中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

五年級數(shù)學(xué)學(xué)習(xí)方法

時間:2021-12-29 16:44:13 學(xué)習(xí)方法 我要投稿

五年級數(shù)學(xué)學(xué)習(xí)方法5篇

  無論在學(xué)習(xí)、工作或是生活中,學(xué)習(xí)時刻伴隨著我們每一個人,不過只有真正找對了學(xué)習(xí)方法,才能能事半功倍,還能培養(yǎng)學(xué)習(xí)的興趣。那么,怎樣學(xué)習(xí)才能更高效呢?下面是小編精心整理的五年級數(shù)學(xué)學(xué)習(xí)方法,歡迎大家借鑒與參考,希望對大家有所幫助。

五年級數(shù)學(xué)學(xué)習(xí)方法5篇

五年級數(shù)學(xué)學(xué)習(xí)方法1

  五年級下學(xué)期是前的最后一個學(xué)期,對于整個小學(xué)階段的數(shù)學(xué)學(xué)習(xí)起著至關(guān)重要的作用,只有這一關(guān)過好了,才可能在的備考中游刃有余。所以這學(xué)期的奧數(shù)學(xué)習(xí)應(yīng)該有更強(qiáng)的針對性,針對自己的實際情況和目標(biāo)選擇合適的班型。

  學(xué)習(xí)重點難點解析:

  五年級屬于小學(xué)高年級,孩子進(jìn)入五年級以后,隨著年齡的增長,孩子的計算能力,認(rèn)知能力,邏輯分析能力都比以前有很大的提高,這個時期是奧數(shù)思維形成的關(guān)鍵時期,是學(xué)奧數(shù)的黃金時段,所以是否把握住五年級這個黃金時段,關(guān)系到以后的成與敗。那么在整個五年級階段都有哪些重點知識呢?為了孩子更好的把握五年級的學(xué)習(xí)重點,下面就介紹一下五年級的關(guān)鍵知識點。

  1.進(jìn)入數(shù)學(xué)寶庫的分析方法——遞推方法:任何事物的發(fā)展總是從簡單到復(fù)雜,奧數(shù)也是一樣,對于復(fù)雜問題,我們不妨先從最簡單的情況入手,通過處理簡單的問題,我們可以從中得到規(guī)律或者訣竅,從而來解決復(fù)雜的問題,這就是遞推方法。比如說:平面上20xx條直線最多有幾個交點?同學(xué)們第一眼看到這個問題時,肯定會想畫20xx條直線相交然后再數(shù)交點個數(shù),那該是多麻煩!其實我們可以先來解決簡單點的情況,分別找到1條、2條、3條、4條……這些直線有多少個交點。

  1條直線最多有0個交點

  2條直線最多有1個交點

  3條直線最多有3個交點

  4條直線最多有6個交點

  5條直線最多有10個交點

  6條直線最多有15個交點

  ……

  所以20xx條直線有1+2+3+4+5+…+20xx=2015028個交點。

  那么聰明的你,你能算出20xx條直線最多可以把圓分成幾部分么?

  2.變化無窮、形跡不定的行程問題:提到行程問題,同學(xué)們可能就感到頭疼,的確不錯,因為行程問題中各個物體的速度、時間、路程都在變化,而且各個物體都是在運動中,位置是隨著時間在變化,所以分析起來就很麻煩,為了更好的解決這個問題,我們把行程問題進(jìn)行了細(xì)分:基本行程(單個物體)、平均速度、相遇、追及、流水行船、火車過橋、火車錯車、鐘表問題、環(huán)形線路上行程。只要我們掌握這些每個小類型中的訣竅,形成一種分析思路,復(fù)雜的行程問題無非是這些類型的變形而已,解決起來就容易多了。

  3.抽象而又雜亂的數(shù)論問題:數(shù)論是從五年級的核心知識,無論是在哪本教材里,都用了很多的章節(jié)來講解數(shù)論,要想解決復(fù)雜的數(shù)論問題,我們首先得掌握數(shù)論的基本知識:數(shù)的奇偶性、約數(shù)(現(xiàn)在叫因數(shù))、倍數(shù)、公約數(shù)及最大公約數(shù)、公倍數(shù)及最小公倍數(shù)、質(zhì)數(shù)、合數(shù)、分解質(zhì)因數(shù)、整除、余數(shù)及同余等。這些基本知識點里又有些非常有代表性的例題,只要能掌握好這些知識點,然后做一定量的數(shù)論綜合習(xí)題,碰到難的數(shù)論問題我們就容易解決了。

