- 相關推薦
高中數(shù)學說課稿集合15篇
作為一位杰出的教職工,時常需要用到說課稿,說課稿可以幫助我們提高教學效果。那么寫說課稿需要注意哪些問題呢?下面是小編精心整理的高中數(shù)學說課稿,僅供參考,希望能夠幫助到大家。
高中數(shù)學說課稿1
【一】教學背景分析
1.教材結構分析
《圓的方程》安排在高中數(shù)學第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關系、圓錐曲線等內(nèi)容的學習,無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用.
2.學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現(xiàn)困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.
根據(jù)上述教材結構與內(nèi)容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3.教學目標
(1) 知識目標:①掌握圓的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;
、劾脠A的標準方程解決簡單的實際問題.
(2) 能力目標:①進一步培養(yǎng)學生用代數(shù)方法研究幾何問題的能力;
、诩由顚(shù)形結合思想的理解和加強對待定系數(shù)法的運用;
、墼鰪妼W生用數(shù)學的意識.
(3) 情感目標:①培養(yǎng)學生主動探究知識、合作交流的意識;
、谠隗w驗數(shù)學美的過程中激發(fā)學生的學習興趣.
根據(jù)以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4. 教學重點與難點
(1)重點:圓的標準方程的求法及其應用.
(2)難點: ①會根據(jù)不同的已知條件求圓的標準方程;
、谶x擇恰當?shù)淖鴺讼到鉀Q與圓有關的實際問題.
為使學生能達到本節(jié)設定的教學目標,我再從教法和學法上進行分析:
好學教育:
【二】教法學法分析
1.教法分析 為了充分調(diào)動學生學習的積極性,本節(jié)課采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發(fā)展區(qū)上.另外我恰當?shù)睦枚嗝襟w課件進行輔助教學,借助信息技術創(chuàng)設實際問題的情境既能激發(fā)學生的學習興趣,又直觀的引導了學生建模的過程.
2.學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數(shù)法求的過程. 下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環(huán)節(jié):
創(chuàng)設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖.
首先:縱向敘述教學過程
(一)創(chuàng)設情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創(chuàng)設問題情境,讓學生感受到問題來源于實際,應用于實際,激發(fā)了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié).
(二)深入探究——獲得新知
問題二 1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2.如果圓心在,半徑為時又如何呢?
好學教育:
這一環(huán)節(jié)我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環(huán)節(jié).
(三)應用舉例——鞏固提高
I.直接應用 內(nèi)化新知
問題三 1.寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經(jīng)過點,圓心在點.
2.寫出圓的圓心坐標和半徑.
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.
II.靈活應用 提升能力
問題四 1.求以點為圓心,并且和直線相切的圓的方程.
2.求過點,圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過圓上一點的切線方程.
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發(fā)散思維創(chuàng)設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮.
III.實際應用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).
好學教育:
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養(yǎng)了學生建模的習慣和用數(shù)學的意識.
(四)反饋訓練——形成方法
問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.
2.求圓過點的切線方程.
3.求圓過點的切線方程.
接下來是第四環(huán)節(jié)——反饋訓練.這一環(huán)節(jié)中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數(shù)學的樂趣,成功的喜悅,找到自信,增強學習數(shù)學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數(shù)形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養(yǎng)學生思維的嚴謹性具有良好的效果.
(五)小結反思——拓展引申
1.課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數(shù)形結合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:.
、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:.
2.分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業(yè):試推導過圓上一點的切線方程.
3.激發(fā)新疑
問題七 1.把圓的標準方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準備.
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計
(一)突出重點 抓住關鍵 突破難點
好學教育:
求圓的標準方程既是本節(jié)課的教學重點也是難點,為此我布設了由淺入深的學習環(huán)境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點.
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據(jù)問題情境構建數(shù)學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數(shù)學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.
(二)學生主體 教師主導 探究主線
本節(jié)課的設計用問題做鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發(fā)現(xiàn)的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節(jié)的學習任務.
(三)培養(yǎng)思維 提升能力 激勵創(chuàng)新
為了培養(yǎng)學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養(yǎng)學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學生的創(chuàng)新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.
以上是我對這節(jié)課的教學預設,具體的教學過程還要根據(jù)學生在課堂中的具體情況適當調(diào)整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術的事業(yè)”.
高中數(shù)學說課稿2
一、說教材:
1、地位、作用和特點:
《 》是高中數(shù)學課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學課本說課稿。
本節(jié)是在學習了 之后編排的。通過本節(jié)課的學習,既可以對 的知識進一步鞏固和深化,又可以為后面學習 打下基礎,所以
是本章的重要內(nèi)容。此外,《 》的知識與我們?nèi)粘I、生產(chǎn)、科學研究 有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是;
特點之二是: 。
教學目標:
根據(jù)《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:
。1)知識目標:A、B、C
(2)能力目標:A、B、C
(3)德育目標:A、B
教學的重點和難點:
(1)教學重點:
。2)教學難點:
二、說教法:
基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設計如下教學程序:
導入新課 新課教學
反饋發(fā)展
三、說學法:
學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。
1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
本節(jié)教師通過列舉具體事例來進行分析,歸納出 ,并依
據(jù)此知識與具體事例結合、推導出 ,這正是一個分析和推理的全過程。
2、讓學生親自經(jīng)歷運用科學方法探索的過程。 主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授 時,可通過
演示,創(chuàng)設探索 規(guī)律的情境,引導學生以可靠的事實為基礎,經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。
3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。
4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質的能力。
四、教學過程:
。ㄒ唬、課題引入:
教師創(chuàng)設問題情景(創(chuàng)設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例,教案《高中數(shù)學課本說課稿》。C、講述數(shù)學科學史上的有關情況。)激發(fā)學生的探究欲望,引導學生提出接下去要研究的問題。
。ǘ⑿抡n教學:
1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。
(三)、實施反饋:
1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。
2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
五、板書設計:
在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。
六、說課綜述:
以上是我對《 》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的 知識,并把它運用到對
