《因數(shù)和倍數(shù)》的個人教學(xué)反思(通用11篇)
反思,回頭、反過來思考的意思。近代西方哲學(xué)中廣泛使用的概念之一。又譯為反省、反映。原意指光的反射,作為哲學(xué)概念是借用光反射的間接性意義,指不同于直接認(rèn)識的間接認(rèn)識。下面是小編整理的《因數(shù)和倍數(shù)》的個人教學(xué)反思,歡迎大家分享。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇1
1、立足于學(xué)生的思維特點(diǎn)。中年級學(xué)生的思維特點(diǎn)是由具體形象思維到抽象概括思維過渡的重要年齡段。因此,我放棄了用12個小正方形擺長方形的動手實(shí)踐活動,而選用了看12個小正方形在腦中想象擺法。在留有短暫時(shí)間讓學(xué)生思考,腦中逐漸有了長方形的圖象紛紛舉手之后,我又不急于提問,而是追問:你能不能用一道乘法算式來表示?當(dāng)學(xué)生說出乘法算式時(shí),也不急于就此,還讓其余同學(xué)想想他是如何擺的,做到全員參與。這種由形象到抽象,再由抽象到形象的過程,是符合學(xué)生的思維特點(diǎn)的,對于發(fā)展學(xué)生的抽象概括思維是有利的。
2、層層輔墊,為學(xué)生自主探索打下了堅(jiān)實(shí)的基礎(chǔ)。探索36的所有因數(shù)是本節(jié)課的重難點(diǎn),我在這之前做了層層的輔墊。
(1)3個乘法算式的呈現(xiàn)我作了調(diào)整:1×12=12,2×6=12,3×4=12。潛移默化的影響學(xué)生的有序思考。
。2)在學(xué)生根據(jù)其余兩算式說因數(shù)和倍數(shù)的關(guān)系之后,我對12的所有因數(shù)進(jìn)行了小結(jié):12的因數(shù)有1,12,2,6,3,4。讓學(xué)生感受到一道乘法算式中蘊(yùn)藏著兩個因數(shù)。
。3)36這個數(shù)比較大,學(xué)生找起36的所有因數(shù)時(shí)有點(diǎn)困難,我設(shè)計(jì)了從3,5,18,20,36五個數(shù)中選擇兩個數(shù)來說說誰是誰的因數(shù),誰是誰的倍數(shù)?這一教學(xué)環(huán)節(jié),減輕了學(xué)生的困難,同時(shí)也能檢驗(yàn)學(xué)生對因數(shù)和倍數(shù)概念是否已正確認(rèn)識。當(dāng)學(xué)生會說3是36的因數(shù),36是3的倍數(shù)時(shí),說明他們腦中已經(jīng)有了判斷的依據(jù):3×12=36。
(4)在學(xué)生獨(dú)立探索前,我又提醒學(xué)生,在找36的所有因數(shù)時(shí),如果遇到困難,不要忘了我們已經(jīng)尋找過12這個數(shù)的所有因數(shù),可以作為參考。
這四個方面的準(zhǔn)備,學(xué)生的獨(dú)立思考才有了思維的依托,遇到困難,他們就會自我想辦法,自我解決問題,這樣的探索就會有效,不會浮于表面,流于形勢。
3、有層次的呈現(xiàn)作業(yè),給學(xué)生以正面引導(dǎo)為主。在概括總結(jié)找36所有因數(shù)的方法時(shí),我找了三份的作業(yè),第一份是有序,成對思考的1,36,2,18,3,12,4,9,6。在交流中讓學(xué)生明確只有有序的,成對的思考才會做到既不遺漏,又能快捷方便,第二份作業(yè)是所有的因數(shù)按順序排列的1,2,3,4,6,9,12,18,36。結(jié)果作業(yè)中漏了一個4,這是個時(shí)機(jī),在表揚(yáng)了這個學(xué)生能按順序的排列,做到美觀這個優(yōu)點(diǎn)之后,提出問題:美中不足的是什么?學(xué)生:一個一個找麻煩,還容易丟。我接著追問;我們能給他提些建議嗎?第三份是無序的有遺漏的,也讓學(xué)生給他提建議,讓他也能做到一個不漏。這三份作業(yè)對比下來,先教給學(xué)生正確的思考方法,再以正確的方法判斷其他同學(xué)思考不當(dāng)?shù)牡胤,并提出建議。尋找一個數(shù)所有因數(shù)的方法也能深刻地印在學(xué)生腦里。
4、大膽放手,產(chǎn)生矛盾沖突,發(fā)現(xiàn)問題,想辦法解決問題。在找3的倍數(shù)時(shí),我想學(xué)生有了前面的學(xué)習(xí)基礎(chǔ),我直接拋出問題:你能像上面這樣有序的從小到大的找出3的倍數(shù)嗎?學(xué)生在找中發(fā)現(xiàn):3的倍數(shù)有很多,寫不完。我追問;那怎么辦,有辦法嗎?通過一會兒的沉默思考后,紛紛有學(xué)生提出省略號。