  4.有趣的抽屜原理:生活中有很多有趣的事情,比如說:把4個蘋果放到3個抽屜里,無論你怎么放,總有某個抽屜里至少有2個蘋果,這就是抽屜原理。

  對于抽屜原理我們只要找到蘋果的個數(shù)a與抽屜的個數(shù)b,我們就可以得到下面的結(jié)論:

  若a÷b=r……

  當(dāng)q=0時,我們就說總有某個抽屜里至少有r個蘋果;

  當(dāng)q0時,我們就說總有某個抽屜里至少有(r+1)個蘋果。

  比如說把32個蘋果放進(jìn)8個抽屜里,因為32÷8=4,無論怎么放,總有某個抽屜里有4個蘋果。如果把35個蘋果放進(jìn)8個抽屜里,因為35÷8=4……3,無論怎么放,總有某個抽屜里有4+1=5個蘋果。

  但是大部分的奧數(shù)題是沒有告訴我們抽屜的個數(shù)的,那樣我們就得自己構(gòu)造抽屜,從而找出抽屜的個數(shù)。

  5.圖形面積計算:求圖形的面積也是奧數(shù)中的一個難點,對于這類題我們首先要掌握好各種基本圖形的面積計算公式,然后記住一些重要的結(jié)論:比如說三角形的等積變形、直角三角形中30度所對的邊是斜邊的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中邊與面積的關(guān)系。在計算面積時的方法有:直接計算法、割補(bǔ)法、方程法等。在圖形面積計算中,難題往往得添加輔助線,這個就是難點所在,因為添加輔助線非常靈活,這就要我們多做些這方面的題,多積累一些添加輔助線的技巧,做到心中有數(shù)。

五年級數(shù)學(xué)學(xué)習(xí)方法2

  小學(xué)五年級數(shù)學(xué)學(xué)習(xí)方法五條

  主動預(yù)習(xí)

  主動預(yù)習(xí),不僅能提前了解上課內(nèi)容,在聽課的時候有的放矢,還能鍛煉孩子的自學(xué)能力。

  具體做法:認(rèn)真閱讀教材,在老師的引導(dǎo)下學(xué)會看書,帶著老師精心設(shè)計的思考題去預(yù)習(xí)。

  如自學(xué)例題時,要弄清例題講的什么內(nèi)容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。

  抓住這些重要問題,動腦思考,步步深入,學(xué)會運用已有的知識去獨立探究新的知識。

  掌握思考問題的方法

  “把一個長方體的高去掉2厘米后成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?”

  一些學(xué)生對公式、性質(zhì)、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應(yīng)用所學(xué)的知識去解答問題,比如上題。

  同學(xué)們對求體積的公式雖記得很熟,但由于該題涉及知識面廣,許多同學(xué)理不出解題思路,這需要學(xué)生在老師的引導(dǎo)下逐漸掌握解題時的思考方法。

  這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;從圖形變化關(guān)系講:長方形→正方形;

  從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積,

  經(jīng)老師啟發(fā),學(xué)生分析后,學(xué)生根據(jù)其思路(可畫出圖形)進(jìn)行解答。

  有的學(xué)生很快解答出來:設(shè)原長方體的底面長為X,則2X×4=48得:X=6(即正方體的棱長),這樣得出正方體的體積為:6×6×6=216(立方厘米)。

  小學(xué)五年級數(shù)學(xué)解題技巧

  1、對照法

  如何正確地理解和運用數(shù)學(xué)概念?小學(xué)數(shù)學(xué)常用的方法就是對照法。根據(jù)數(shù)學(xué)題意,對照概念、性質(zhì)、定律、法則、公式、名詞、術(shù)語的含義和實質(zhì),依靠對數(shù)學(xué)知識的理解、記憶、辨識、再現(xiàn)、遷移來解題的方法叫做對照法。

  這個方法的思維意義就在于,訓(xùn)練學(xué)生對數(shù)學(xué)知識的正確理解、牢固記憶、準(zhǔn)確辨識。

  例1:三個連續(xù)自然數(shù)的和是18,則這三個自然數(shù)從小到大分別是多少?