的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。
高中數(shù)學說課稿3
一、教材分析
1、教學內(nèi)容
本節(jié)課內(nèi)容教材共分兩課時進行,這是第一課時,該課時主要學習函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應用定義證明函數(shù)的單調(diào)性。
2、教材的地位和作用
函數(shù)單調(diào)性是高中數(shù)學中相當重要的一個基礎知識點,是研究和討論初等函數(shù)有關性質的基礎。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學習打下理論基礎,還有利于培養(yǎng)學生的抽象思維能力,及分析問題和解決問題的能力。
3、教材的重點﹑難點﹑關鍵
教學重點:函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個局部概念。
教學難點:領會函數(shù)單調(diào)性的實質與應用,明確單調(diào)性是一個局部的概念。
教學關鍵:從學生的學習心理和認知結構出發(fā),講清楚概念的形成過程、
4、學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環(huán)節(jié)總是創(chuàng)設恰當?shù)膯栴}情境,引導學生積極思考,培養(yǎng)他們的邏輯思維能力。從學生的認知結構來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學的優(yōu)勢;由于學生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學中注意加強。
二、目標分析
(一)知識目標:
1、知識目標:理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。
2、能力目標:通過證明函數(shù)的單調(diào)性的學習,使學生體驗和理解從特殊到一般的數(shù)學歸納推理思維方式,培養(yǎng)學生的觀察能力,分析歸納能力,領會數(shù)學的歸納轉化的思想方法,增加學生的知識聯(lián)系,增強學生對知識的主動構建的能力。
3、情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知欲望。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數(shù)形結合的數(shù)學思想,對學生進行辨證唯物主義的思想教育。
。ǘ┻^程與方法
培養(yǎng)學生嚴密的邏輯思維能力以及用運動變化、數(shù)形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數(shù)的單調(diào)性的學習,掌握自變量和因變量的關系。通過多媒體手段激發(fā)學生學習興趣,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。
三、教法與學法
1、教學方法
在教學中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學的優(yōu)勢。本節(jié)課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。
2、學習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節(jié)課學生學習的主要方式。
四、過程分析
本節(jié)課的教學過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習,回顧總結和課外作業(yè)六個板塊。這里分別就其過程和設計意圖作一一分析。
(一)問題情景:
為了激發(fā)學生的學習興趣,本節(jié)課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發(fā)學生的學習興趣和求知欲望,為學習函數(shù)的單調(diào)性做好鋪墊。(祥見課件)
新課程理念認為:情境應貫穿課堂教學的始終。本節(jié)課所創(chuàng)設的生活情境,讓學生親近數(shù)學,感受到數(shù)學就在他們的周圍,強化學生的感性認識,從而達到學生對數(shù)學的理解。讓學生在課堂的一開始就感受到數(shù)學就在我們身邊,讓學生學會用數(shù)學的眼光去關注生活。
。ǘ┖瘮(shù)單調(diào)性的定義引入
1、幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數(shù)y=2x+4,,的圖象的動態(tài)形式形象出x、y間的變化關系,使學生對函數(shù)單調(diào)性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學生的交流、探討、總結,得到單調(diào)性的“通俗定義”:
從在某一區(qū)間內(nèi)當x的值增大時,函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數(shù)學符號語言。幾何畫板的靈活使用,數(shù)形有機結合,引導學生從圖形語言到數(shù)學符號語言的翻譯變得輕松。
設計意圖:
、偻ㄟ^學生熟悉的知識引入新課題,有利于激發(fā)學生的學習興趣和學習熱情,同時也可以培養(yǎng)學生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。
、谕ㄟ^學生已學過的一次y=2x+4,,的圖象的動態(tài)形式形象地反映出x、y間的變化關系,使學生對函數(shù)單調(diào)性有感性認識。
③從學生的原有認知結構入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。
④從圖形、直觀認識入手,研究單調(diào)性的概念,其本身就是研究、學習數(shù)學的一種方法,符合新課程的理念。
(三)增函數(shù)、減函數(shù)的定義
在前面的基礎上,讓學生討論歸納:如何使用數(shù)學語言來準確描述函數(shù)的單調(diào)性?在學生回答的基礎上,給出增函數(shù)的概念,同時要求學生討論概念中的關鍵詞和注意點。
定義中的“當x1x2時,都有f(x1) 注意: (1)函數(shù)的單調(diào)性也叫函數(shù)的增減性; (2)注意區(qū)間上所取兩點x1,x2的任意性; 。3)函數(shù)的單調(diào)性是對某個區(qū)間而言的,它是一個局部概念。 讓學生自已嘗試寫出減函數(shù)概念,由兩名學生板演。提出單調(diào)區(qū)間的概念。 設計意圖:通過給出函數(shù)單調(diào)性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數(shù)的單調(diào)性其實也叫做函數(shù)的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數(shù)在某個區(qū)間上的單調(diào)性的一般步驟。這樣處 理,同時也是讓學生感悟、體驗學習數(shù)學感念的方法,提高其個性品質。 (四)例題分析 在理解概念的基礎上,讓學生總結判別函數(shù)單調(diào)性的方法:圖象法和定義法。 2、例2、證明函數(shù)在區(qū)間(—∞,+∞)上是減函數(shù)。 在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調(diào)性問題的一般方法。 變式一:函數(shù)f(x)=—3x+b在R上是減函數(shù)嗎?為什么? 變式二:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 變式三:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 錯誤:實質上并沒有證明,而是使用了所要證明的結論 例題設計意圖:在理解概念的基礎上,讓學生總結判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數(shù)形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調(diào)區(qū)間這一概念的再認識;要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據(jù)單調(diào)函數(shù)的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規(guī)范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數(shù)學問題。目的是進一步強化解題的規(guī)范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。 。ㄎ澹╈柟膛c探究 1、教材p36練習2,3 2、探究:二次函數(shù)的單調(diào)性有什么規(guī)律? (幾何畫板演示,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。 設計意圖:通過觀察圖象,對函數(shù)是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學方法。 通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。 。┗仡櫩偨Y 通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學習了函數(shù)單調(diào)性的知識,同學們要切記:單調(diào)性是對某個區(qū)間而言的,同時在理解定義的基礎上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進行判斷和證明。 設計意圖:通過小結突出本節(jié)課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數(shù)學的和諧美。 (七)課外作業(yè) 1、教材p43習題1。3A組1(單調(diào)區(qū)間),2(證明單調(diào)性); 2、判斷并證明函數(shù)在上的單調(diào)性。 3、數(shù)學日記:談談你本節(jié)課中的收獲或者困惑,整理你認為本節(jié)課中的最重要的知識和方法。 設計意圖:通過作業(yè)1、2進一步鞏固本節(jié)課所學的增、減函數(shù)的概念,強化基本技能訓練和解題規(guī)范化的訓練,并且以此作為學生對本結內(nèi)容各項目標落實的評價。新課標要求:不同的學生學習不同的數(shù)學,在數(shù)學上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。 。ㄆ撸┌鍟O計(見ppt) 五、評價分析 有效的概念教學是建立在學生已有知識結構基礎上,,因此在教學設計過程中注意了: 第一、教要按照學的法子來教; 第二、在學生已有知識結構和新概念間尋找“最近發(fā)展區(qū)”; 第三、強化了重探究、重交流、重過程的課改理念。讓學生經(jīng)歷“創(chuàng)設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數(shù)學知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學”的意識和能力,成為積極主動的建構者。 本節(jié)課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現(xiàn)知識的發(fā)生和形成過程,使學生始終處于問題探索研究狀態(tài)之中,激情引趣,并注重數(shù)學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。 一、教學背景分析 。