中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

一次函數(shù)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-03-13 18:30:05 曉麗 知識(shí)點(diǎn)總結(jié) 我要投稿

一次函數(shù)知識(shí)點(diǎn)總結(jié)

  總結(jié)是對(duì)取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)等方面情況進(jìn)行評(píng)價(jià)與描述的一種書(shū)面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,因此我們需要回頭歸納,寫一份總結(jié)了。我們?cè)撛趺慈懣偨Y(jié)呢?以下是小編為大家整理的一次函數(shù)知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

一次函數(shù)知識(shí)點(diǎn)總結(jié)

  一次函數(shù)知識(shí)點(diǎn)總結(jié)

  一次函數(shù)的定義

  一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)b=0時(shí),一次函數(shù)y=kx,又叫做正比例函數(shù)。

  1、一次函數(shù)的解析式的形式是y=kx+b,要判斷一個(gè)函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式。

  2、當(dāng)b=0,k≠0時(shí),y=kx仍是一次函數(shù)。

  3、當(dāng)k=0,b≠0時(shí),它不是一次函數(shù)。

  4、正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)。

  一次函數(shù)的圖像及性質(zhì)

  1、在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  2、一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)。

  3、正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

  4、k,b與函數(shù)圖像所在象限的關(guān)系:

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

  當(dāng)k>0,b>0時(shí),直線通過(guò)一、二、三象限;

  當(dāng)k>0,b<0時(shí),直線通過(guò)一、三、四象限;

  當(dāng)k<0,b>0時(shí),直線通過(guò)一、二、四象限;

  當(dāng)k<0,b<0時(shí),直線通過(guò)二、三、四象限;

  當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。

  一次函數(shù)的圖象與性質(zhì)的口訣

  一次函數(shù)是直線,圖象經(jīng)過(guò)三象限;

  正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;

  兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;

  k為負(fù)來(lái)左下展,變化規(guī)律正相反;

  k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。

  拓展閱讀:一次函數(shù)的解題方法

  理解一次函數(shù)和其它知識(shí)的聯(lián)系

  一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

  掌握一次函數(shù)的解析式的特征

  一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒(méi)有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。

  應(yīng)用一次函數(shù)解決實(shí)際問(wèn)題

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;

  2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);

  3、在實(shí)際問(wèn)題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說(shuō),距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);

  4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。

  數(shù)形結(jié)合

  方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來(lái)理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來(lái)認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。

  如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無(wú)窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無(wú)交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問(wèn)題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。

  一次函數(shù)知識(shí)點(diǎn)總結(jié)

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱y是x的一次函數(shù)。

  特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)

  二、一次函數(shù)的性質(zhì):

  1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k 即:y=kx+b (k為任意不為零的實(shí)數(shù) b取任何實(shí)數(shù))

  2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1.作法與圖形:通過(guò)如下3個(gè)步驟

  (1)列表;

  (2)描點(diǎn);

  (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

  2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

  3.k,b與函數(shù)圖像所在象限:

  當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;

  當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。

  當(dāng)b>0時(shí),直線必通過(guò)一、二象限;

  當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)

  當(dāng)b<0時(shí),直線必通過(guò)三、四象限。

  特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。

  四、確定一次函數(shù)的表達(dá)式:

  已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。

  (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

  (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②

  (3)解這個(gè)二元一次方程,得到k,b的值。

  (4)最后得到一次函數(shù)的表達(dá)式。

  五、一次函數(shù)在生活中的應(yīng)用:

  1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

  2.當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

  六、常用公式:

  1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

  2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

  3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

  4.求任意線段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2 (注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

  一次函數(shù)知識(shí)點(diǎn)總結(jié)

  一、函數(shù):

  一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  二、自變量取值范圍

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開(kāi)方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。

  三、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  (1)關(guān)系式(解析)法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖象法

  用圖象表示函數(shù)關(guān)系的方法叫做圖象法。

  四、由函數(shù)關(guān)系式畫(huà)其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

  (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

  (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。

  五、正比例函數(shù)和一次函數(shù)