  對照自然數(shù)的概念和連續(xù)自然數(shù)的性質(zhì)可以知道:三個連續(xù)自然數(shù)和的平均數(shù)就是這三個連續(xù)自然數(shù)的中間那個數(shù)。

  例2:判斷題:能被2除盡的數(shù)一定是偶數(shù)。

  這里要對照“除盡”和“偶數(shù)”這兩個數(shù)學(xué)概念。只有這兩個概念全理解了,才能做出正確判斷。

  2、公式法

  運用定律、公式、規(guī)則、法則來解決問題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學(xué)生學(xué)習(xí)數(shù)學(xué)必須學(xué)會和掌握的一種方法。但一定要讓學(xué)生對公式、定律、規(guī)則、法則有一個正確而深刻的理解,并能準(zhǔn)確運用。

  例3:計算59×37+12×59+59

  59×37+12×59+59

  =59×(37+12+1)…………運用乘法分配律

  =59×50…………運用加法計算法則

  =(60-1)×50…………運用數(shù)的組成規(guī)則

  =60×50-1×50…………運用乘法分配律

  =3000-50…………運用乘法計算法則

  =2950…………運用減法計算法則

  3、比較法

  通過對比數(shù)學(xué)條件及問題的異同點,研究產(chǎn)生異同點的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。

  比較法要注意:

  (1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

  (2)找聯(lián)系與區(qū)別,這是比較的實質(zhì)。

  (3)必須在同一種關(guān)系下(同一種標(biāo)準(zhǔn))進(jìn)行比較,這是“比較”的基本條件。

  (4)要抓住主要內(nèi)容進(jìn)行比較,盡量少用“窮舉法”進(jìn)行比較,那樣會使重點不突出。

  (5)因為數(shù)學(xué)的嚴(yán)密性,決定了比較必須要精細(xì),往往一個字,一個符號就決定了比較結(jié)論的對或錯。

  例4:填空:0.75的位是(),這個數(shù)小數(shù)部分的位是();十分位的數(shù)4與十位上的數(shù)4相比,它們的()相同,()不同,前者比后者小了()。

  這道題的意圖就是要對“一個數(shù)的位和小數(shù)部分的位的區(qū)別”,還有“數(shù)位和數(shù)值”的區(qū)別等。

  例5:六年級同學(xué)種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學(xué)生?

  這是兩種方案的比較。相同點是:六年級人數(shù)不變;相異點是:兩種方案中的條件不一樣。

  找聯(lián)系:每人種樹棵數(shù)變化了,種樹的總棵數(shù)也發(fā)生了變化。

  找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數(shù)為90÷2=45(人)。

  4、分類法

  根據(jù)事物的共同點和差異點將事物區(qū)分為不同種類的方法,叫做分類法。分類是以比較為基礎(chǔ)的。依據(jù)事物之間的共同點將它們合為較大的類,又依據(jù)差異點將較大的類再分為較小的類。

  分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復(fù)、不遺漏、不交叉。

  例6:自然數(shù)按約數(shù)的個數(shù)來分,可分成幾類?

  答:可分為三類。(1)只有一個約數(shù)的數(shù),它是一個單位數(shù),只有一個數(shù)1;(2)有兩個約數(shù)的,也叫質(zhì)數(shù),有無數(shù)個;(3)有三個約數(shù)的,也叫合數(shù),也有無數(shù)個。

  5、分析法

  把整體分解為部分,把復(fù)雜的事物分解為各個部分或要素,并對這些部分或要素進(jìn)行研究、推導(dǎo)的一種思維方法叫做分析法。

  依據(jù):總體都是由部分構(gòu)成的。

  思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。

  也就是從求解的問題出發(fā),正確選擇所需要的兩個條件,依次推導(dǎo),一直到問題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進(jìn)行圖解思路。

  例7:玩具廠計劃每天生產(chǎn)200件玩具,已經(jīng)生產(chǎn)了6天,共生產(chǎn)1260件。問平均每天超過計劃多少件?