ㄒ唬┙滩牡匚环治觯骸稒E圓及其標準方程》是繼學習圓以后運用“曲線與方程”思想解決二次曲線問題的又一實例,從知識上說,本節(jié)課是對坐標法研究幾何問題的又一次實際運用,同時也是進一步研究橢圓幾何性質的基礎;從方法上說,它為進一步研究雙曲線、拋物線提供了基本模式和理論基礎,因此本節(jié)課起到了承上啟下的重要作用. 。ǘ┲攸c、難點分析:本節(jié)課的重點是橢圓的定義及其標準方程,標準方程的推導是本節(jié)課的難點,要突破這一難點,關鍵是引導學生正確選擇去根式的策略. 。ㄈ⿲W情分析:在學習本節(jié)課前,學生已經(jīng)學習了直線與圓的方程,對曲線和方程的思想方法有了一些了解和運用的經(jīng)驗,對坐標法研究幾何問題也有了初步的認識,因此,學生已經(jīng)具備探究有關點的軌跡問題的知識基礎和學習能力,但由于學生學習解析幾何時間還不長、學習程度也較淺,并且還受到高二這一年齡段學習心理和認知結構的影響,在學習過程中難免會有些困難.如:由于學生對運用坐標法解決幾何問題掌握還不夠,因此從研究圓到橢圓,學生思維上會存在障礙. 二、教學目標設計 。ㄒ唬┲R目標:掌握橢圓的定義及其標準方程;會根據(jù)條件寫出橢圓的標準方程;通過對橢圓標準方程的探求,再次熟悉求曲線方程的一般方法. (二)能力目標:學生通過動手畫橢圓、分組討論探究橢圓定義、推導橢圓標準方程等過程,提高動手能力、合作學習能力和運用知識解決實際問題的能力. 。ㄈ┣楦心繕耍涸谛纬芍R、提高能力的過程中,激發(fā)學生學習數(shù)學的興趣,提高學生的審美情趣,培養(yǎng)學生勇于探索、敢于創(chuàng)新的精神. 三、教法學法設計 。ㄒ唬┙虒W方法設計:為了更好地培養(yǎng)學生自主學習能力,提高學生的綜合素質,我主要采用探究式教學方法.一方面我通過設置情境、問題誘導充分發(fā)揮主導作用;另一方面學生通過對我提供的素材進行直觀觀察→動手操作→討論探究→歸納抽象→總結規(guī)律的過程充分體現(xiàn)主體地位. 使用多媒體輔助教學與自制教具相結合的設計方案,實現(xiàn)多媒體快捷、形象、大容量的優(yōu)勢與自制教具直觀、實用的優(yōu)勢的結合,既突出了知識的產(chǎn)生過程,又增加了課堂的趣味性. 1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程; 2.能根據(jù)條件確定橢圓的標準方程,掌握運用待定系數(shù)法求橢圓的標準方程; 3.通過對橢圓概念的引入教學,培養(yǎng)學生的觀察能力和探索能力; 4.通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數(shù)形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力; 5.通過讓學生大膽探索橢圓的定義和標準方程,激發(fā)學生學習數(shù)學的積極性,培養(yǎng)學生的學習興趣和創(chuàng)新意識. 四、教學建議 教材分析 1.知識結構 2.重點難點分析 重點是橢圓的定義及橢圓標準方程的兩種形式.難點是橢圓標準方程的建立和推導.關鍵是掌握建立坐標系與根式化簡的方法. 橢圓及其標準方程這一節(jié)教材整體來看是兩大塊內(nèi)容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學好橢圓對于學生學好圓錐曲線是非常重要的. 。1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解. 另外要注意到定義中對“常數(shù)”的限定即常數(shù)要大于.這樣規(guī)定是為了避免出現(xiàn)兩種特殊情況,即:“當常數(shù)等于時軌跡是一條線段;當常數(shù)小于時無軌跡”.這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質.但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性. 。2)根據(jù)橢圓的定義求標準方程,應注意下面幾點: 、偾的方程依賴于坐標系,建立適當?shù)淖鴺讼担乔笄方程首先應該注意的地方.應讓學生觀察橢圓的圖形或根據(jù)橢圓的定義進行推理,發(fā)現(xiàn)橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔. 、谠O橢圓的焦距為,橢圓上任一點到兩個焦點的距離為,令,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會. ③在方程的推導過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經(jīng)常遇到的問題,又是學生的難點.要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項. 、芙炭茣蠈E圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程“而沒有證明,”方程的解為坐標的點都在橢圓上”.這實際上是方程的同解變形問題,難度較大,對同學們不作要求. 。3)兩種標準方程的橢圓異同點 中心在原點、焦點分別在軸上,軸上的橢圓標準方程分別為:,.它們的相同點是:形狀相同、大小相同,都有,.不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同. 橢圓的焦點在軸上標準方程中項的分母較大; 橢圓的焦點在軸上標準方程中項的分母較大. 另外,形如中,只要,,同號,就是橢圓方程,它可以化為. (4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓. 各位老師: 大家好!我叫周婷婷,來自湖南科技大學。我說課的題目是《算法的概念》,內(nèi)容選自于新課程人教A版必修3第一章第一節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析等五大方面來闡述我對這節(jié)課的分析和設計: 一、教材分析 1.教材所處的地位和作用 現(xiàn)代社會是一個信息技術發(fā)展很快的社會,算法進入高中數(shù)學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現(xiàn)代技術解決問題。又由于算法的具體實現(xiàn)上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養(yǎng)學生的理性精神和實踐能力。 2.教學的重點和難點 重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。 二、教學目標分析 1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。 2.能力目標:讓學生感悟人們認識事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學生的觀察能力,表達能力和邏輯思維能力。 3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。 三、教學方法分析 采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學生的探究論證、邏輯思維能力。 四、學情分析 算法這部分的使用性很強,與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節(jié)課的內(nèi)容。 五、教學過程分析 1.創(chuàng)設情景:我首先向學生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學家朱世杰的數(shù)學作品《四元玉鑒》,告訴學生們章頭圖正是體現(xiàn)了中國古代數(shù)學與現(xiàn)代計算機科學的聯(lián)系,它們的基礎都是"算法". 「設計意圖」是為了充分挖掘章頭圖的教學價值,體現(xiàn) 1)算法概念的由來; 2)我們將要學習的算法與計算機有關; 3)展示中國古代數(shù)學的成就; 4)激發(fā)學生學習算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘) 2.引入新課:在這一環(huán)節(jié)我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導學生關注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結構,寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學生輸入數(shù)據(jù),體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。 之后,我就向學生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據(jù)剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘) 3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數(shù)學思想的領悟。 這兩道例題均選自課本的例1和例2. 例1是讓我們設定一個程序以判斷一個數(shù)是否為質數(shù)。質數(shù)是我們之前已經(jīng)學習的內(nèi)容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質數(shù)應滿足的條件,然后再根據(jù)這個來探索解題步驟。通過例1讓學生認識到求解結構中存在"重復".為導出一般問題的算法創(chuàng)造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求: 。1)寫出的算法必須能解決一類問題,并且能夠重復使用。 。2)要使算法盡量簡單、步驟盡量少。 。3)要保證算法正確,且計算機能夠執(zhí)行。 在例1的基礎上我們繼續(xù)研究例2,例2是要求我們設計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結構,領會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘) 4.課堂小結: 。1)算法的概念和算法的基本特征 (2)算法的描述方法,算法可以用自然語言描述。 。3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結是一堂課內(nèi)容的概括和總結,有利于學生把握本節(jié)課的重點,對所學知識有一個系統(tǒng)整體的認識。(約6分鐘) 5.布置作業(yè):課本練習1、2題 課后作業(yè)的布置是為了檢驗學生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內(nèi)容。對作業(yè)實施分層設置,分必做和選做,利于拓展學生的自主發(fā)展的空間。 一、教材分析 1、《指數(shù)函數(shù)》在教材中的地位、作用和特點 《指數(shù)函數(shù)》是人教版高中數(shù)學(必修)第一冊第二章“函數(shù)”的第六節(jié)資料,是在學習了《指數(shù)》一節(jié)資料之后編排的。經(jīng)過本節(jié)課的學習,既能夠對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又能夠為后面進一步學習對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關系來研究對數(shù)函數(shù)的性質打下堅實的概念和圖象基礎,又因為《指數(shù)函數(shù)》是進入高中以后學生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應用意識打下了良好的學習基礎,所以《指數(shù)函數(shù)》不僅僅是本章《函數(shù)》的重點資料,也是高中學段的主要研究資料之一,有著不可替代的重要作用。 