5、趣味練習(xí),聯(lián)想,探索。練習(xí)中我設(shè)計(jì)了兩道題,一是猜我的電話號碼,激發(fā)起學(xué)生的興趣,二是探索計(jì)數(shù)器的奧秘,多位老師問起我的設(shè)計(jì)意圖,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉,牛頓看到蘋果落地,通過聯(lián)想,最終發(fā)現(xiàn)了萬有引力定律,瓦特看到茶壺里冒出蒸氣,通過聯(lián)想,最終發(fā)明了蒸氣機(jī)…這與一個人的認(rèn)真觀察,善于聯(lián)想,勇于探索是分不開的。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇2
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。本節(jié)課又是這一單元的的教學(xué)重點(diǎn)。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時(shí)進(jìn)行。第一課時(shí)只讓學(xué)生認(rèn)識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法,效果不錯。
一、設(shè)計(jì)情境,引起思考。
改變教材的情境圖,用學(xué)生有興趣的情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎么擺。引起學(xué)生思考,學(xué)生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的意義。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法,使探索有方向。
如何找一個數(shù)的因數(shù)是這節(jié)課的重點(diǎn),首先放手讓學(xué)生找出24的因數(shù),由于個人經(jīng)驗(yàn)和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點(diǎn)。
根據(jù)學(xué)生的學(xué)習(xí)特點(diǎn),靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能達(dá)到教學(xué)的目的。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇3
《因數(shù)和倍數(shù)》這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
同時(shí)這部分內(nèi)容是比較重要的,為五年級的最小公倍數(shù)和最大公因數(shù)的學(xué)習(xí)奠定了基礎(chǔ)。
本節(jié)可充分發(fā)揮學(xué)生的主體性,讓每個學(xué)生都能參加到數(shù)學(xué)知識的學(xué)習(xí)中去,調(diào)動學(xué)生學(xué)習(xí)的興趣和主動性。本節(jié)課主要從以下幾個方面進(jìn)行教學(xué)的。
一、動手操作,探究方法.
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,變抽象為具體。
二、倍數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。
利用乘法算式,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:
。1)3的倍數(shù)應(yīng)該是3與一個數(shù)相乘的積。
。2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學(xué)生找出2和5的倍數(shù)。這樣即鞏固對例題的理解,同時(shí)也為接下來的討論倍數(shù)的特點(diǎn)奠定基礎(chǔ)。
最后讓學(xué)生通過討論發(fā)現(xiàn):
。1)一個數(shù)的倍數(shù)個數(shù)是無限的(要用省略號)。
。2)一個數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。
三、因數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。
找一個數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn)。找一個數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法算式尋找一個數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學(xué)生進(jìn)一步理解。強(qiáng)調(diào)有序(從小到大),不重復(fù)、不遺漏。隨后讓學(xué)生找出15、16的因數(shù)有那些。最后通過比較討論讓學(xué)生得出因數(shù)的特點(diǎn):
(1)一個數(shù)因數(shù)的個數(shù)是有限的。
。2)一個數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學(xué)生明白所有的數(shù)都有因數(shù)1).