  思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產(chǎn)多少件和實際每天生產(chǎn)多少件。計劃每天生產(chǎn)多少件已知,實際每天生產(chǎn)多少件,題中沒有告訴,還得求出來。要求實際每天生產(chǎn)多少件玩具,必須知道:實際生產(chǎn)多少天,和實際生產(chǎn)多少件,這兩個條件題中都已知。

  小學(xué)五年級上冊數(shù)學(xué)復(fù)習(xí)計劃

  一、把知識分塊,進(jìn)行分類整理復(fù)習(xí)。

  五年級數(shù)學(xué)一共七個單元,但是重點知識分為三塊,一是計算類:小數(shù)乘除法和解簡易方程;二是圖形面積類:平行四邊形、三角形、梯形以及組合圖形的面積計算;三是問題解決:小數(shù)乘除法的解決問題以及用方程解決問題。把知識分類也能讓學(xué)生明了本冊學(xué)習(xí)的重點內(nèi)容,在練習(xí)時能對癥下藥,即題目到底是考查了哪一個知識點,這樣學(xué)生面對一些陌生的題目時也不會手足無措。

  二、多訓(xùn)練計算。

  本學(xué)期的計算占的比重相當(dāng)大,于是讓每個學(xué)生都掌握計算法則,會計算每種類型的題目。最近一個月我每天會讓學(xué)生做六道計算題。雖然讓學(xué)生練習(xí)了,但是我做的并不好,檢查不到位,只是讓小組長把這個家庭作業(yè)落實,學(xué)生糾錯率不高。在接下來的一段時間我準(zhǔn)備在課代表以及小組長的配合下,每天不定時抽查學(xué)生的家庭作業(yè),并掌握每個學(xué)生的計算能力,程度的在基礎(chǔ)計算上讓學(xué)困生得分。

  三、把每班學(xué)生按不同程度分類。

  優(yōu)等生、中等程度的學(xué)生、學(xué)困生。在復(fù)習(xí)時有所側(cè)重,優(yōu)等生在掌握基礎(chǔ)題的同時,多做一些拔高的習(xí)題;中等生能夠把基礎(chǔ)知識、概念、計算做的非常扎實,拔高題并不做要求;學(xué)困生是個大難題,他們基礎(chǔ)差,學(xué)習(xí)習(xí)慣不好,甚至有厭學(xué)情緒,多讓他們在學(xué)習(xí)中體驗成功樂趣是重點,讓他們有學(xué)習(xí)的欲望,基本的小數(shù)乘除法、簡單的方程,一定要重復(fù)訓(xùn)練,對他們進(jìn)行模式訓(xùn)練,記憶為主。

  “一幫一計劃“也有所改動,原來優(yōu)等生帶學(xué)困生,但是實施過程中發(fā)現(xiàn),有些學(xué)生在給學(xué)困生講題時,極其不耐煩,總是聽到有人抱怨認(rèn)為很簡單的題目也不會做,影響很不好,于是我大膽決定,讓優(yōu)等生幫助中等生,中等生帶學(xué)困生,這樣差距小一些,實施起來也比較容易些,而且發(fā)揮中等生的作用,一方面避免了有些中等生聽不懂裝懂,理解知識不透徹的壞習(xí)慣,另一方面通過幫助別人他也能體驗成功,對自身提高很有幫助。

  最后,復(fù)習(xí)一定不要只顧做試卷而脫離課本,且不說期末考試的題目都是書上例題的變形,更重要的是課本上的習(xí)題都是基于課程標(biāo)準(zhǔn)的,不會超綱,有代表性,對于學(xué)生理解定義、概念有很大的幫助作用。

  總之,期末復(fù)習(xí)一定要有計劃性,根據(jù)本班學(xué)生制定一個具有時效性的計劃,能對癥下藥,這樣的復(fù)習(xí)應(yīng)該會有比較顯著的效果!