此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學研究有著緊密的聯(lián)系,尤其體此刻細胞分裂、貸款利率的計算和考古中的年代測算等方面,所以學習這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)資料的特點之一是概念性強,特點之二是凸顯了數(shù)學圖形在研究函數(shù)性質時的重要作用。 2、教學目標、重點和難點 經(jīng)過初中學段的學習和高中對集合、函數(shù)等知識的系統(tǒng)學習,學生對函數(shù)和圖象的關系已經(jīng)構建了必須的認知結構,主要體此刻三個方面: 知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數(shù)初步轉化到從集合與對應的觀點來認識函數(shù)。 技能維度:學生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質做好準備。 素質維度:由觀察到抽象的數(shù)學活動過程已有必須的體會,已初步了解了數(shù)形結合的思想。 鑒于對學生已有的知識基礎和認知本事的分析,根據(jù)《教學大綱》的要求,我確定本節(jié)課的教學目標、教學重點和難點如下: (1)知識目標: 、僬莆罩笖(shù)函數(shù)的概念; 、谡莆罩笖(shù)函數(shù)的圖象和性質; 、勰艹醪嚼弥笖(shù)函數(shù)的概念解決實際問題; (2)技能目標: ①滲透數(shù)形結合的基本數(shù)學思想方法; 、谂囵B(yǎng)學生觀察、聯(lián)想、類比、猜測、歸納的本事; (3)情感目標: 、袤w驗從特殊到一般的學習規(guī)律,認識事物之間的普遍聯(lián)系與相互轉化,培養(yǎng)學生用聯(lián)系的觀點看問題; 、诮(jīng)過教學互動促進師生情感,激發(fā)學生的學習興趣,提高學生抽象、概括、分析、綜合的本事; 、垲I會數(shù)學科學的應用價值。 (4)教學重點:指數(shù)函數(shù)的圖象和性質。 (5)教學難點:指數(shù)函數(shù)的圖象性質與底數(shù)a的關系。 突破難點的關鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數(shù)形結合來掃清障礙。 二、教法設計 由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設計中,我力圖經(jīng)過這一節(jié)課的教學到達不僅僅使學生初步理解并能簡單應用指數(shù)函數(shù)的知識,更期望能引領學生掌握研究初等函數(shù)圖象性質的一般思路和方法,為今后研究其它的函數(shù)做好準備,從而到達培養(yǎng)學生學習本事的目的,我根據(jù)自我對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面: 1、創(chuàng)設問題情景、按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學生的學習興趣,激發(fā)學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準備。 2、強化“指數(shù)函數(shù)”概念、引導學生結合指數(shù)的有關概念來歸納出指數(shù)函數(shù)的定義,并向學生指出指數(shù)函數(shù)的形式特點,請學生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。 3、突出圖象的作用、在數(shù)學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學家以往說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質時,更是直接由圖象觀察得出性質,所以圖象發(fā)揮了主要的作用。 4、注意數(shù)學與生活和實踐的聯(lián)系、數(shù)學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關的生活問題,力圖使學生了解到數(shù)學的基礎學科作用,培養(yǎng)學生的數(shù)學應用意識。 三、學法指導 本節(jié)課是在學習完“指數(shù)”的概念和運算后編排的,針對學生實際情景,我主要在以下幾個方面做了嘗試: 1、再現(xiàn)原有認知結構。在引入兩個生活實例后,請學生回憶有關指數(shù)的概念,幫忙學生再現(xiàn)原有認知結構,為理解指數(shù)函數(shù)的概念做好準備。 2、領會常見數(shù)學思想方法。在借助圖象研究指數(shù)函數(shù)的性質時會遇到分類討論、數(shù)形結合等基本數(shù)學思想方法,這些方法將會貫穿整個高中的數(shù)學學習。 3、在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導入、指數(shù)函數(shù)的性質研究、例題與訓練、課內(nèi)小節(jié)等教學環(huán)節(jié)中都安排了學生的討論、分組、交流等活動,讓學生變被動的理解和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內(nèi)化過程。 4、注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不一樣難度的題目設計將盡可能照顧到課堂學生的個體差異。 四、程序設計 在設計本節(jié)課的教學過程中,本著遵循學生的認知規(guī)律、讓學生去經(jīng)歷知識的構成與發(fā)展過程的原則,我設計了如下的教學程序,啟發(fā)學生逐步發(fā)現(xiàn)和認識指數(shù)函數(shù)的圖象和性質。 1、創(chuàng)設情景、導入新課 教師活動: 、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子; 、趯W生按奇數(shù)列、偶數(shù)列分組。 學生活動: 、俜謩e寫出計算機價格y與經(jīng)過月份x的關系式和細胞個數(shù)y與分裂次數(shù)x的關系式,并互相交流; 、诨貞浿笖(shù)的概念; ③歸納指數(shù)函數(shù)的概念; 、芊治龀鰧χ笖(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。 設計意圖:經(jīng)過生活實例激發(fā)學生的學習動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學生思維的主動性,為突破難點做好準備; 2、啟發(fā)誘導、探求新知 教師活動: 、俳o出兩個簡單的指數(shù)函數(shù)并要求學生畫它們的圖象 ②在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象 、郯鍟笖(shù)函數(shù)的性質。 學生活動: 、佼嫵鰞蓚簡單的指數(shù)函數(shù)圖象 ②交流、討論 、蹥w納出研究函數(shù)性質涉及的方面 、芸偨Y出指數(shù)函數(shù)的性質。 設計意圖:讓學生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的資料有著必須的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,到達進一步規(guī)范學生的作圖習慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情景,學生就會很自然的經(jīng)過觀察圖象總結出指數(shù)函數(shù)的性質,同時對于底數(shù)的討論也就變得順理成章。 一、教材分析: 1、教材的地位與作用。 本節(jié)資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預測隨機發(fā)生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續(xù)深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。 在教材的處理上,采取小單元教學,本節(jié)課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。 2、重點與難點。 重點:對概率意義的理解,經(jīng)過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。 難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結果數(shù)的分析。 二、目的分析: 知識與技能:掌握用頻率預測概率和用列舉法求概率方法。 過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統(tǒng)計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數(shù)學的視角觀察客觀世界,用數(shù)學的思維思考客觀世界,以數(shù)學的語言描述客觀世界。 情感態(tài)度價值觀:學生經(jīng)歷觀察、分析、歸納、確認等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,感受量變與質變的對立統(tǒng)一規(guī)律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學生學習數(shù)學的熱情,增強對數(shù)學價值觀的認識。 三、教法、學法分析: 引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學生在數(shù)學活動中學習數(shù)學、掌握數(shù)學,并能應用數(shù)學解決現(xiàn)實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現(xiàn)"教"為"學"服務這一宗旨。 四、教學過程分析: 1、引導學生探究 精心設計問題一,學生經(jīng)過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節(jié)資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發(fā)生大。R龑W生對問題二的探究與觀察實驗數(shù)據(jù),使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學規(guī)律的真實的發(fā)現(xiàn)過程。 2、歸納概括 學生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學生明確概率定義的由來。 引導學生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養(yǎng)學生的分析問題本事,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。 3、舉例應用 、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。 ⑵引導學生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。 4、深化發(fā)展 、旁O置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。 、谱寣W生設計活動資料,對知識進行升華和拓展,引導學生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新本事。 一.內(nèi)容和內(nèi)容分析 “函數(shù)的奇偶性”是人教版數(shù)學必修教材必修一第一章第三節(jié)的內(nèi)容,本節(jié)的主要內(nèi)容是研究函數(shù)的一個性質—函數(shù)的奇偶性,學習奇函數(shù)和偶函數(shù)的概念.