四、練習(xí)反饋情況
從學(xué)生的作業(yè)情況來看,大部分學(xué)生掌握的還是不錯的,有部分基礎(chǔ)差的學(xué)生,有如下幾點(diǎn)錯誤出現(xiàn):
1、倍數(shù)沒有加省略號。
2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號,因數(shù)也加省略號。
3、因數(shù)有遺漏的情況。從以上情況來看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補(bǔ)差工作;同時(shí)要注意教學(xué)中細(xì)節(jié)的處理。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇4
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,a能整除b。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實(shí)物圖引出一個乘法算式,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣編排對于學(xué)生來說更容易理解和掌握。但是若老師對整除的概念不做講解的話,今后的知識學(xué)習(xí)可能會造成一些缺陷,因此我在這課時(shí)中,結(jié)合老教材的知識給學(xué)生進(jìn)行了滲透,學(xué)生學(xué)習(xí)起來掌握的很好。利用除法、乘法都能很快的找到一個數(shù)的因數(shù)與倍數(shù)。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用生活與數(shù)學(xué)之間的聯(lián)系,來幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。比如,我上課前利用班級中學(xué)生的父子關(guān)系和朋友關(guān)系來說明“朋友、父子”詞語的含義,它是指兩個人之間的一種關(guān)系,只能造句為“某人是某人的朋友”。這樣的話局把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)較自然貼切,讓學(xué)生感受到數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)和因數(shù)之間的相互依存關(guān)系。
教育家第斯多惠曾說過:“一個壞的教師奉送真理,一個好的教師則教人發(fā)現(xiàn)真理!币虼私虒W(xué)中,教師要重視學(xué)生的主體地位,給學(xué)生提供充分思考和自我表現(xiàn)的空間,引導(dǎo)他們利用已有的知識去探索發(fā)現(xiàn)新的知識。如何找一個數(shù)的因數(shù)是這節(jié)課的重點(diǎn)也是難點(diǎn)。根據(jù)學(xué)生的實(shí)際情況,我進(jìn)行了重組教材,先讓學(xué)生根據(jù)乘法(除法)算式“一對對”地找出18、15、24的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。在探究倍數(shù)時(shí),我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實(shí)效性。學(xué)生在自己找因數(shù)和倍數(shù)練習(xí)后又總結(jié)了最大的因數(shù)和最小的倍數(shù)都是它本身。我想這應(yīng)該比教師的傳授要好百倍。
一節(jié)課下來,學(xué)生學(xué)習(xí)起來十分輕松,教學(xué)設(shè)計(jì)盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,學(xué)生樂學(xué),思路清晰。以上是自己教學(xué)后的一點(diǎn)感悟。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇5
因數(shù)和倍數(shù)是蘇教版五年級下冊第三單元的內(nèi)容。這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而教材是通過用12個小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。我在教學(xué)時(shí)做了一些下的改動,例題從12個相同的正方形拼長方形開始教學(xué),學(xué)生對這個活動已經(jīng)很熟悉,幾乎人人都知道有不同的拼法,都能順利地拼出三種不同的長方形。因此,我要求不用12個正方形拼,而是在腦子里“想像拼”,不能想象的就在本子上“畫拼”,“拼”好后,我也要求只用一個乘法算式表示你的拼法,這樣不僅節(jié)省了不少時(shí)間,更主要的是我覺得這樣的操作活動,雖然看起來不熱鬧,但學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的學(xué)習(xí)中去了。
能不重復(fù)、不遺漏,有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快可找出12的因數(shù),接著再提問:你是怎么看出來的?根據(jù)一個乘法算式可以得到12的幾個因數(shù)?在學(xué)生回答之后,我接著請同學(xué)們用剛才的方法自己找一找36的因數(shù)有哪些。在匯報(bào)時(shí),重點(diǎn)解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。雖然這樣的教學(xué)設(shè)計(jì),看起來學(xué)生的主動探索過程好像削弱了好多,但根據(jù)試上這課時(shí)的情況看,這樣的設(shè)計(jì)比直接讓學(xué)生自主探索36的因數(shù)有哪些學(xué)習(xí)效果要好一些。直接探索36的因數(shù)有哪些,放得太開,學(xué)生無從下手,暴露出了許多問題,有的不知道該如何找因數(shù),有的沒有找全,而學(xué)生在教師的引導(dǎo)下,發(fā)現(xiàn)了找一個數(shù)因數(shù)的方法后接著去找36的因數(shù),那么他所關(guān)注的是如何有序地找出一個數(shù)的因數(shù),這樣的思考更有針對性,目標(biāo)也更明確,對知識的掌握也能做得更好。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇6
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念.