五年級數(shù)學(xué)學(xué)習(xí)方法3

  1、合理安排學(xué)習(xí)計劃

  根據(jù)小升初的形勢,六年級寒假就應(yīng)該是綜合復(fù)習(xí)的時候。這樣從三年級暑假開始算起,到六年級寒假只有兩年半的時間。我們建議學(xué)生在兩年半時間里一定要扎實學(xué)習(xí)奧數(shù)知識。整個學(xué)習(xí)過程要按梯度進(jìn)行,切莫一味做難題,根據(jù)學(xué)生學(xué)習(xí)情況,一步一個臺階。兼顧競賽、仁華、重點學(xué)校培訓(xùn)班,早做規(guī)劃,早做準(zhǔn)備。

  2、鞏固基礎(chǔ)知識

  由于還有一年就要轉(zhuǎn)入小升初的復(fù)習(xí)階段,所以五年級之前的奧數(shù)基礎(chǔ)內(nèi)容一定要掌握好。之前的奧數(shù)內(nèi)容以應(yīng)用題、計算為主。對于基本應(yīng)用題建議利用方程的方法求解,可以達(dá)到事半功倍的效果。計算問題需要對基本的簡算方法了如指掌,因為這些方法也是以后分?jǐn)?shù)計算和綜合混合運算的基礎(chǔ)。

  3、多做專題練習(xí)

  五年級是接觸專題最多的時期,小學(xué)階段的重要知識點和難點也都集中在這個階段。其中數(shù)論、行程問題、排列組合是重中之重,如果這幾個專題掌握的不好,想上一個理想的中學(xué)是非常困難的。做專題練習(xí)也不能光看做了多少道題,要保證練一道會一道,真正的理解并掌--

  握所做的題目,日積月累,幾個重點難點也就不再是老大難問題了。

五年級數(shù)學(xué)學(xué)習(xí)方法4

  天津奧數(shù)網(wǎng) 五年級是接觸專題最多的時期,小學(xué)階段的重要知識點和難點也都集中在這個階段,專題的練習(xí)有助于知識點和難點的鞏固和加強(qiáng);真題的練習(xí)可以為你積累豐富的實戰(zhàn)經(jīng)驗。

  五年級的孩子可以嘗試參加考試和比賽,獲獎對于孩子來說是一個莫大的激勵,能夠促使他們在奧數(shù)學(xué)習(xí)上興趣倍增,為以后取得更多的證書以及,奠定堅實的基礎(chǔ)。

  爬坡攻堅階段

  五年級是一個奧數(shù)學(xué)習(xí)的爬坡階段。如果在這個階段對奧數(shù)進(jìn)行系統(tǒng)學(xué)習(xí),哪怕之前都沒怎么接觸奧數(shù)的孩子,其數(shù)學(xué)成績可能有很大幅度的提高。下面我就來說說剛剛接觸奧數(shù)的同學(xué)該怎么學(xué)。

  由簡單入手

  五年級是有余力進(jìn)行額外學(xué)習(xí)的`,但是如果之前沒接觸過奧數(shù),那么還是從簡單入手比較好。一則讓孩子通過簡單問題逐漸熟悉奧數(shù),一則培養(yǎng)孩子的奧數(shù)興趣,避免接觸難題打消學(xué)習(xí)積極性。

  要迅速過渡

  五年級的學(xué)生是屬于小學(xué)的高年級階段,雖然是最初接觸奧數(shù),也不必按部就班的學(xué)。應(yīng)該輔助一定的練習(xí)對幾種類型題和專題進(jìn)行深入分析了理解,掌握專題的解題思路,做到以點概面,迅速過渡到高年級奧數(shù)的學(xué)習(xí)。

  制定學(xué)習(xí)計劃

  所謂系統(tǒng)學(xué)習(xí),決不是拿過哪塊來就學(xué)習(xí)哪塊,必須要有一個合理的學(xué)習(xí)計劃。通過一段時間簡單的學(xué)習(xí),家長應(yīng)注意了解孩子的學(xué)習(xí)進(jìn)度,幫助孩子制定一份大體的學(xué)習(xí)計劃。然后嚴(yán)格按照計劃進(jìn)行系統(tǒng)學(xué)習(xí)。

  重視基礎(chǔ)