  1、正比例函數(shù)和一次函數(shù)的概念

  一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

  特別地,當(dāng)一次函數(shù)中的b=0時(shí)(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。

  2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線

  3、一次函數(shù)、正比例函數(shù)圖像的主要特征:

  一次函數(shù)的圖像是經(jīng)過(guò)點(diǎn)(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過(guò)原點(diǎn)(0,0)的直線。

  4、正比例函數(shù)的性質(zhì)

  一般地,正比例函數(shù)有下列性質(zhì):

  (1)當(dāng)k>0時(shí),圖像經(jīng)過(guò)第一、三象限,y隨x的增大而增大;

  (2)當(dāng)k<0時(shí),圖像經(jīng)過(guò)第二、四象限,y隨x的增大而減小。

  5、一次函數(shù)的性質(zhì)

  一般地,一次函數(shù)有下列性質(zhì):

  (1)當(dāng)k>0時(shí),y隨x的增大而增大

  (2)當(dāng)k<0時(shí),y隨x的增大而減小

  6、正比例函數(shù)和一次函數(shù)解析式的確定

  確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問(wèn)題的一般方法是待定系數(shù)法。

  7、一次函數(shù)與一元一次方程的關(guān)系:

  任何一個(gè)一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式,而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0),當(dāng)函數(shù)值為0時(shí),即kx+b=0就與一元一次方程完全相同。

  結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式。所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)一次函數(shù)值為0時(shí),求相應(yīng)的自變量的值。

  從圖象上看,這相當(dāng)于已知直線y=kx+b確定它與x軸交點(diǎn)的橫坐標(biāo)值。

  數(shù)學(xué)一次函數(shù)學(xué)習(xí)方法

  及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法

  中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。

  有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無(wú)限,抽象與概括等。

  逐步形成 “以我為主”的學(xué)習(xí)模式

  數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書(shū)不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補(bǔ)上。

  要建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來(lái),以防再 犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問(wèn)題完整、推理嚴(yán)密。

  數(shù)學(xué)一次函數(shù)學(xué)習(xí)技巧

  1.必須熟悉各種基本題型并掌握其解法。

  課本上的每一道練習(xí)題,都是針對(duì)一個(gè)知識(shí)點(diǎn)出的,是最基本的題目,必須熟練掌握;課外的習(xí)題,也有許多基本題型,其運(yùn)用方法較多,針對(duì)性也強(qiáng),應(yīng)該能夠迅速做出。許多綜合題只是若干個(gè)基本題的有機(jī)結(jié)合,基本題掌握了,不愁解不了它們。

  2.在解題過(guò)程中有意識(shí)地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢(shì)。

  數(shù)學(xué)是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過(guò)程中,都會(huì)反映出一定的思維方法,如果我們有意識(shí)地注重這些思維方法,時(shí)間長(zhǎng)了頭腦中便形成了對(duì)每一類題型的“通用”解法,即正確的思維定勢(shì),這時(shí)在解這一類的題目時(shí)就易如反掌了;同時(shí),掌 握了更多的思維方法,為做綜合題奠定了一定的基礎(chǔ)。

  3.多做綜合題。

  綜合題,由于用到的知識(shí)點(diǎn)較多,頗受命題人青睞。做綜合題也是檢驗(yàn)自己學(xué)習(xí)成效的有力工具,通過(guò)做綜合題,可以知道自己的不足所在,彌補(bǔ)不足,使自己的數(shù)學(xué)水平不斷提高。“多做練習(xí)”要長(zhǎng)期堅(jiān)持,每天都要做幾道,時(shí)間長(zhǎng)了才會(huì)有明顯的效果和較大的收獲。

  一次函數(shù)知識(shí)點(diǎn)總結(jié)

  1.在正比例函數(shù)時(shí),x與y的商一定。在反比例函數(shù)時(shí),x與y的積一定。

  在y=kx+b(k,b為常數(shù),k≠0)中,當(dāng)x增大m倍時(shí),函數(shù)值y則增大m倍,反之,當(dāng)x減少m倍時(shí),函數(shù)值y則減少m倍。