“數(shù)學(xué)是科學(xué)中的皇后,而數(shù)論又是數(shù)學(xué)中的皇冠”,因數(shù)和倍數(shù)這部分知識屬于數(shù)論中的分支,比較抽象。我覺得這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。因此在教學(xué)中我重視學(xué)生主體作用的發(fā)揮,注重為學(xué)生創(chuàng)造自主探究的時(shí)間與空間。采用質(zhì)疑——探究——釋疑——鞏固——總結(jié)的課堂教學(xué)模式收到了較好的教學(xué)效果。對于這節(jié)課的教學(xué),我特別注意從以下幾個方面來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。
一、對比中質(zhì)疑,激發(fā)學(xué)習(xí)興趣
學(xué)源于思,起于疑。課的開始我從“因數(shù)”這一概念入手,問學(xué)生我們在什么時(shí)候認(rèn)識過“因數(shù)”,學(xué)生回憶起在乘法的各部分名稱中認(rèn)識了“因數(shù)”!凹热晃覀円呀(jīng)認(rèn)識了因數(shù),教材為什么又讓我們認(rèn)識它呢,我們這節(jié)課認(rèn)識的因數(shù)和我們前面認(rèn)識的因數(shù)有什么不同呢?”我的問題激發(fā)了學(xué)生的學(xué)習(xí)興趣。于是我因勢利導(dǎo)讓學(xué)生打開書自主學(xué)習(xí),看看有什么發(fā)現(xiàn)。在這一環(huán)節(jié)中我雖然沒有讓學(xué)生動手操作,但我很好的利用了教材這一載體,放手讓學(xué)生自主學(xué)習(xí),很好的培養(yǎng)了學(xué)生的自學(xué)能力。
二、探究中釋疑,培養(yǎng)學(xué)習(xí)能力
教材雖然不是從過去的整除定義出發(fā),而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上仍是以“整除”為基礎(chǔ)。所以我上課時(shí)特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一個反例加以說明.0.2×60=12,我們能說0.2和60是12的因數(shù)嗎,一石激起千層浪,學(xué)生面面相覷,我趁熱打鐵,那就讓我們再到書中去尋找答案吧。學(xué)生再次讀書發(fā)現(xiàn)原來為了研究方便,我們所說的因數(shù)和倍數(shù)指的是整數(shù)一般不包括0。二次讀書讓學(xué)生對因數(shù)和倍數(shù)的研究范圍有了明確。很好的幫助學(xué)生區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。我在課堂上反復(fù)強(qiáng)調(diào),幫助孩子們認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,不會模糊自主探究,合作學(xué)習(xí)。
三、實(shí)踐中發(fā)現(xiàn),優(yōu)化學(xué)習(xí)方法。
在學(xué)生認(rèn)識了因數(shù)與倍數(shù)的概念之后,我又放手讓每個同學(xué)找出36的所有因數(shù),學(xué)生圍繞我提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗(yàn)和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既為學(xué)生留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。通過觀察12,36,30,18的因數(shù)和2,4,5,7的倍數(shù),讓學(xué)生自己說一說發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。誘發(fā)學(xué)生探索與學(xué)習(xí)的欲望,從而激活學(xué)生的思維。讓學(xué)生在許多的不同中通過合作交流找到相同。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇7
《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊的知識點(diǎn),主要教學(xué)因數(shù)和倍數(shù)的認(rèn)識,以及找一個數(shù)的因數(shù)和倍數(shù)的方法!兑驍(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。
。1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。
。2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過學(xué)習(xí)了解到以下信息:鑒于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式ab=c直接引出因數(shù)和倍數(shù)的概念。
數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的'感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。
一、教學(xué)過程的反思
今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的因數(shù)和倍數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識因數(shù)和倍數(shù)的關(guān)系。層層推進(jìn),引入教學(xué),留下懸念,充分調(diào)動了學(xué)生的積極性和求知欲。在認(rèn)識“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大。
在教學(xué)時(shí),先讓學(xué)生“用12個同樣大小的正方形,擺成一個長方形,并用乘法算式把自己的擺法表示出來”,讓學(xué)生動手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學(xué)生小組交流、操作后,以其中的一道乘法算式為例,引出因數(shù)和倍數(shù)的概念。這樣的安排,體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗(yàn)和動手操作能力,很好的調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性。一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。