奇偶性是函數(shù)的一條重要性質,教材從學生熟悉的兩個特殊函數(shù)入手,從特殊到一般,從具體到抽象,從感性到理性比較系統(tǒng)地介紹了函數(shù)的奇偶性.從知識結構看,它既是函數(shù)概念的拓展和深化,又為后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎,因此,本節(jié)課起著承上啟下的重要作用。 本節(jié)課的教學重點:函數(shù)奇偶性的概念及判定。 二.目標和目標分析 (1)知識目標:從形和數(shù)兩個方面進行引導,使學生理解奇偶性的概念,學會利用定義判斷 簡單函數(shù)的奇偶性。 。2)能力目標:通過設置問題情境培養(yǎng)學生判斷、推理的能力,同時滲透數(shù)形結合和由特殊 到一般的數(shù)學思想方法. 。3)情感目標:在學生感受數(shù)學美的同時,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神。 三.教學問題診斷分析 導入有點慢,講的有點細,導致時間上沒有完成教學任務,感覺還是自己講的太多,不能充分調(diào)動學生的積極性。 四.教學支持條件分析 用了多媒體,使用ppt,使得奇偶性函數(shù)概念的探究過程更形象更直觀,是學生理解更深刻。 五.教學過程設計 為了達到預期的教學目標,我對整個教學過程進行了系統(tǒng)地規(guī)劃,設計了四個主要的教學程序是: 1.設疑導入、觀圖激趣: 使用幻燈片展示圖片蝴蝶、雪花等讓學生感受生活中的美,從而引入對稱在函數(shù)中的體現(xiàn)。 2.指導觀察、形成概念: 作出函數(shù)y=x的圖象,并觀察這兩個函數(shù)圖象的對稱性如何? 借助課件演示,讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內(nèi)是否對所有的x,都有類似的情況?借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數(shù)學符號表示。根據(jù)以上特點,請學生用完整的語言敘述定義,同時給出板書: 函數(shù)f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù),類比探究2 偶函數(shù)的過程,得到奇函數(shù)的概念,又通過具體的例子說明了定義域關于原點對稱是研究奇偶性的前提。 3.學生探索、發(fā)展思維。 接著通過學案上的例一,總結函數(shù)奇偶性的判斷方法及步驟: (1)求出函數(shù)的定義域,并判斷是否關于原點對稱 (2)驗證f(-x)=f(x)或f(-x)=-f(x) (3)得出結論 由學生小結判斷奇偶性的步驟之后,提出新的問題:函數(shù)按奇偶性如何分類?既奇又偶的函數(shù)是不是只有一個?試舉例說明。 4.布置作業(yè): 六.目標檢測設計 學案上的題型主要包括奇偶性函數(shù)的判斷及應用 七.教學反思:(從兩方面) 1.思成功 一:是通過設計富有挑戰(zhàn)性的問題來呈現(xiàn)背景,通過問題的探究和自主學習來獲取相關概念,實現(xiàn)了 “教學邏輯”與“學習邏輯”的連通、“知識邏輯”與“認知邏輯”的連通;二:是在老師創(chuàng)設的情境中,每個學生都積極投入探究過程,學生在疑惑中探索,在探索中思考,在思考中發(fā)現(xiàn),大部分學生積極性高漲,通過看別人怎樣觀察, 聽別人怎樣介紹,也學到了知識. 2.思不足 學生練習:在教學過程中應多注意學生的活動,由單一的問答式轉化為多方位的考察,以采用 學生板演或者把學生練習投影到屏幕上讓全班學生糾正等方式,更好的考察學生掌握情況。 語言組織: 在講授過程中還要注意到說話語速,語言組織等講授技巧,應該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。 教學環(huán)節(jié)(的完整): 在授課過程中要注意到教學環(huán)節(jié)設計,我們的教學過程有復習引入、講授新課、例題講解、學生練習、課時小結、布置作業(yè)等幾個重要的環(huán)節(jié),由于時間的關系沒有來得及小結造成教學設計不完善。在以后的教學過程中要注意這些環(huán)節(jié)。 以上是我對這節(jié)課以后的教學反思,還有很多地方做的還不完善,我要在以后的教學中努力改進這些錯誤,以便更好的適應教學,努力使自己的教學更上一層樓。 各位評委、各位老師:大家好! 我叫李長杉,來自甘肅省嘉峪關市第一中學。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內(nèi)容分析、教法學法分析、教學過程分析和課堂意外預案等幾個方面逐一加以分析和說明。 一。教材內(nèi)容分析: 1.本節(jié)課內(nèi)容在整個教材中的地位和作用。 概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學習過的集合知識的鞏固和運用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導數(shù)等內(nèi)容密切相關。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學教學中具有很強的基礎性,體現(xiàn)出很大的工具作用。 2.教學目標定位。 根據(jù)教學大綱要求、高考考試大綱說明、新課程標準精神、高一學生已有的知識儲備狀況和學生心理認知特征,我確定了四個層面的教學目標。第一層面是面向全體學生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關系。第二層面是能力目標,培養(yǎng)學生運用數(shù)形結合與等價轉化等數(shù)學思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統(tǒng)一關系的認識,向學生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學生自主探究,交流討論,培養(yǎng)學生的合作意識和創(chuàng)新精神。 3.教學重點、難點確定。 本節(jié)課是在復習了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關系,并利用其關系解不等式即可。因此,我確定本節(jié)課的教學重點為一元二次不等式的解法,關鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關系。 二。教法學法分析: 數(shù)學是發(fā)展學生思維、培養(yǎng)學生良好意志品質和美好情感的重要學科,在教學中,我們不僅要使學生獲得知識、提高解題能力,還要讓學生在教師的啟發(fā)引導下學會學習、樂于學習,感受數(shù)學學科的人文思想,使學生在學習中培養(yǎng)堅強的意志品質、形成良好的道德情感。為了更好地體現(xiàn)課堂教學中"教師為主導,學生為主體"的教學關系和"以人為本,以學定教"的教學理念,在本節(jié)課的教學過程中,我將緊緊圍繞教師組織——啟發(fā)引導,學生探究——交流發(fā)現(xiàn),組織開展教學活動。我設計了①創(chuàng)設情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學環(huán)節(jié),在教學中注意關注整個過程和全體學生,充分調(diào)動學生積極參與教學過程的每個環(huán)節(jié)。 三。教學過程分析: 1.創(chuàng)設情景——引入新課。我們常說"興趣是最好的老師",長期以來,學生對學習數(shù)學缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學中不重視學生對學習的情感體驗,教學應該充分考慮學生的情感和需要,想方設法讓學生在學習中樹立信心,感受學習的樂趣。根據(jù)教材內(nèi)容的安排,我以學生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設置一個練習題組,一方面讓學生總結復習已有知識,為后面學習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導學生,利用上面解練習題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學生畫出圖象應該不成問題,只要教師適當點撥,學生不難得到正確答案。以高考試題為背景引入新課,可以提高學生興趣,抓住學生眼球,吸引學生注意力,還可以讓學生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習中。 2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學生用上面解高考題的方法——圖象法去解,學生由于熟知二次函數(shù)圖象,求解應該不會有太大的問題。在這個過程中,教師要啟發(fā)引導學生注意對比兩題的異同,組織引導學生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構造函數(shù)畫圖求解。然后達成共識,如果二次項系數(shù)為負數(shù)時,先做等價轉化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學生用上面的圖象法,由學生自己求解,這時我及時提示學生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個不等實根,例3對應方程有兩相等實根,例4對應方程無實根)。兩個題組的練習之后,可以尋求解二次不等式的一般規(guī)律。 3.啟發(fā)引導——形成結論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發(fā)引導學生將特殊、具體題目的結論做一般化總結,與學生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。 4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學生進行課堂練習,完成課本21頁練習1-4題。本環(huán)節(jié)請不同層次的學生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。 5.延伸拓寬——提高能力。課堂教學既要面向全體學生,又應關注學生的個體差異。體現(xiàn)分類推進,分層教學的原則。為此,我又設計了一個提高練習題組,共有三道備選題目,以供程度較好學有余力的學生能夠更好的展示自己的解題能力,取得更進一步的提高。 四。課堂意外預案: 新課程理念下的教學更多的關注學生自主探究、關注學生的個性發(fā)展,鼓勵學生勇于提出問題,培養(yǎng)學生思維的批評性。在課堂上學生往往會提出讓老師感到"意外"的問題,我在平時的教學中重視對"課堂意外預案"的探索和思考,備課時盡量設想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結合以往經(jīng)驗,在本節(jié)課,我提出兩個"意外預案". 1.學生在做課本練習1(x+2)(x-3)>0 時,可能會問到轉化為不等式組{ 或{ 求解對不對。學生提出的問題,想法非常好,應給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關,是解不等式的另一種解法——等價轉化法,不在本節(jié)課之列。 2.根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉化為不等式組{ 來求解的錯誤做法,教師要關注學生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉化不是等價轉化。 以上是我對本節(jié)課的一些粗淺的認識和構想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家! 一、教材分析 本節(jié)知識是必修五第一章《解三角形》的第一節(jié)資料,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,并且解三角形和三角函數(shù)聯(lián)系在高考當中也時?