  2.當(dāng)x=0時(shí),b為一次函數(shù)圖像與y軸交點(diǎn)的縱坐標(biāo),該點(diǎn)的坐標(biāo)為(0,b)。

  3.當(dāng)b=0時(shí),一次函數(shù)變?yōu)檎壤瘮?shù)。當(dāng)然正比例函數(shù)為特殊的一次函數(shù)。

  4.在兩個(gè)一次函數(shù)表達(dá)式中:

  當(dāng)兩個(gè)一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),則這兩個(gè)一次函數(shù)的圖像重合;

  當(dāng)兩個(gè)一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),則這兩個(gè)一次函數(shù)的圖像平行;

  當(dāng)兩個(gè)一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),則這兩個(gè)一次函數(shù)的圖像相交;

  當(dāng)兩個(gè)一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),則這兩個(gè)一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b);

  當(dāng)兩個(gè)一次函數(shù)表達(dá)式中的k互為負(fù)倒數(shù)時(shí),則這兩個(gè)一次函數(shù)圖像互相垂直。

  5.兩個(gè)一次函數(shù)(y1=k1x+b1,y2=k2x+b2)相乘時(shí)(k≠0),得到的的新函數(shù)為二次函數(shù),該函數(shù)的對(duì)稱軸為-(k2b1+k1b2)/(2k1k2);

  當(dāng)k1,k2正負(fù)相同時(shí),二次函數(shù)開(kāi)口向上;

  當(dāng)k1,k2正負(fù)相反時(shí),二次函數(shù)開(kāi)口向下。

  二次函數(shù)與y軸交點(diǎn)為(0,b2b1)。

  6.兩個(gè)一次函數(shù)(y1=ax+b,y2=cx+d)之比,得到的新函數(shù)y3=(ax+b)/(cx+d)為反比性函數(shù),漸近線為x=-b/a,y=c/a。

  一次函數(shù)知識(shí)點(diǎn)總結(jié)

  用待定系數(shù)法 確定一次函數(shù)表達(dá)式一般步驟

  (1)設(shè)函數(shù)表達(dá)式為y=kx+b;

  (2)將已知點(diǎn)的坐標(biāo)代入函數(shù)表達(dá)式,解方程(組);

  (3)求出k與b的值,得到函數(shù)表達(dá)式。

  思想方法小結(jié) (1)函數(shù)方法。(2)數(shù)形結(jié)合法。

  知識(shí)規(guī)律小結(jié) (1)常數(shù)k,b對(duì)直線y=kx+b(k≠0)位置的影響。

  ①當(dāng)b>0時(shí),直線與y軸的正半軸相交;

  當(dāng)b=0時(shí),直線經(jīng)過(guò)原點(diǎn);

  當(dāng)b﹤0時(shí),直線與y軸的負(fù)半軸相交。

  ②當(dāng)k,b異號(hào)時(shí),直線與x軸正半軸相交;

  當(dāng)b=0時(shí),直線經(jīng)過(guò)原點(diǎn);

  當(dāng)k,b同號(hào)時(shí),直線與x軸負(fù)半軸相交。

 、郛(dāng)k>O,b>O時(shí),圖象經(jīng)過(guò)第一、二、三象限;

  當(dāng)k>0,b=0時(shí),圖象經(jīng)過(guò)第一、三象限;

  當(dāng)b>O,b

【一次函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

一次函數(shù)知識(shí)點(diǎn)總結(jié)4篇03-16

一次函數(shù)教案03-07

知識(shí)點(diǎn)總結(jié)11-22

一次函數(shù)的試題及講解09-24

一次函數(shù)說(shuō)課稿07-16

《一次函數(shù)》教學(xué)設(shè)計(jì)12-06

《一次函數(shù)》的教學(xué)反思06-25

生物知識(shí)點(diǎn)總結(jié)02-27

民法知識(shí)點(diǎn)總結(jié)11-06