對于找一個數(shù)的倍數(shù)比找一個數(shù)的因數(shù)的方法要容易些,所以我先教學(xué)如何找一個數(shù)的倍數(shù),在學(xué)生學(xué)會了找一個數(shù)的倍數(shù)的方法基礎(chǔ)上,再教學(xué)如何找一個數(shù)的因數(shù),這樣教學(xué)便于學(xué)生自己探索并總結(jié)歸納出找一個數(shù)的因數(shù)的方法,體現(xiàn)了讓學(xué)生自主學(xué)習(xí)。
在處理本節(jié)課的難點(diǎn)“找36的因數(shù)”時(shí),我原來是放手讓學(xué)生自己去找的。結(jié)果試時(shí)很多學(xué)生沒有頭緒,無從下手。時(shí)間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個的因數(shù)是學(xué)生以前從未遇到過的問題,自然不知道如何解決。再加上找一個數(shù)的因數(shù)比找一個數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學(xué)生當(dāng)然不知所措了。后來,在處理找36的因數(shù)時(shí),如何做到既不重復(fù)又不遺漏地找36的因數(shù)?我認(rèn)為要對學(xué)生扶放得當(dāng),要有適當(dāng)?shù)胤,學(xué)生才能探索出方法。于是,我讓學(xué)生回憶剛才的幾道乘法算式,然后把找一個數(shù)的倍數(shù)的方法有效的遷移到找一個數(shù)的因數(shù)中。果然學(xué)生知道了該如何思考后,效果好了很多。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
二、教法的運(yùn)用實(shí)踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對與本知識點(diǎn)的概念是人為規(guī)定的一個范圍,因此,對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求,而且給學(xué)生一個直觀的感受。“因數(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分?jǐn)?shù)無關(guān),與負(fù)數(shù)無關(guān)(雖沒學(xué),但有小部分學(xué)生了解)。同時(shí)強(qiáng)調(diào)——非0——因?yàn)?乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗(yàn)就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法,讓學(xué)生清晰明確。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫出乘法算式3×4=12,說明在這個算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。
2、在進(jìn)行延續(xù)性教學(xué)中,可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù),在板書要講究一個格式與對稱性,這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比,再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時(shí)應(yīng)該要注意的細(xì)節(jié),這對于學(xué)生良好的學(xué)習(xí)慣的培養(yǎng)也是很重要的
新課標(biāo)實(shí)施的過程是一個不斷學(xué)習(xí)、探究、研究和提高的過程,在這個過程中,需要我們認(rèn)真反思、獨(dú)立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對話,在實(shí)踐和探索中不斷前進(jìn)。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇8
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點(diǎn):
一、操作實(shí)踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
二、自主探究,意義建構(gòu),找倍數(shù)和因數(shù)
整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。
新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。
找一個數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流在讓學(xué)生尋找,這樣就用了很多時(shí)間,最后就沒有很多的時(shí)間去練習(xí),我認(rèn)為雖然時(shí)間用的過多,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時(shí)老師再給予有效的指導(dǎo)和總結(jié)。
三、變式拓展,實(shí)踐應(yīng)用---—促進(jìn)智能內(nèi)化
練習(xí)的設(shè)計(jì)不僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時(shí)讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,是比較抽象的,本冊教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。本節(jié)課是這一單元的的教學(xué)重點(diǎn)。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時(shí)進(jìn)行。第一課時(shí)只讓學(xué)生認(rèn)識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法。
一、設(shè)計(jì)情境,引起思考。
