《倒數(shù)的認識》教學設(shè)計(精選3篇)
在教學工作者開展教學活動前,常常需要準備教學設(shè)計,借助教學設(shè)計可以提高教學質(zhì)量,收到預期的教學效果。一份好的教學設(shè)計是什么樣子的呢?下面是小編為大家收集的《倒數(shù)的認識》教學設(shè)計(精選3篇),歡迎大家分享。
《倒數(shù)的認識》教學設(shè)計1
教學目標:
1、認識倒數(shù),理解倒數(shù)的意義。
2.經(jīng)歷倒數(shù)的意義這一概念的形成過程。
3.會求一個數(shù)的倒數(shù)。
4.利用教師的情感特征,激發(fā)學生的學習興趣,讓學生體驗成功的快樂。
教學過程
一、揭示倒數(shù)的意義
師:前面我們學習了分數(shù)乘法,請同學們拿出聽算本,我們聽算幾道題。
師:第一題:3/8×8/3…第二題:7/15×15/7…第三題:3×1/3…第四題:1/80×80……
師:你們發(fā)現(xiàn)了什么?
生:乘積都是1!
師:對,今天我們要研究的就是乘積是1的兩個數(shù)。你們還能寫出乘積是1的兩個數(shù)嗎?
生:(齊)能!
師:那好,我們就進行一個小小的比賽。請大家準備好課堂練習本,我給大家一分鐘的時間,請你寫出乘積是1的任意兩個數(shù),看誰寫得多,而且能寫出不同的類型。
師:匯報大家共同分享?
生1:2/9×9/2=1,5×1/5=1,3/10×10/3=1,1/70×70=1,0.25×4=1,0.125×8=1,0.1×10=1,0.01×100=1
師有選擇的板書在黑板上。
師:這么短的時間內(nèi)就能寫出這么多乘積是1的兩個數(shù),還是幾種不同的類型,不錯。太厲害了!如果給你們充足的時間,你們還能寫多少個這樣的乘法算式?(無數(shù)個)
不過老師比你們更厲害。我不但能寫出這么多算式,而且還能猜出你們寫的是什么?只要你說出你寫的第一個數(shù),我就能猜出你寫的第二個數(shù)是什么?生說師猜
師:同學們你要能猜出來,也可以來試一試呀。
師:為什么能猜到?
生:因為這兩個數(shù)的乘積是1。
師:對,你們所寫的這兩個數(shù)的乘積都是1。像這樣的乘積是1的兩個數(shù),我們把它稱之為互為倒數(shù)。
教師板書:乘積是1的兩個數(shù)叫做互為倒數(shù)。生齊讀。
師:黑板上所寫的兩個數(shù)的積都是1,所以他們互為倒數(shù)。比如2/9和9/2和乘積是1,我們就說2/9和9/2互為倒數(shù)。(師板書2/9和9/2互為倒數(shù))
師:為什么乘積是1的兩個數(shù)不直接說是倒數(shù),而要說“互為”倒數(shù)呢?“互為”是什么意思呢?你是怎樣理解這兩個字?
生1:“互為”是指兩個數(shù)的關(guān)系。
生2:“互為”說明這兩個數(shù)的關(guān)系是相互依存的。
師:同學們說得很好。倒數(shù)是表示兩個數(shù)之間的關(guān)系,它們是相互依存的,所以必須說清一個數(shù)是另一個數(shù)的倒數(shù),而不能孤立地說某一個數(shù)是倒數(shù)。以前我們學過這種兩數(shù)間相互依存關(guān)系的知識嗎?
生:學過,約數(shù)和倍數(shù)。比如:15是3的倍數(shù),3是15的約數(shù)。
師:對,我們今天學習的倒數(shù)與約數(shù)、倍數(shù)一樣都是表示兩個數(shù)之間的關(guān)系,必須是相互依存,而不能獨立地存在。
師:5和1/5的積是1,我們就說……(生齊說)
師:0.25×4=1,這兩個數(shù)的關(guān)系可以怎么說?