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。 根據(jù)上述教材資料分析,研究到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標: 認知目標:在創(chuàng)設的問題情境中,引導學生發(fā)現(xiàn)正弦定理的資料,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。 本事目標:引導學生經(jīng)過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養(yǎng)學生的創(chuàng)新意識和觀察與邏輯思維本事,能體會用向量作為數(shù)形結合的工具,將幾何問題轉化為代數(shù)問題。 情感目標:面向全體學生,創(chuàng)造平等的教學氛圍,經(jīng)過學生之間、師生之間的交流、合作和評價,調(diào)動學生的主動性和進取性,給學生成功的體驗,激發(fā)學生學習的興趣。 教學重點:正弦定理的資料,正弦定理的證明及基本應用。 教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時確定解的個數(shù)。 二、教法 根據(jù)教材的資料和編排的特點,為是更有效地突出重點,空破難點,以學業(yè)生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究資料,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,進取探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)奶崾竞椭笇АM黄齐y點的方法:抓住學生的本事線聯(lián)系方法與技能使學生較易證明正弦定理,另外經(jīng)過例題和練習來突破難點 三、學法: 指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、團體等多種解難釋疑的嘗試活動,將自我所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維本事,構成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。 四、教學過程 第一:創(chuàng)設情景,大概用2分鐘 第二:實踐探究,構成概念,大約用25分鐘 第三:應用概念,拓展反思,大約用13分鐘 (一)創(chuàng)設情境,布疑激趣 “興趣是最好的教師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫忙別人的熱情和學習的興趣,從而進入今日的學習課題。 (二)探尋特例,提出猜想 1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。 2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。 3.讓學生總結實驗結果,得出猜想: 在三角形中,角與所對的邊滿足關系 這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。 。ㄈ┻壿嬐评恚C明猜想 1.強調(diào)將猜想轉化為定理,需要嚴格的理論證明。 2.鼓勵學生經(jīng)過作高轉化為熟悉的直角三角形進行證明。 3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。 4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的`外接圓構造直角三角形,或用坐標法來證明 (四)歸納總結,簡單應用 1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。 2.正弦定理的資料,討論能夠解決哪幾類有關三角形的問題。 3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自我參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。 。ㄎ澹┲v解例題,鞏固定理 1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形. 例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。 2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形. 例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。 。┱n堂練習,提高鞏固 1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm 2.在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115° 學生板演,教師巡視,及時發(fā)現(xiàn)問題,并解答。 。ㄆ撸┬〗Y反思,提高認識 經(jīng)過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會? 1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。 2.它表述了三角形的邊與對角的正弦值的關系。 3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。 。◤膶嶋H問題出發(fā),經(jīng)過猜想、實驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅僅收獲著結論,并且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學習方法,注重學生的主體地位,調(diào)動學生進取性,使數(shù)學教學成為數(shù)學活動的教學。) 。ò耍┤蝿蘸笱,自主探究 如果已知一個三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)資料,余弦定理。布置作業(yè),預習下一節(jié)資料。 一、教材分析(說教材): 1. 教材所處的地位和作用: 本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學教材第 冊第 章第 節(jié)內(nèi)容。在此之前學生已學習了 基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學科和今后的學習打下基礎。 2. 教育教學目標: 根據(jù)上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標: (1)知識目標: (2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,(3)情感目標:通過 的教學引導學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。 3. 重點,難點以及確定依據(jù): 下面,為了講清重難上點,使學生能達到本節(jié)課設定的目標,再從教法和學法上談談: 二、教學策略(說教法) 1. 教學手段: 如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟(jié)課的特點: 應著重采用 的教學方法。 2. 教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。 3. 學情分析:(說學法) (1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散 (2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。 (3)動機和興趣上:明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力 最后我來具體談談這一堂課的教學過程: 4. 教學程序及設想: (1)由 引入:把教學內(nèi)容轉化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。 (2)由實例得出本課新的知識點 (3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。 (4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。 (5)總結結論,強化認識。知識性的內(nèi)容小結,可把課堂教學傳授的知識盡快化為學生的素質,數(shù)學思想方法的小結,可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質目標。 (6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。 (7)板書 (8)布置作業(yè)。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高, 教學程序: (一)課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分 高中數(shù)學集合教學反思 集合這章內(nèi)容,教學參考書上安排的課時為五課時,我們的導學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內(nèi)容很廣,學生學習本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學習過的內(nèi)容、有生活中的方方面面的相關知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質:確定性、互異性、無序性。集合的關系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質進行分析,反復訓練,讓學生通過實例體會這三個性質。 第二,掌握相關的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結合思想,集合間的關系和運算,以數(shù)形結合思想為指導,借助圖形思考,可以使各集合間的關系直觀明了,使抽象的集合運算建立在直觀的基礎上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。 第三,指導學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉換,可以幫助學生提高分析問題,解決問題的能力。 第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。 尊敬的各位教師: 大家好,我是xxx場的xxx號考生。 今日,我說課的資料是xxx 對于本節(jié)課,我將從教什么、怎樣教、為什么這么教來闡述本次說課。 一、說教材 教材是連接教師和學生的紐帶,在整個教學過程中起著至關重要的作用,所以,先談談我對教材的理解。 正弦函數(shù)的性質是選自北師大版高中數(shù)學必修四第一章三角函數(shù)第五節(jié)正弦函數(shù)的性質與圖象5、3正弦函數(shù)的性質的資料,主要資料便是正弦函數(shù)的性質,教材經(jīng)過作圖、觀察、誘導公式等方法得出正弦函數(shù)y=sinx的性質。并且教材突出了正弦函數(shù)圖象的重要性,能夠幫忙學生更深刻的認識、理解、記憶正弦函數(shù)的性質。 二、說學情 合理把握學情是上好一堂課的基礎,本次課所應對的學生群體具有以下特點。 高中的學生掌握了必須的基礎知識,思維較敏捷,動手本事較強,但理解本事、自主學習本事較缺乏;诖,本節(jié)課注重引導學生動腦思考,更富有啟發(fā)性。并且學生的自尊心較強,所以對學生的評價注重先揚后抑,鼓勵學生多多發(fā)言,還能夠對學生進行正確引導。 