創(chuàng)造性的使用教材,引起學(xué)生思考,板書15÷0.3=50,1.5÷3=0.5,1.5÷0.3=5,15÷3=5引出除盡和整除的含義,從而明確了因數(shù)倍數(shù)的研究范圍,進(jìn)而理解決因數(shù)與倍數(shù)的意義。對于因數(shù)與倍數(shù)的依存關(guān)系,學(xué)生在理解時(shí)比較抽象,我就放到具體算式里,算式由學(xué)生舉例,反復(fù)去說誰是誰的倍數(shù),誰是誰的因數(shù),在課堂中反復(fù)強(qiáng)調(diào),幫助學(xué)生認(rèn)真理解辨析,從而理解了因數(shù)與倍數(shù)之間的相互依存關(guān)系。學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法。
如何找一個數(shù)的因數(shù)是這節(jié)課的又一個重點(diǎn),首先讓學(xué)生找出24的因數(shù),由于個人經(jīng)驗(yàn)和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點(diǎn)。
根據(jù)學(xué)生的學(xué)習(xí)特點(diǎn),靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能達(dá)到教學(xué)的目的。在探索找一個數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復(fù),充分運(yùn)用多媒體,通過演示18、24、77、1的因數(shù),讓學(xué)生直觀地看到了“順序”,學(xué)會有序思考,體會到了求一個數(shù)的因數(shù)的方法。與此同時(shí)學(xué)生直觀觀察發(fā)現(xiàn)一個數(shù)的因數(shù)都有1和它本身,最小的因數(shù)是1,最大的因數(shù)是它本身,不是數(shù)字越大因數(shù)個數(shù)就越多,一個數(shù)的因數(shù)的個數(shù)是有限的等等重要相關(guān)知識,這些發(fā)現(xiàn)與課堂練習(xí)息息相關(guān),形成本節(jié)課完整的知識體系,還為后面的學(xué)習(xí)做好鋪墊。課堂練習(xí)完成的很好,起到學(xué)以致用的學(xué)習(xí)效果。培養(yǎng)學(xué)生的概括能力、歸納能力,抽象能力得以進(jìn)一步發(fā)展。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇9
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。
數(shù)學(xué)課程標(biāo)準(zhǔn)“以人為本”的理念決定著數(shù)學(xué)教學(xué)目標(biāo)的指向:適應(yīng)并促進(jìn)學(xué)生的發(fā)展。根據(jù)本節(jié)課知識的特點(diǎn)和學(xué)生的認(rèn)知規(guī)律,我采用了角色轉(zhuǎn)換、數(shù)形結(jié)合、合作學(xué)習(xí)等發(fā)展性教學(xué)手段進(jìn)行教學(xué),在教學(xué)中我注重體現(xiàn)以學(xué)生為主體的新理念,努力為學(xué)生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進(jìn)行教學(xué):
(1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,滲透相互依存的關(guān)系。通過生活中人與人之間的關(guān)系,遷移到數(shù)學(xué)中的數(shù)和數(shù)之間的關(guān)系,這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)了對數(shù)學(xué)的興趣,又潛移默化地幫助學(xué)生理解了因數(shù)倍數(shù)之間的相互依存關(guān)系。在教學(xué)中,也達(dá)到了預(yù)期的效果,學(xué)生對因數(shù)和倍數(shù)相互依存的關(guān)系理解的比較深刻。
(2)角色轉(zhuǎn)換,讓學(xué)生親身體驗(yàn)數(shù)和數(shù)之間的聯(lián)系。
因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關(guān)系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學(xué)手段,每人一張數(shù)字卡片,學(xué)生和老師都變成了數(shù)學(xué)王國里的一名成員。當(dāng)學(xué)生想回答問題時(shí)都會高高地舉起自己的號碼,整節(jié)課學(xué)生都沉浸在自己的角色體驗(yàn)中,學(xué)生都把自己當(dāng)成了一個數(shù)。通過對自己一個數(shù)的認(rèn)識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關(guān)系,既充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,又十分有效地突破了教學(xué)難點(diǎn)。
(3)數(shù)形結(jié)合,讓學(xué)生帶著已有知識走進(jìn)數(shù)學(xué)課堂。
“數(shù)形結(jié)合”是一種重要的數(shù)學(xué)思想。對教師來說則是一種教學(xué)策略,是一種發(fā)展性課堂教學(xué)手段;對學(xué)生來說又是一種學(xué)習(xí)方法。如果長期滲透,運(yùn)用恰當(dāng),則使學(xué)生形成良好的數(shù)學(xué)意識和思想,長期穩(wěn)固地作用于學(xué)生的數(shù)學(xué)學(xué)習(xí)生涯中。開課教師引導(dǎo)學(xué)生進(jìn)行空間想象。
(4)重組教材,根據(jù)學(xué)生的實(shí)際情況,多種形式探究找因數(shù)倍數(shù)的方法。
教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學(xué)生的實(shí)際情況,我進(jìn)行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進(jìn)而又借助體態(tài)語言——打手勢,讓學(xué)生說出20和24的因數(shù),達(dá)到了鞏固練習(xí)的目的。這樣設(shè)計(jì)由易到難,由淺入深,符合了學(xué)生的認(rèn)知規(guī)律。而在探究倍數(shù)時(shí),我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實(shí)效性。
(5)趣味活動,擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。