生1:0.25的倒數(shù)是4,4的倒數(shù)是0.25。
師:看來同學們學得不錯,F(xiàn)在老師要考考大家,是不是真正理解了倒數(shù)的意義。
1、判斷:
。1)得數(shù)是1的兩個數(shù)叫做互為倒數(shù)。
。2)因為10×1/10=1,所以10是倒數(shù),1/10是倒數(shù)。
。3)因為1/4+3/4=1,所以1/4是3/4的倒數(shù)。
2、口答練習。
1、3/4×()=17×()=1
2、下面哪兩個數(shù)互為倒數(shù)?
4/37/66/73/41/88
二、探索求一個倒數(shù)的方法
師:非常好!我們知道了倒數(shù)的意義,那么互為倒數(shù)的兩個數(shù)有什么特點呢?我們一起來觀察一下剛才的這些例子。
生1:互為倒數(shù)的兩個數(shù)分子和分母調(diào)換了位置。
師:分子和分母調(diào)換了位置,(師指黑板)相乘時分子分母就可以完全約分,得到乘積是1。那么0.25和4呢,好像沒有這一特點呀?
生:如果把0.25化成分數(shù)就是1/4,4就可以看成4/1,分子和分母也調(diào)換了位置。
師:根據(jù)這一特點你能寫出一個數(shù)的倒數(shù)嗎?
師:試一試!師在黑板上出示3/57/2,寫出它們的倒數(shù)。
小結(jié):求一個數(shù)的.倒數(shù)的方法,只要把分子分母調(diào)換位置。(板書)
師:那18的倒數(shù)是什么?它可是沒有分子和分母呀?
把18看成是分母是1的分數(shù),再把分子分母調(diào)換位置。
師:那1又2/7的倒數(shù)呢?
要先把1又2/7化成假分數(shù)9/7,再交換位置。1又2/7的倒數(shù)是7/9。
師:正確嗎?我們一起來檢驗檢驗。
怎么檢驗?zāi)?看?/p>
們的乘積是不是1。
師板書乘法算式,計算帶分數(shù)乘法時,要先把帶分數(shù)化成假分數(shù),……
師:再來一題:0.2的倒數(shù)是()。
生1:把0.2先化成分數(shù)是1/5,所以它的倒數(shù)是5。那0.3的倒數(shù)呢?
師:看來我們求小數(shù)的倒數(shù)一般方法要……(學生齊說)
師:那1的倒數(shù)是幾呢?并說明了理由
0的倒數(shù)呢?
師:為什么?
生1:因為0和任何數(shù)相乘都得0,不可能得1。
師:剛才一個同學提出分子是0的分數(shù),實際上就等于0,0可以看成是0/2、0/3、……把這此分數(shù)的分子分母調(diào)換位置后。(生齊:分母就為0了,而分母不可以為0。)
師:我們求了這么多數(shù)的倒數(shù),誰來總結(jié)一下求一個數(shù)的倒數(shù)的方法。
生1:求一個數(shù)的倒數(shù),只要把分子分母調(diào)換位置。
小結(jié):如果是求一個帶分數(shù)的倒數(shù)要先化成假分數(shù);是求一個小數(shù)的倒數(shù)要先化成分數(shù)(師補充,而且是一個最簡分數(shù));如果是求一個整數(shù)的倒數(shù),可以把這個整數(shù)看成是分母是1的分數(shù),然后再調(diào)換分子分母的位置。
師:如果是一個真分數(shù)或假分數(shù)呢?只要把分子分母調(diào)換位置就行了。
師:看看我們的板書還要加上什么?0除外,因為0沒有倒數(shù)。
生齊讀求一個數(shù)倒數(shù)的方法。
三、鞏固練習
1、打開書,閱讀課本p45,把你認為重要的劃起來。
2、完成做一做。寫出下面各數(shù)的倒數(shù)。
4/1116/9351又7/8)
師:這樣寫可以嗎?(4/11=11/4)
師:對,互為倒數(shù)的兩個數(shù)是不會相等的(1除外)。我們在書寫時要寫清誰是誰的倒數(shù),或誰的倒數(shù)是誰。
3、先說說下面每組數(shù)的倒數(shù),再看看你能發(fā)現(xiàn)什么?