三、說教學目標 根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維目標: (一)知識與技能 會用正弦函數(shù)圖象研究和理解正弦函數(shù)的性質,能熟練運用正弦函數(shù)的性質解決問題。 (二)過程與方法 經(jīng)過正弦函數(shù)的圖象,探索正弦函數(shù)的性質,提升邏輯思考、歸納總結的本事。 (三)情感態(tài)度價值觀 經(jīng)過本節(jié)的學習體驗數(shù)學的嚴謹性,養(yǎng)成細心觀察、認真分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神。 四、說教學重難點 本著新課程標準,吃透教材,了解學生特點的基礎上我確定了以下重難點 (一)教學重點 由正弦函數(shù)的圖象得到正弦函數(shù)的性質。 (二)教學難點 正弦函數(shù)的周期性和單調(diào)性。 五、說教法和學法 此刻的文盲不是不懂字的人,而是沒有掌握學習方法的人。因而在本節(jié)課我將采用講授法、探究法、練習法等教學方法,我在教學過程中異常重視對學生的引導,讓學生從機械的學答中向學問轉變,從學會到會學,成為真正學習的主人。 六、說教學過程 在這節(jié)課的教學過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,限度的調(diào)動學生參與課堂的進取性、主動性。 (一)新課導入 首先是導入環(huán)節(jié),在這一環(huán)節(jié)中我將采用復習的導入方法。 我會讓學生回憶正弦函數(shù)的概念,以及上節(jié)課所學的正弦函數(shù)圖象,讓學生根據(jù)圖象思考正弦函數(shù)有哪些性質從而引出課題——《正弦函數(shù)的性質》。 這樣設計能夠讓學生對前面的知識進行充分的回顧,為本節(jié)課的順利開展奠定基礎。 (二)新知探索 接下來是新課講授環(huán)節(jié),在這一環(huán)節(jié)我將采用講解法、小組合作探究的方式進行。 讓學生自我經(jīng)過五點作圖法畫出正弦函數(shù)的圖象,并在大屏幕上展示正弦函數(shù)的標準圖象。 學生一邊看投影,一邊思考如下問題: (1)正弦函數(shù)的定義域是什么 (2)正弦函數(shù)的值域是什么 (3)正弦函數(shù)的最值情景如何 (4)正弦函數(shù)的周期 (5)正弦函數(shù)的奇偶性 (6)正弦函數(shù)的遞增區(qū)間 給學生十分鐘的時間小組討論,之后小組代表發(fā)言,師生共同總結。 1、定義域:y=sinx定義域為R 2、值域:引導學生回憶單位圓中的正弦函數(shù)線,發(fā)現(xiàn)值域為[-1,1] 3、最值:根據(jù)值域的確定得到在何處取得最值以及函數(shù)的正負性。 4、周期性:經(jīng)過觀察圖象引導學生發(fā)現(xiàn)正弦函數(shù)的圖象是有規(guī)律不斷重復出現(xiàn)的,讓學生思考后發(fā)現(xiàn)是每隔2π重復出現(xiàn)一次,得出y=sinx的最小正周期是2π。之后經(jīng)過誘導公式證明。 5、奇偶性:在剛才經(jīng)過誘導公式證明后順勢提出公式,總結得到正弦函數(shù)是奇函數(shù)。 6、單調(diào)性:最終讓學生根據(jù)剛才所得到的結論自我嘗試總結正弦函數(shù)的單調(diào)性。 在探究完正弦函數(shù)性質后,利用單位圓和正弦函數(shù)圖象理解和記憶正弦函數(shù)的性質,這樣的安排能夠讓學生及時鞏固正弦函數(shù)的性質,并且還能夠結合之前所學的單位圓,三角函數(shù)線等知識,讓學生感受到知識間的聯(lián)系。 (三)課堂練習 第三環(huán)節(jié)是鞏固環(huán)節(jié),多媒體出示書上例題2:用五點法畫出函數(shù)的簡圖,并根據(jù)圖象討論它的性質。 經(jīng)過這樣的練習,既鞏固了學生學過的知識,又進一步培養(yǎng)了學生理解、分析、推理的本事,趣味的知識在學生們的積極主動的探索中顯得更有味道。 (四)小結作業(yè) 最終一個環(huán)節(jié)為小結作業(yè)環(huán)節(jié),關于課堂小結,我打算讓學生自我來總結。這樣既發(fā)揮了學生的主體性,又能夠提高學生的總結概括本事,讓我在第一時間得到學習反饋,及時加以疏導。 在作業(yè)布置上,我讓學生思考余弦函數(shù)的圖象與性質是什么樣的。 經(jīng)過比較靈活的題目呈現(xiàn),能夠讓學生結合本節(jié)課的知識進而思考后續(xù)的知識。 七、說板書設計 我的板書設計遵循簡介明了突出重點部分,以下是我的板書設計: 。裕 一、教材分析: 1.教材所處的地位和作用: 本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數(shù)學教材數(shù)學2第一章空間幾何體3節(jié)內(nèi)容。在此之前學生已學習了空間幾何體的結構、三視圖和直觀圖為基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在空間幾何中,占據(jù)重要的地位。以及為其他學科和今后的學習打下基礎。 2.教育教學目標: 根據(jù)上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標: 知識與能力: 。1)了解柱體、錐體、臺體的表面積. 。2)能用公式求柱體、錐體、臺體的表面積。 。3)培養(yǎng)學生空間想象能力和思維能力 過程與方法: 讓學生經(jīng)歷幾何體的表面積的實際求法,感知幾何體的形狀,培養(yǎng)學生對數(shù)學問題的轉化化歸能力。 情感、態(tài)度與價值觀: 通過學習,是學生感受到幾何體表面積的求解過程,激發(fā)學生探索、創(chuàng)新意識,增強學習積極性。 3.重點,難點以及確定依據(jù): 本著新課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點 教學重點:柱,錐,臺的表面積公式的推導 教學難點:柱,錐,臺展開圖與空間幾何體的轉化 二、教法分析 1.教學手段: 如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟(jié)課的特點:應著重采用合作探究、小組討論的教學方法。 2.教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的探究式討論教學法。在學生親自動手去給出各種幾何體的表面積的計算方法,特別注重不同解決問題的方法,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。 三.學情分析 我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。 。1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散 (2)動機和興趣上:明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力 最后我來具體談談這一堂課的教學過程: 四、教學過程分析 (1)由一段動畫視頻引入:豐富生動的吸引學生的注意力,調(diào)動學生學習積極性 (2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。 。3)探究問題。完全將主動權教給學生,讓學生主動去探究,得到解決問題的思路,鍛煉學生動手能力,解決實際問題能力。 。4)總結結論,強化認識。知識性的內(nèi)容小結,可把課堂教學傳授的知識盡快化為學生的素質,數(shù)學思想方法的小結,可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質目標。 。5)例題及練習,見學案。 。6)布置作業(yè)。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高, 。7)小結。讓學生總結本節(jié)課的收獲。老師適時總結歸納。 函數(shù)的單調(diào)性 今天我說課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。 一、說教材 1、教材的地位和作用 本節(jié)內(nèi)容選自北師大版高中數(shù)學必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學的課程,它是描述事物運動變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學習奠定重要基礎。 2、學情分析 本節(jié)課的學生是高一學生,他們在初中階段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學習已經(jīng)對函數(shù)的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養(yǎng)學生的理性思維,為后續(xù)函數(shù)的學習作準備,也為利用倒數(shù)研究單調(diào)性的相關知識奠定了基礎。 教學目標分析 基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分: 1.知識與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義; 。2)會判斷和證明簡單函數(shù)的單調(diào)性。 2.過程與方法 。1)培養(yǎng)從概念出發(fā),進一步研究性質的意識及能力; 。2)體會數(shù)形結合、分類討論的數(shù)學思想。 3.情感態(tài)度與價值觀 由合適的例子引發(fā)學生探求數(shù)學知識的欲望,突出學生的主觀能動性,激發(fā)學生學習數(shù)學的興趣。 三、教學重難點分析 通過以上對教材和學生的分析以及教學目標,我將本節(jié)課的重難點 重點: 函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性。 難點: 1.函數(shù)單調(diào)性概念的認知 (1)自然語言到符號語言的轉化; (2)常量到變量的轉化。 2.應用定義證明單調(diào)性的代數(shù)推理論證。 四、教法與學法分析 1、教法分析 基于以上對教材、學情的分析以及新課標的教學理念,本節(jié)課我采用啟發(fā)式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數(shù)學在生活中的應用,啟發(fā)式教學和討論法發(fā)散學生思維,培養(yǎng)學生善于思考的能力。 2、學法分析 新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節(jié)課我將引導學生通過合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。 五、教學過程 為了更好的實現(xiàn)本課的三維目標,并突破重難點,我設計以下五個環(huán)節(jié)來進行我的教學。 。ㄒ唬┲R導入 溫故而知新,我將先從之前學習的知識引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學生作出這些函數(shù)的圖像,然后讓學生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數(shù)圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產(chǎn)生、發(fā)展的過程中構建新概念,有利于激發(fā)學生的思維和學習的積極主動性。 。ǘ┲v授新課 1.問題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個區(qū)間是上升的,在哪個區(qū)間是下降的? 通過學生熟悉的圖像,及時引導學生觀察,函數(shù)圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規(guī)律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。 