只有讓學(xué)生親身感受到數(shù)學(xué)知識內(nèi)在的智取因素,數(shù)學(xué)學(xué)習(xí)的無窮魅力才能深深地打動學(xué)生。這節(jié)課的練習(xí)設(shè)計(jì)緊緊把握概念的內(nèi)涵與外延,設(shè)計(jì)有效練習(xí),拓展知識空間。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂。但由于我缺乏時(shí)間觀念,這部分時(shí)間太倉促,沒有展開練習(xí),學(xué)生沒有盡興,也沒有達(dá)到充分地練習(xí)效果。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇10
我執(zhí)教的《因數(shù)和倍數(shù)》一節(jié),是一節(jié)概念課。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先以拼圖比賽為素材,讓學(xué)生動手操作快速把12個小正方形擺出一個長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學(xué)生從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報(bào)時(shí),能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實(shí)際交流時(shí),學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因?yàn)?5的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時(shí)沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個環(huán)節(jié)上花了比較多的時(shí)間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
這節(jié)課另一個給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點(diǎn)時(shí),由于及時(shí)跟上個性化的語言評價(jià),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時(shí)放手,會看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計(jì)綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
《因數(shù)和倍數(shù)》的個人教學(xué)反思 篇11
今天和孩子們一起學(xué)習(xí)了新的一節(jié)課《因數(shù)》,對于《因數(shù)》來說是孩子們第一冊接觸的知識,但是對于因數(shù)這個詞來說,孩子們也并不陌生,因?yàn)樵诔朔ㄋ闶街幸呀?jīng)有了因數(shù)的一個初步的了解。所以對于本節(jié)課來說自己有如下的感受:
一、初步感知,數(shù)形結(jié)合讓學(xué)生形成表象
在教學(xué)的時(shí)候,我首先通過課本上飛機(jī)圖的情景圖讓學(xué)生看圖列算式,并且用現(xiàn)在自己五年級的思維來用不同的乘法算式來表示,這一環(huán)節(jié)對于學(xué)生列式來說是比較簡單的,基本上所有的學(xué)生都能夠很好的列出算是,然后根據(jù)學(xué)生列出的算式,引出因數(shù)和倍數(shù)的意義。在此環(huán)節(jié)的設(shè)計(jì)上由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激發(fā)了學(xué)生的形象思維,而又借助“形”與“數(shù)”的關(guān)系,為接下來研究“因數(shù)與倍數(shù)”概念打下了良好基礎(chǔ),有效地實(shí)現(xiàn)了已有知識與新知識之間的聯(lián)系。更好的分化了難點(diǎn),讓學(xué)生很輕松的接受了知識的形成。
二、自主探究以鄰為師
在學(xué)生知道了因數(shù)和倍數(shù)的意義上,接下來出示了讓學(xué)生自己動手找18的所有的因數(shù)。為了能夠更好的、全面的找到18的所有因數(shù),讓同桌兩人互相合作來完成。通過教學(xué)發(fā)現(xiàn)學(xué)生的合作能力很強(qiáng),能夠用數(shù)學(xué)語言來準(zhǔn)確的表述,而且大多數(shù)學(xué)生在合作的.過程中也能很好的找到、找全18的所有的因數(shù)。
三、在練習(xí)中體驗(yàn)學(xué)習(xí)的快樂
在最后的環(huán)節(jié)中我設(shè)計(jì)了不同層次的練習(xí),先讓學(xué)生說說有關(guān)因數(shù)和倍數(shù)的意義的一些練習(xí)題,加深對知識點(diǎn)的理解,主要是讓學(xué)生明白因數(shù)和倍數(shù)不是單獨(dú)存在的,是相互已存的,必須要說清楚是誰是誰的因數(shù)、誰是誰的倍數(shù)。通過教學(xué)來看學(xué)生掌握的還算可以。接著出示了讓學(xué)生找不同數(shù)的因數(shù),在這個環(huán)節(jié)的設(shè)計(jì)用了不同的形式,比如:找朋友,你來說我來做,比一比說最快等形式來幫助學(xué)生理解知識,在此過程中學(xué)生很感興趣,激情很好課堂氣氛熱烈,也讓學(xué)生在輕松的氛圍中體驗(yàn)到學(xué)習(xí)的快樂。
不足之處:
在本節(jié)課的教學(xué)上還是存在很多不足之處,雖然自己也知道新課標(biāo)提出要以學(xué)生為主體,老師只是引導(dǎo)著和合作者,可是在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。
如在教學(xué)找18的因數(shù)這一環(huán)節(jié)時(shí),由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導(dǎo)的過多講解的過細(xì),因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。
【《因數(shù)和倍數(shù)》的個人教學(xué)反思】相關(guān)文章:
《倍數(shù)和因數(shù)》教學(xué)反思06-01
《倍數(shù)和因數(shù)》的教學(xué)反思06-20
《因數(shù)和倍數(shù)》的教學(xué)反思11-29