。1)3/4的倒數(shù)是()(2)9/7的倒數(shù)是()
2/5的倒數(shù)是()10/3的倒數(shù)是()
4/7的倒數(shù)是()6/6的倒數(shù)是()
(3)1/3的倒數(shù)是()(4)3的倒數(shù)是()
1/10的倒數(shù)是()9的倒數(shù)是()
1/13的倒數(shù)是()14的倒數(shù)是()
生1:我從第一組中發(fā)現(xiàn)真分數(shù)的倒數(shù)都是假分數(shù)。
生2:我從第二組中發(fā)現(xiàn)假分數(shù)的倒數(shù)是真分數(shù)或者假分數(shù)。
生3:真分數(shù)的倒數(shù)都小于1,假分數(shù)的倒數(shù)大于1。
生4:不對,假分數(shù)的倒數(shù)也可能等于1。
生5:我發(fā)現(xiàn)分子是1的分數(shù),也就是分數(shù)單位的倒數(shù)都是1,整數(shù)的倒數(shù)是分數(shù)單位。
4、填空:
7×()=15/2×()=()×3又2/3=0.17×()=1
四、課堂小結(jié)
1、小結(jié):今天我們學習了什么?……
2、還有什么問題嗎?(沒有)
3、學了倒數(shù)有什么用呢?
《倒數(shù)的認識》教學設(shè)計2
教學目標:
1.知道倒數(shù)的意義。
2.經(jīng)歷倒數(shù)的意義這一概念的形成過程。
3.會求一個數(shù)的倒數(shù)。
4.培養(yǎng)學生合作學習,激發(fā)學習興趣,讓學生體驗學習數(shù)學的快樂。
教學重點:知道倒數(shù)的意義,會求一個數(shù)的倒數(shù)。
教學難點:1和0倒數(shù)的問題
教學關(guān)鍵:掌握倒數(shù)的意義。
教學過程
一、談話導入
師:同學們,聽說我們文城中心小學要舉行計算比賽,你們想?yún)⒓訂幔?/p>
生:想。
師:老師就喜歡你們這種積極向上的精神,但光想不行,還必須得過老師這一關(guān)。這個學期我們學習了什么計算?
生:分數(shù)乘法。
師:我們來算一算怎么樣?(出示口算卡算一算。)
生:好。
師:你們的口算不錯,今天要研究的這幾道題肯定難不倒你們,但要想發(fā)現(xiàn)它們的秘密,必須得有一雙火眼金睛才行哦!
二、揭示倒數(shù)的意義
1、出示例1:先計算,再觀察,看看有什么規(guī)律。
3/8×8/37/15×15/75×1/51/12×12
師:上面這幾道算式你能很快地算出結(jié)果嗎?
生:能。(指名上去寫結(jié)果)
師:你們算得真快!認真觀察一下算式,有什么發(fā)現(xiàn)嗎?先把你的發(fā)現(xiàn)與同桌交流一下。
。ń涣魍旰笳垈別學生說一說)
生:乘積都是1。(師板書:乘積是1)
師:還有別的發(fā)現(xiàn)嗎?(相乘的兩個數(shù)有什么特征?)
生:相乘的兩個數(shù)的分子、分母正好顛倒了位置。
師:你們能寫出這樣的兩個數(shù)嗎?
生:(齊)能。
2、讓學生自由寫后再歸納倒數(shù)的意義。
師:你們寫的算式乘積都是多少?
生:乘積都是1。
師:像這樣乘積是1的兩個數(shù),我們把它們叫做互為倒數(shù)。(師又接著板書:的兩個數(shù)叫做互為倒數(shù)。)這也就是這節(jié)課我們要學習的內(nèi)容。(板題:倒數(shù)的認識)
。ㄗ屔R讀課題和倒數(shù)的意義)
3、理解“互為倒數(shù)”的含義。
師:“乘積是1的兩個數(shù)互為倒數(shù).”你有不理解的地方嗎?
生:為什么乘積是1的兩個數(shù)不直接說是倒數(shù),而要說“互為倒數(shù)”呢?“互為”是什么意思?
生生交流后歸納:因為倒數(shù)是表示兩個數(shù)之間的關(guān)系,這兩個數(shù)是相互依存的,不能單獨存在。(舉例說明:如3/8和8/3,可以說3/8和8/3互為倒數(shù),也可以說3/8是8/3的倒數(shù),但不能說3/8是倒數(shù))
師:好像以前也學過有這樣關(guān)系的兩個數(shù),還記得嗎?
生:記得,是因數(shù)和倍數(shù)。
三、探索求倒數(shù)的方法
1、出示例2:下面哪兩個數(shù)互為倒數(shù)?
