高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié)
總結(jié)是事后對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可以幫助我們總結(jié)以往思想,發(fā)揚(yáng)成績,不妨坐下來好好寫寫總結(jié)吧。我們該怎么寫總結(jié)呢?以下是小編幫大家整理的高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。
高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié) 篇1
一、隨機(jī)事件
主要掌握好(三四五)
(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。
(2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。
(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨(dú)立。
二、概率定義
(1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計(jì)算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
三、概率性質(zhì)與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個問題可以看成n重貝努力試驗(yàn)(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時,要考慮二項(xiàng)概率公式.
高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié) 篇2
1.不等式證明的依據(jù)
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
、赼2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.
高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié) 篇3
圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。
2、圓的`方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時,方程表示圓,此時圓心為,半徑為
當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié) 篇4
簡單隨機(jī)抽樣
1.總體和樣本
在統(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體.
把每個研究對象叫做個體.
把總體中個體的總數(shù)叫做總體容量.
為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:
研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
2.簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨
機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
3.簡單隨機(jī)抽樣常用的方法:
抽簽法;隨機(jī)數(shù)表法;計(jì)算機(jī)模擬法;使用統(tǒng)計(jì)軟件直接抽取。
在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
4.抽簽法:
(1)給調(diào)查對象群體中的每一個對象編號;
(2)準(zhǔn)備抽簽的工具,實(shí)施抽簽
(3)對樣本中的每一個個體進(jìn)行測量或調(diào)查
例:請調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動情況。
5.隨機(jī)數(shù)表法:
例:利用隨機(jī)數(shù)表在所在的班級中抽取10位同學(xué)參加某項(xiàng)活動。
系統(tǒng)抽樣
1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):
把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機(jī)抽樣的辦法抽取。
K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個體的排列對于研究的變量來說,應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布?梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點(diǎn)。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘Τ闃涌虻囊筝^低,實(shí)施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。
高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié) 篇5
第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。
第二章:數(shù)列。考試必考。等差等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和及一些性質(zhì)。這一章屬于學(xué)起來很容易,但做題卻不會做的類型?荚囶}中,一般都是要求通項(xiàng)公式、前n項(xiàng)和,所以拿到題目之后要帶有目的的去推導(dǎo)。
第三章:不等式。這一章一般用線性規(guī)劃的形式來考察。這種題一般是和實(shí)際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖。然后再根據(jù)實(shí)際問題的限制要求求最值。
選修中的簡單邏輯用語、圓錐曲線和導(dǎo)數(shù):邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的區(qū)別,考試一般會用選擇題考這一知識點(diǎn),難度不大;圓錐曲線一般作為考試的壓軸題出現(xiàn)。而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的表達(dá)式難度就不大。后面兩到三問難打一般會很大,而且較費(fèi)時間。所以不建議做。
這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導(dǎo)數(shù),導(dǎo)數(shù)公式、運(yùn)算法則、用導(dǎo)數(shù)求極值和最值的方法。一般會考察用導(dǎo)數(shù)求最值,會用導(dǎo)數(shù)公式就難度不大。
高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié) 篇6
考點(diǎn)一:求導(dǎo)公式。
例1.f(x)是f(x)13x2x1的導(dǎo)函數(shù),則f(1)的值是3
考點(diǎn)二:導(dǎo)數(shù)的幾何意義。
例2.已知函數(shù)yf(x)的圖象在點(diǎn)M(1,f(1))處的切線方程是y
1x2,則f(1)f(1)2
,3)處的切線方程是例3.曲線yx32x24x2在點(diǎn)(1
點(diǎn)評:以上兩小題均是對導(dǎo)數(shù)的幾何意義的考查。
考點(diǎn)三:導(dǎo)數(shù)的幾何意義的應(yīng)用。
例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點(diǎn)x0,y0x00,求直線l的方程及切點(diǎn)坐標(biāo)。
點(diǎn)評:本小題考查導(dǎo)數(shù)幾何意義的應(yīng)用。解決此類問題時應(yīng)注意“切點(diǎn)既在曲線上又在切線上”這個條件的應(yīng)用。函數(shù)在某點(diǎn)可導(dǎo)是相應(yīng)曲線上過該點(diǎn)存在切線的充分條件,而不是必要條件。
考點(diǎn)四:函數(shù)的單調(diào)性。
例5.已知fxax3_1在R上是減函數(shù),求a的取值范圍。32
點(diǎn)評:本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用。對于高次函數(shù)單調(diào)性問題,要有求導(dǎo)意識。
考點(diǎn)五:函數(shù)的極值。
例6.設(shè)函數(shù)f(x)2x33ax23bx8c在x1及x2時取得極值。
(1)求a、b的值;
(2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。
點(diǎn)評:本題考查利用導(dǎo)數(shù)求函數(shù)的極值。求可導(dǎo)函數(shù)fx的極值步驟:
①求導(dǎo)數(shù)f'x;
、谇骹'x0的根;③將f'x0的根在數(shù)軸上標(biāo)出,得出單調(diào)區(qū)間,由f'x在各區(qū)間上取值的正負(fù)可確定并求出函數(shù)fx的極值。
【高二會考數(shù)學(xué)必考知識點(diǎn)總結(jié)】相關(guān)文章:
高二會考素材作文01-06
高二會考英文作文08-26
高二語文會考作文07-30
高二語文會考的作文01-06
重慶高二會考語文作文08-23
高二會考語文往年作文08-04
高二語文模擬會考作文07-16
小學(xué)六年級上冊數(shù)學(xué)必考知識點(diǎn)總結(jié)02-14
歷年高二會考語文作文08-07