗(yàn)證】先后的三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動(dòng)手進(jìn)行了畫圖、剪圖、拼圖,還有測(cè)量、計(jì)算等活動(dòng),使學(xué)生從中體會(huì)到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過(guò)程也是有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。

  (四)問(wèn)題解決

 、弊寣W(xué)生解決開(kāi)始上課前所提出的問(wèn)題,前后呼應(yīng),讓學(xué)生體會(huì)到成功的快樂(lè)。

  ⒉自學(xué)課本P101例1,然后完成P102練習(xí)。

  (五)課堂小結(jié)

  1.小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識(shí)的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。

  2.教師用多媒體介紹“勾股定理史話”

 、佟吨荀滤銖健罚何髦艿纳谈(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

 、诳滴鯏(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。

  目的是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激勵(lì)學(xué)生要奮發(fā)向上。

  (六)布置作業(yè)

  課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。

探索勾股定理說(shuō)課稿3

  一、 教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

  (二)教學(xué)目標(biāo) 知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。 過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。 情感態(tài)度與價(jià)值觀: 激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、 教學(xué)過(guò)程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,提出問(wèn)題

  2、實(shí)驗(yàn)操作,模型構(gòu)建

  3、回歸生活,應(yīng)用新知

  4、知識(shí)拓展,鞏固深化

  5、感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問(wèn)題

 。1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹(shù)20xx年國(guó)際數(shù)學(xué) 的一枚紀(jì)念郵票 大會(huì)會(huì)標(biāo) 設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。

 。2) 某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6。5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2。5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火

  設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié)。

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補(bǔ))

  問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎 (割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。

  通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律。

  三。回歸生活應(yīng)用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心。

  四、知識(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識(shí)的運(yùn)用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題 你能解決所提出的問(wèn)題嗎

  設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維. 情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了。你同意他的想法嗎

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。 探索題: 做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么 試用今天學(xué)過(guò)的知識(shí)說(shuō)明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么

  作業(yè):1、課本習(xí)題

  2、1 2、搜集有關(guān)勾股定理證明的資料。

  板書(shū)設(shè)計(jì) 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  a2 b2 c2

  設(shè)計(jì)說(shuō)明::1。探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

  2、讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平。

探索勾股定理說(shuō)課稿4

  一、教材分析

  (一)教材地位:這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ┙虒W(xué)目標(biāo):

  知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題.

  過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

  情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

  (三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

  三、教學(xué)過(guò)程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  2.實(shí)驗(yàn)操作,模型構(gòu)建

  3.回歸生活,應(yīng)用新知

  4.知識(shí)拓展,鞏固深化

  5.感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問(wèn)題

  (1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹(shù)20xx年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)

  設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

  (2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié).

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補(bǔ))

  問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

  問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高.

  通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

  設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律.

  三.回歸生活應(yīng)用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心.

  四、知識(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題.

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

  基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

  五、感悟收獲布置作業(yè):

  這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2.1

  2、搜集有關(guān)勾股定理證明的資料.

  板書(shū)設(shè)計(jì)探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設(shè)計(jì)說(shuō)明:

  1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

  2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平.

探索勾股定理說(shuō)課稿5

  一、教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ┙虒W(xué)目標(biāo)

  1、知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。

  2、過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

  3、情感態(tài)度與價(jià)值觀: 激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 。ㄈ┙虒W(xué)重點(diǎn)

  經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析

  學(xué)情分析:

  七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠。

  另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:

  結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。

  把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過(guò)程設(shè)計(jì)

  (一)創(chuàng)設(shè)情境,提出問(wèn)題

  (1)圖片欣賞勾股定理數(shù)形圖

  1955年希臘發(fā)行美麗的勾股樹(shù)

  20xx年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票

  大會(huì)會(huì)標(biāo)

  設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。

  (2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6。5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2。5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié)。

  (二)實(shí)驗(yàn)操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補(bǔ))

  問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。

  通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律。

  (三)回歸生活應(yīng)用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心。

 。ㄋ模┲R(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識(shí)的運(yùn)用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  (五)感悟收獲布置作業(yè)

  這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2.1

  2、搜集有關(guān)勾股定理證明的資料。

  四、板書(shū)設(shè)計(jì)

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設(shè)計(jì)說(shuō)明:

  1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平。

  圖文搜集自網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系刪除。

  鐵樹(shù)老師面試輔導(dǎo),喜馬拉雅app—主播—教師面試大雜燴

探索勾股定理說(shuō)課稿6

  一、 教材分析

  (一)教材地位

  這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版八年級(jí)第一章第一節(jié)《探索勾股定理》第一課時(shí),它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ┙虒W(xué)目標(biāo)

  知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題.

  過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

  情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

  (三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

  二、教法與學(xué)法分析:

  學(xué)情分析:八年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合八年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

  三、 教學(xué)過(guò)程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  2.實(shí)驗(yàn)操作,模型構(gòu)建

  3.回歸生活,應(yīng)用新知

  4.知識(shí)拓展,鞏固深化5.感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問(wèn)題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹(shù) 20xx年國(guó)際數(shù)學(xué) 的一枚紀(jì)念郵票 大會(huì)會(huì)標(biāo) 設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

  (2) 某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié).

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1.等腰直角三角形(數(shù)格子)

  2.一般直角三角形(割補(bǔ))

  問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

  問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高.

  通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

  設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律.

  三.回歸生活應(yīng)用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心.

  四、知識(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題.

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

  基礎(chǔ)題: 直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè): 李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿 1、課本習(xí)題2.1 2、搜集有關(guān)勾股定理證明的資料.

  板書(shū)設(shè)計(jì) 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿

  設(shè)計(jì)說(shuō)明::1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

  2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平.

【探索勾股定理說(shuō)課稿】相關(guān)文章:

探索勾股定理說(shuō)課稿04-25

《探索勾股定理》說(shuō)課稿02-21

探索勾股定理的說(shuō)課稿06-19

《探索勾股定理》的說(shuō)課稿11-30

數(shù)學(xué)《探索勾股定理》說(shuō)課稿08-07

探索勾股定理的數(shù)學(xué)說(shuō)課稿02-10

初中數(shù)學(xué)說(shuō)課稿《探索勾股定理》12-31

探索勾股定理的說(shuō)課稿(通用3篇)12-08

北師大版探索勾股定理說(shuō)課稿04-21

關(guān)于探索勾股定理教案08-29