  奧數(shù)是的競爭資本之一。其中大部分重點中學(xué)的奧數(shù)測試比較重視奧數(shù)的基礎(chǔ)。而杯賽也基本都是在奧數(shù)基礎(chǔ)上進(jìn)行的延伸。所以不論是從的角度還是從提高自身能力的角度考慮,五年級學(xué)生都應(yīng)該重視奧數(shù)基礎(chǔ)部分。

  量變到質(zhì)變

  學(xué)習(xí)到一定階段之后,也要注重孩子思維方法的培養(yǎng)了,不能總是停留在解題這個階段。要綜合各個題型進(jìn)行分析學(xué)習(xí),通過知識的了解上升到方法的拓展,再到掌握方法舉一反三,實現(xiàn)一個質(zhì)的飛躍!

五年級數(shù)學(xué)學(xué)習(xí)方法5

  主動預(yù)習(xí)

  主動預(yù)習(xí),不僅能提前了解上課內(nèi)容,在聽課的時候有的放矢,還能鍛煉孩子的自學(xué)能力。

  具體做法:認(rèn)真閱讀教材,在老師的引導(dǎo)下學(xué)會看書,帶著老師精心設(shè)計的思考題去預(yù)習(xí)。

  如自學(xué)例題時,要弄清例題講的什么內(nèi)容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。

  抓住這些重要問題,動腦思考,步步深入,學(xué)會運用已有的知識去獨立探究新的知識。

  掌握思考問題的方法

  “把一個長方體的高去掉2厘米后成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?”

  一些學(xué)生對公式、性質(zhì)、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應(yīng)用所學(xué)的知識去解答問題,比如上題。

  同學(xué)們對求體積的公式雖記得很熟,但由于該題涉及知識面廣,許多同學(xué)理不出解題思路,這需要學(xué)生在老師的引導(dǎo)下逐漸掌握解題時的思考方法。

  這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;從圖形變化關(guān)系講:長方形→正方形;

  從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積,

  經(jīng)老師啟發(fā),學(xué)生分析后,學(xué)生根據(jù)其思路(可畫出圖形)進(jìn)行解答。

  有的學(xué)生很快解答出來:設(shè)原長方體的底面長為X,則2X×4=48得:X=6(即正方體的棱長),這樣得出正方體的體積為:6×6×6=216(立方厘米)。

  掌握思考問題的方法

  解答數(shù)學(xué)問題總的講是有規(guī)律可循的。在解題時,要注意總結(jié)解題規(guī)律,在解決每一道練習(xí)題后,要注意回顧以下問題:

  (1)本題最重要的特點是什么?

  (2)解本題用了哪些基本知識與基本圖形?

  (3)本題你是怎樣觀察、聯(lián)想、變換來實現(xiàn)轉(zhuǎn)化的?

  (4)解本題用了哪些數(shù)學(xué)思想、方法?

  (5)解本題最關(guān)鍵的一步在那里?

  (6)你做過與本題類似的題目嗎?在解法、思路上有什么異同?

  (7)本題你能發(fā)現(xiàn)幾種解法?其中哪一種?那種解法是特殊技巧?

  你能總結(jié)在什么情況下采用嗎?把這一連串的問題貫穿于解題各環(huán)節(jié)中,逐步完善,持之以恒,學(xué)生解題的心理穩(wěn)定性和應(yīng)變能力就可以不斷提高,思維能力就會得到鍛煉和發(fā)展。

【五年級數(shù)學(xué)學(xué)習(xí)方法5篇】相關(guān)文章:

數(shù)學(xué)學(xué)習(xí)方法06-25

奧數(shù)學(xué)習(xí)方法11-08

數(shù)學(xué)高效學(xué)習(xí)方法12-30

小學(xué)五年級數(shù)學(xué)學(xué)習(xí)方法整理12-29

高考數(shù)學(xué)學(xué)習(xí)方法06-25

關(guān)于數(shù)學(xué)學(xué)習(xí)方法06-24

學(xué)習(xí)數(shù)學(xué)的學(xué)習(xí)方法01-04

數(shù)學(xué)高效學(xué)習(xí)方法歸納12-26

初中數(shù)學(xué)實用學(xué)習(xí)方法10-14