2.觀察函數(shù)y=x2隨自變量x變化的情況,設置啟發(fā)式問題: 。1)在y軸的右側部分圖象具有什么特點? 。2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1 。3)如何用數(shù)學符號語言來描述這個規(guī)律? 教師補充:這時我們就說函數(shù)y=x2在(0,+∞)上是增函數(shù)。 。4)反過來,如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢? 類似地分析圖象在y軸的左側部分。 通過對以上問題的分析,從正、反兩方面領會函數(shù)單調(diào)性。師生共同總結出單調(diào)增函數(shù)的定義,并解讀定義中的關鍵詞,如:區(qū)間內(nèi),任意,當x1 仿照單調(diào)增函數(shù)定義,由學生說出單調(diào)減函數(shù)的定義。 教師總結歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個區(qū)間上的局部性質,也就是說,一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。 (我將給出函數(shù)y=x2,并畫出這個函數(shù)的圖像,讓學生觀察函數(shù)圖像的特點,讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數(shù)學關系,這種從特殊到一般的學習過程有利于學生對概念的理解) 。ㄈ╈柟叹毩 1練習1:說出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x 練習2:練習2:判斷下列說法是否正確 、俣x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。 、诙x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。 1③已知函數(shù)y=,因為f(-1) 1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學生說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x 上的單調(diào)性。通過這種練習的方式,幫助學生鞏固對知識的掌握。 (四)歸納總結 我先讓學生進行小結,函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節(jié)課的教學過程做好準備。 。ㄎ澹┎贾米鳂I(yè) 必做題:習題2-3A組第2,4,5題。 選做題:習題2-3B組第2題。 新課程理念告訴我們,不同的人在數(shù)學上可以獲得不同的發(fā)展,因此要設計不同程度要求的習題。 二次函數(shù)的圖像說課稿 今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。 一、教材分析 教材的地位和作用 本節(jié)內(nèi)容選自北師大版高中數(shù)學必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。 學情分析 本節(jié)課的學生是高一學生,他們在初中的時候已經(jīng)學習過有關內(nèi)容,為本節(jié)課的學習打下了基礎,另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉變?yōu)閰?shù),使學生對二次函數(shù)的圖像由感性認識上升到理性認識,能培養(yǎng)學生利用數(shù)形結合思想解決問題的能力。 二、教學目標分析 基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分: 1.知識與技能 理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響; 2.過程與方法 通過體驗對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。 3.情感態(tài)度與價值觀 通過本節(jié)的學習,進一步體會數(shù)形結合思想的作用,感受到數(shù)學中數(shù)與形的辯證統(tǒng)一。 三、教學重難點分析 通過以上對教材和學生的分析以及教學目標,我將本節(jié)課的重難點確定如下 重點: 二次函數(shù)圖像的平移變換規(guī)律及應用。 難點: 探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。 四、教法與學法分析 1、教法分析 基于以上對教材、學情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數(shù)學在生活中的應用,啟發(fā)式教學和討論法發(fā)散學生思維,培養(yǎng)學生善于思考的能力。 2、學法分析 新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節(jié)課我將引導學生通過合作交流、自主探索的方法進行學習。 五、教學過程 為了更好的實現(xiàn)本課的三維目標,并突破重難點,我將設計以下五個環(huán)節(jié)來進行我的教學。 。1)知識導入 溫故而知新,我將先從之前學習的知識引入,給出一些函數(shù),比如y=x2、y=2x2,讓學生作出這些函數(shù)的圖像,然后讓學生比較這些函數(shù)圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結復習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。 。2)講授新課 例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像 讓學生畫出他們的圖像并觀察函數(shù)圖像的特點,再讓學生與多媒體課件展示的圖像進行對比,得出結論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。 前面的練習和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導了學生將實例的結論進行總結,得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負右移;k正上移,k負下移。在這個過程中,學生把對圖像的感性認識轉化為了數(shù)學關系,這種從特殊到一般的學習過程有利于學生對概念的理解, 。3)鞏固練習 我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。 。4)歸納總結 我先讓學生進行小結,然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,可以進行適當反思,為下一節(jié)課的教學過程做好準備。 。5)布置作業(yè) 略 一、教材分析: 1、教材的地位與作用。 本節(jié)內(nèi)容是在學生學習了“事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小!庇酶怕暑A測隨機發(fā)生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續(xù)深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。 在教材的處理上,采取小單元教學,本節(jié)課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下面學習求比較復雜的情況的概率打下基礎。 2、重點與難點。 重點:對概率意義的理解,通過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。 難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結果數(shù)的分析。 二、目的分析: 知識與技能:掌握用頻率預測概率和用列舉法求概率方法。 過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統(tǒng)計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數(shù)學的視角觀察客觀世界,用數(shù)學的思維思考客觀世界,以數(shù)學的語言描述客觀世界。 情感態(tài)度價值觀:學生經(jīng)歷觀察、分析、歸納、確認等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,感受量變與質變的對立統(tǒng)一規(guī)律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學生學習數(shù)學的熱情,增強對數(shù)學價值觀的認識。 三、教法、學法分析: 引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學生在數(shù)學活動中學習數(shù)學、掌握數(shù)學,并能應用數(shù)學解決現(xiàn)實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現(xiàn)“教” 為“學”服務這一宗旨。 四、教學過程分析: 1、引導學生探究 精心設計問題一,學生通過對問題一的探究,一方面復習前面學過的“確定事件和不確定事件”的知識,為學好本節(jié)內(nèi)容理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發(fā)生大小)。引導學生對問題二的探究與觀察實驗數(shù)據(jù),使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學規(guī)律的真實的發(fā)現(xiàn)過程。 2、歸納概括 學生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學生明確概率定義的由來。 引導學生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養(yǎng)學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。 P(A)= = = (m 3、舉例應用 、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。 、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。 深化發(fā)展 、旁O置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。 、谱寣W生設計活動內(nèi)容,對知識進行升華和拓展,引導學生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新能力。 【高中數(shù)學說課稿】相關文章: 高中數(shù)學經(jīng)典說課稿02-19 高中數(shù)學的說課稿02-19 高中數(shù)學免費說課稿09-30 高中數(shù)學說課稿08-26 高中數(shù)學獲獎說課稿02-18 高中數(shù)學向量說課稿02-18 高中數(shù)學數(shù)列說課稿02-18 高中數(shù)學集合的說課稿02-19 高中數(shù)學統(tǒng)計說課稿02-18高中數(shù)學說課稿4
高中數(shù)學說課稿5
高中數(shù)學說課稿6
高中數(shù)學說課稿7
高中數(shù)學說課稿8
高中數(shù)學說課稿9
高中數(shù)學說課稿10
高中數(shù)學說課稿11
高中數(shù)學說課稿12
高中數(shù)學說課稿13
高中數(shù)學說課稿14
篇二:高一數(shù)學必修一說課稿
高中數(shù)學說課稿15