3/567/25/31/612/70
讓學生說,師板書:3/5——————————→5/3
6———————————→1/6
師:你是怎樣找一個數(shù)的倒數(shù)的?
生:把分子、分母交換位置。(師板書在箭頭上面)
師:那6的倒數(shù)怎么找?
生:把6看作6/1,然后再交換分子、分母的位置。
2、師再次引導學生觀察以上的數(shù),哪兩個數(shù)互為倒數(shù)?哪些數(shù)沒有找到倒數(shù)?引發(fā)學生質(zhì)疑。
生:1和0有倒數(shù)嗎?那它們的倒數(shù)是什么呢?為什么?
同桌之間再次交流得出:1的倒數(shù)是1,0沒有倒數(shù)。(師相機板書)
3、總結(jié)求一個數(shù)的倒數(shù)的方法:求真分數(shù)和假分數(shù)的倒數(shù)只要交換分數(shù)的分子、分母的位置,而求整數(shù)的倒數(shù)要把整數(shù)看作分母是1的分數(shù),再交換分子、分母的位置。
4、引導學生打開課本學習
四、鞏固練習
1、課本24頁做一做
2、互說倒數(shù)。(25頁練習六第2題,同桌合作,師生合作)
3、25頁第3題:下面的說法對不對?為什么?
(1)7/12與12/7的乘積為1。所以7/12和12/7互為倒數(shù)。()
(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互為倒數(shù)。()
(3)0的倒數(shù)還是0。()
。4)一個數(shù)的倒數(shù)一定比這個數(shù)小。()
4、第4題。
五、課堂小結(jié)。
這節(jié)課我們學習了什么?你學到了什么知識?能說一說嗎?
板書設(shè)計:
倒數(shù)的認識
。1)3/8×8/3=17/15×15/7=15×1/5=11/12×12=1
乘積是1的兩個數(shù)互為倒數(shù)。
。2)3/567/25/31/612/70
分子、分母交換位置
3/5————————————→5/33/5的倒數(shù)是5/3
分子、分母交換位置
6=6/1———————————→1/66的倒數(shù)是1/6
1的倒數(shù)是1,0沒有倒數(shù)。
教學反思:
倒數(shù)的認識這部分內(nèi)容是在學習分數(shù)乘法的基礎(chǔ)上進行教學的。學好倒數(shù)的認識這部分內(nèi)容能夠為后面學習分數(shù)除法打好基礎(chǔ)。所以學好這部分內(nèi)容對之后學習分數(shù)除法是至關(guān)重要的。我主要結(jié)合教材編排的特點、本班學生的認知規(guī)律及教學的重、難點對教學流程進行預設(shè),收到了較好的效果。
一、談話導入激發(fā)求知欲望,深入研究發(fā)現(xiàn)其中奧秘
在導入這個環(huán)節(jié),我主要結(jié)合本學期要舉行的計算比賽,通過談話激發(fā)學生學習的熱情及求知欲望,讓學生對學習充滿信心,并引發(fā)期待學好新知識的決心。從學生的表現(xiàn)來看,很多地方都讓我意想不到,如交流1和0的倒數(shù)時,很多學生都能根據(jù)倒數(shù)的意義推理出1的倒數(shù)是1,0沒有倒數(shù),并且說得有憑有據(jù)的,這是其一。還有在互說倒數(shù)這個環(huán)節(jié),我出示了一些真分數(shù)、假分數(shù)和整數(shù),學生都能正確地說出它們的倒數(shù),這純屬正常發(fā)揮,不算什么,但在最后我分別出示了一個帶分數(shù)和一個小數(shù),讓學生說出它們的倒數(shù),拓展了我所提供給學生的知識內(nèi)容,我以為會把他們難住了,沒想到一位同學毫不猶豫地說出了它的倒數(shù),在我的追問下,竟然還能把找這個數(shù)的倒數(shù)的過程說得滴水不漏,這不能不讓我為之豎起大拇指。
二、精心預設(shè)洞悉其中規(guī)律,引發(fā)質(zhì)疑解開心中疑團。
著名教育家蘇霍姆林斯基說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,那就是希望自己是一個發(fā)現(xiàn)者和探索者!睂τ谖覀兊膶W生來說,這種需求特別強烈。在這部分的教學中,掌握倒數(shù)的意義是學好這部分內(nèi)容的關(guān)鍵。因此在教學倒數(shù)的意義時,我主要是讓學生通過算一算,看一看,寫一寫,說一說的形式,還有合作學習的方式獲得“什么樣的兩個數(shù)是互為倒數(shù)”這個概念,為了更好地理解“互為倒數(shù)”,我讓學生自己質(zhì)疑,然后再給他們設(shè)計一個交流的平臺,讓他們自己解開心中的疑慮,使學生在深入思考中得出結(jié)論,這就是學生學習的成果。我覺得,這樣做不僅活躍了課堂氣氛,而且還讓學生經(jīng)歷了探索的過程,解決了心中的困惑,更主要的是讓學生體會到了成功的喜悅。
經(jīng)過這節(jié)課,我最大的收獲是看到學生的成長及迸發(fā)出的那股探索知識的勁頭,無一不讓我為之高興。但在高興之余,我也看到了課堂中的不足之處,有相當一部分學生不善于表現(xiàn)自己,思維火花受到限制,導致回答問題的人氣不足,這將是我在今后教學中所面臨的一大挑戰(zhàn)。
《倒數(shù)的認識》教學設(shè)計3
學習目標:
1、理解倒數(shù)的意義,掌握求一個數(shù)倒數(shù)的方法,能準確熟練地寫出一個數(shù)的倒數(shù)。
2、通過獨立思考、小組合作、展示質(zhì)疑,在探索活動中,培養(yǎng)觀察、歸納、推理和概括能力。
3、激情投入,挑戰(zhàn)自我。
教學重點:求一個數(shù)倒數(shù)的方法。
教學難點:1和0倒數(shù)的問題。
教學過程:
離上課還有一點時間,咱們先聊一會吧。同學們,我給你們代數(shù)學課多長時間了?(一年)一年時間雖然不是很長,但我覺得我們之間已經(jīng)互相成為了朋友,你有這種感覺嗎?該怎樣表述我們之間的朋友關(guān)系呢?(你是我的朋友,我是你的朋友,互相應(yīng)該是雙方面的。)就先聊到這兒吧?好,上課!
一、導入:
同學們,在上數(shù)學課之前,老師想考你們一個語文知識,怎么樣?(出示“杏”和“呆”)看到這兩個字,你發(fā)現(xiàn)了什么?
生:上下兩部分調(diào)換了位置,變成了另一個字。
師:對了,把其中任一個字上下兩部分倒過來,就變成了另一個字,這個現(xiàn)象很有趣很奇妙吧!
師小結(jié):這種奇妙有趣的現(xiàn)象不僅出現(xiàn)在語文中,其實在數(shù)學中也存在著,想了解嗎?今天我們就一起揭秘這種現(xiàn)象,好吧?
二、合作探究:
。ㄒ唬┙沂镜箶(shù)的意義
1.(出示例題課件)請看大屏幕,先計算,再觀察這些算式,同桌互相說一說它們有什么規(guī)律?(學生自學,經(jīng)歷自主探索總結(jié)的過程,并獨立完成)。
請同學們按照要求逐一完成,看誰是認真仔細的人,既能準確的計算,又能發(fā)現(xiàn)其中的秘密。
師:同學們,在以前我們看來非常簡單的乘積是1的兩個數(shù),研究起來有如此大的發(fā)現(xiàn),那么,像符合這種規(guī)律的兩個數(shù)叫什么數(shù)呢?誰能給這種數(shù)取個名字?(生取名字)
師:那么根據(jù)剛才的計算結(jié)果與發(fā)現(xiàn)的規(guī)律你能說出什么叫倒數(shù)嗎?(生答)
師板書:乘積是1的兩個數(shù)互為倒數(shù)。
你認為哪些字或詞比較重要?你是如何理解“互為”的?你能用舉例子的方法來說明嗎?(生答)
師小結(jié):剛才我們認識了倒數(shù)的意義,知道乘積是1的兩個數(shù)互為倒數(shù),而且倒數(shù)不能單獨存在,是相互依存的。就像課前我們聊得話題,老師和你互相成為了好朋友,就是說“老師是你的朋友”,“你是老師的朋友”,我們倆是雙方面的。
。ǘ┬〗M探究求一個倒數(shù)的方法
1.出示例題2課件:下面哪兩個數(shù)互為倒數(shù)?
師:同學們知道了什么是倒數(shù),那你能找出一個數(shù)的倒數(shù)嗎?那好,請完成這道題。
出示課件,請看這里,哪兩個數(shù)互為倒數(shù)?(生找)(生說教師演示)
提問:你用什么好辦法這么快就找出了這三組數(shù)的倒數(shù)?(同桌互相說說看)(找?guī)酌麑W生匯報)
師板書:求倒數(shù)的方法:分數(shù)的分子、分母交換位置。
同學們想出了找倒數(shù)的好方法,那就是分數(shù)的分子、分母交換位置,你們把老師想說的都說出來了,太棒了!我們一起來看一看(出示課件)。在這三組數(shù)里哪一組不同于其它兩組?對,6是整數(shù),像6這樣的整數(shù)找倒數(shù)的方法可以先把整數(shù)寫成分母是1的分數(shù),再找倒數(shù)。
2.師提問:再次出示連線題的課件,本題中的還有哪些數(shù)據(jù)沒有找到倒數(shù)?它們有沒有倒數(shù)?如果有,又是多少呢?同桌討論說說你的發(fā)現(xiàn)。
3.出示課件想一想。
我的發(fā)現(xiàn):1的倒數(shù)是(1),0(沒有)倒數(shù)。
師提問:(1)為什么1的倒數(shù)是1?
生答:(因為1×1=1“根據(jù)乘積是1的兩個數(shù)互為倒數(shù)”,所以1的倒數(shù)是1)
。2)為什么0沒有倒數(shù)?
生答:(因為0與任何數(shù)相乘都等于0,而不等于1,所以0沒有倒數(shù))
4.探討帶分數(shù)、小數(shù)的倒數(shù)的求法
師:看來像這樣的分數(shù)與整數(shù)它的倒數(shù)求法很簡單,可是我們學過的不僅僅是分數(shù)、整數(shù),還有呢?這些數(shù)的倒數(shù)又該怎樣求呢?請同桌的同學討論一下,把你們討論的結(jié)果填在表格上。(課件出示)
你們有結(jié)果了嗎?誰愿意到這里把你們組的討論結(jié)果說出來與大家共享(師切換實物投影),小組匯報討論結(jié)果,學生自己用投影展示討論結(jié)果并說明。
(師切換投影):老師也把求這一類數(shù)的倒數(shù)的方法寫出來了,一起看看我們想的是否一樣呢?(出示課件5)。
當你給帶分數(shù)、小于1的小數(shù)、大于1的小數(shù)找出倒數(shù)后你有沒有發(fā)現(xiàn)什么規(guī)律?請你對照大屏幕說說自己的發(fā)現(xiàn):
發(fā)現(xiàn)1:帶分數(shù)的倒數(shù)都(小于)本身;
發(fā)現(xiàn)2:比1小的小數(shù)的倒數(shù)都(大于)本身,并且都(大于)1。
發(fā)現(xiàn)3:比1大的小數(shù)的倒數(shù)都(小于)本身,并且都(小于)1。
。ㄈ⿲W以致用:
師:探究到這里,大家肯定有了很大的收獲,現(xiàn)在請大家閉上眼睛休息一下,休息時想一想什么是倒數(shù)?再想一想求倒數(shù)的方法是什么?讓學生再次記憶找倒數(shù)的方法。
1.想不想檢驗一下自己學的怎么樣?
請打開課本24頁完成做一做和25頁練習六的第4題,(讓學生做在課本上,并找學生口答做一做的題。練習六的第4題連線用投影展示學生的作業(yè))。
2.(課件出示)請你以打手勢的形式告訴老師你的答案。
。ㄋ模┤n總結(jié)
今天學習了什么?我們一起回顧總結(jié)出來好嗎?
【《倒數(shù)的認識》教學設(shè)計(精選3篇)】相關(guān)文章:
《倒數(shù)的認識》說課稿04-25
倒數(shù)的認識說課稿11-02
《倒數(shù)的認識》說課稿12篇04-12
《認識毫升》教學設(shè)計04-03
《認識線段》教學設(shè)計03-30
“認識直角”教學設(shè)計04-04
《認識分數(shù)》教學設(shè)計03-31